
Reverse Engineering of Computer-Based Navy Systems

Lonnie R. Welch

Guohui Yu

Binoy R a vindran

Franz Kurfess

Jorge Henriques

Department of Computer and Information Science
New Jersey Institute of Technology

Newark, NJ 07102
e-mail: welch@vienna.njit.edu

Phone: �201�596-5683
Fax: �201�596-5777 �

Mark Wilson
The Naval Surface Warfare Center

Dahlgren Division, White Oak Detachment

Code B44

Silver Spring, Maryland 20903-5640

Antonio L. Samuel

Michael W. Masters

The Naval Surface Warfare Center

Dahlgren Division

Dahlgren, VA 22448

�Supported in part by The U.S. NSWC �N60921-93-M-1912 and N60921-94-M-G096�, by the U.S. ONR
�N00014-92-J-1367�, and by the State of New Jersey �SBR-421290�.

1

Abstract

The �nancial pressure to meet the need for change in computer-based systems through evolution
rather than through revolution has spawned the discipline of reengineering. One driving factor
of reengineering is that it is increasingly becoming the case that enhanced requirements placed
on computer-based systems are overstressing the processing resources of the systems. Thus, the
distribution of processing load over highly parallel and distributed hardware architectures has
become part of the reengineering process for computer-based Navy systems.

This paper presents an intermediate representation �IR� for capturing features of computer-
based systems to enable reengineering for concurrency. A n o vel feature of the IR is that it incor-
porates the mission critical software architecture, a view that enables information to be captured
at �ve levels of granularity: the element�program level, the task level, the module�class�package
level, the method�procedure level, and the statement�instruction level. An approach to reverse
engineering is presented, in which the IR is captured, and is analyzed to identify potential con-
currency. T h us, the paper de�nes concurrency metrics to guide the reengineering tasks of iden-
tifying, enhancing, and assessing concurrency, and for performing partitioning and assignment.
Concurrency metrics are de�ned at several tiers of the mission critical software architecture. In
addition to contributing an approach to reverse engineering for computer-based systems, the
paper also discusses a reverse engineering analysis toolset that constructs and displays the IR
and the concurrency metrics for Ada programs. Additionally, the paper contains a discussion
of the context of our reengineering e�orts within the United States Navy, b y describing two
reengineering projects focused on sussystems of the AEGIS Weapon System.

2

1 Introduction

A computer-based system has many c haracteristics, including performance, timeliness, availabil-
ity, dependability, safety and security. F urthermore, such a system typically performs many re-
lated functions concurrently, i n teracts with the environment and many h uman operators and�or
clients simultaneously, consists of many i n terconnected processing elements, contains many mil-
lions or tens of millions of lines of code, takes years to develop from �rst concept formulation
to �nal deployment, and has development costs of many tens or hundreds of millions of dollars.
Computer-Based systems generally address nontransient requirements that simply cannot be
addressed with simpler solutions. Thus they tend to be characterized by long life cycles, often
spanning decades. During such extended life cycles, change is inevitable in many dimensions,
such as operational environment, system requirements, and technology base. Because of the time
and cost of development of computer-based systems, and because of the infrastructure which
includes highly trained personnel, hardware and support tools, documentation, test procedures,
and many other components needed for their development and continued support once deployed,
there is enormous �nancial pressure to meet the need for change through evolution rather than
revolution. This need has spawned the discipline of reengineering, the systematic application
of methodology and tools for managing the evolutionary transformation of existing computer-
based systems to encompass new or altered requirements and to transport such systems into
new environments and onto new technology bases.

It is increasingly becoming the case that the increased requirements placed on computer-
based systems are overstressing the processing resources of the systems. Thus, designs and
implementations are being reengineered to exploit highly parallel and distributed hardware.
While computer-based systems of the previous generation employed some parallel processing,
they seldom used more than a few processors. In contrast, modern computer-based Navy systems
that use hundreds of processors are being prototyped. Since computer-based systems were
developed for small scale parallelism in programming paradigms that supported little or no
expression of parallelism, the exploitation of the tremendously increased parallelism is a challenge
that must be addressed during reengineering.

In conjunction with concurrency enhancement for the accommodation of enhanced require-
ments, the Navy's reengineering e�orts are employing modern software engineering principles
to reduce the costs of design, implementation, testing, veri�cation, and maintenance. Layer-
ing of software components is one technique being used to address these concerns. When a
system is constructed by l a yering, the bene�ts include encapsulation and information hiding
�i.e., loose coupling of software components� �20�, abstraction �highly cohesive modules�, and
ease of understandability. Another bene�t of layering is the simpli�cation of analyses for: �1�
concurrency �37, 3 9 , 3 3 , 3 6 , 4 2 , 3 2 , 3 0 �, �2� timing properties �33, 31�, and �3� dependability �11�.

This paper describes a reengineering process that is appropriate for mission critical systems,
such as the U.S. Navy's AEGIS system �23, 24�. Characteristics of past, present, and future
computer-based Navy systems are described in Section 2. Also described in Section 2 are two
reengineering projects �18� in which the authors participated. Section 3 describes a reengineering
process which has been developed for transitioning Navy systems to meet the challenges of
exploiting the technology of the present and of the future. Section 4 discusses reverse engineering
for mission critical systems: the reverse engineering process is presented and the intermediate
representation �IR� that is used to capture important software features is discussed. The reverse
engineering e�orts of the NJIT�NSWC team have resulted realizations of software tools to

3

module 1 (no internal concurrency)
data

entry 1 entry 2 entry 7

(periodic) (message) (successor)

internal
proc 1

internal
proc 2

data

CSRs

ESRs

data

entry 1 entry 2 entry 7

(periodic) (message) (successor)

internal
proc 1

internal
proc 2

module 2 (no internal concurrency)

Figure 1: A typical model of previous generation software.

extract the IR from Ada programs. In Section 5, the techniques and algorithms embodied in
the tools that construct the intermediate representation are presented. Additionally, graphical
and hypertextual techniques for navigating the IR are described in Section 6. Finally, the use
of the IR for the de�nition and computation of concurrency metrics for components within such
an architecture is discussed in Section 7.

2 Computer-based Navy Systems: Past and Present

In this section the properties of computer-based Navy systems are described. The properties of
systems that are being reengineered presently are reviewed, as well as the desired products of
the reengineering process. The section concludes with an overview of two reengineering projects
performed on the U.S. Navy's AEGIS Weapon System.

2.1 Properties of Legacy Systems

Computer-Based Navy systems built more than one decade ago exhibit certain trends, re�ecting
the previous state-of-the-art in the areas of software, hardware, and operating system technology.
A t ypical software paradigm observed is one in which procedures are combined to form a module
�see Figure 1�. A module may contain exported operations �callable from within or without
the module� and internal operations �callable only from within the module�. In addition to
containing operations, each module may contain data accessible only by its operations. Each

4

exported operation of a module is termed a module entry, and serves as a means of manipulating
the module's internal state. An important consideration during reengineering is that assembly
language appears frequently in the code bodies of entries, since module development languages
�such as CMS-2� provide no easy way to control hardware device accesses. In addition to the
user-de�ned modules, a system may contain global data �tables� that are accessible by the
operations of any module. There is also a set of common service routines �CSRs� and executive
service requests �ESRs�, callable from any operation.

It is beyond the scope of this paper to describe any details of the AN�UYK-xx �AN�UYK-20,
AN�UYK-44, AN�UYK-7, AN�UYK-43� or AN�AYK-14 computers. Likewise it is not necessary
to dwell on the di�erences between various versions of the Navy standard CMS-2 programming
language �CMS-2M, CMS-2L, etc.� or the details of assembly languages such a s U L TRA-16 or
Macro, etc. Su�ce it to say that present N a vy combat systems rely on these military standard
computers and languages �26, 2 7 , 2 8 �. Ships under construction presently are being built with
UYK hardware and will run computer programs written in these languages for years to come.
Likewise, Navy aircraft generally have A YK-14 computers onboard. The programs which run
on these systems are invariably a combination of CMS-2 and assembly language.

Assembly code is often embedded within a CMS-2 program. This so-called direct or in-
line code may represent a small fraction of code in a given program or an entire system's
computer program may be written in assembly with a few lines of CMS-2 wrapped around it
at the beginning and at the end. The percentage of assembly code generally varies with the
performance requirements of the system and memory available. Hence, shipboard systems are
likely to have a smaller percentage of assembly code than is found in aircraft systems.

Reengineering Navy tactical systems requires an approach that addresses both software and
hardware. Much of the time there is also humanware that needs to be carefully considered
during system design. However, that will not be addressed here except to point out that it
is much more than a human-machine interface, display, or ergonomic issue. This is the case
since it is generally undesirable to deploy p o werful weapon systems that detect and �re without
human intervention �even though it is technically feasible to fully automate many systems�. The
speed and accuracy of this human intervention should be a an integral part of the overall system
design.

Concurrency and timing properties are stated by de�ning periodic module entries. Each o f
these executes once per period and may h a ve a deadline �by which a n y particular execution of
the entry must complete�. At most one entry may be active within a module at any time �i.e.,
modules are monitors�. A computer-based system is composed of many independent activities
�or threads of control�, which are implemented via calls to module entries, to ESRs and to CSRs,
and which m a y directly access global tables. Due to the lack o f l a yering, all modules, tables,
CSRs and ESRs are visible to each activity.

There are several reasons for migrating from the aforementioned paradigm. As the func-
tionality of computer-based systems increases, it is desirable to increase the concurrency in
order to meet the timing requirements. Thus, systems should be portable to di�erent hardware
platforms. The frequent use of assembly language to implement e n tries signi�cantly decreases
portability. There are many other problems with the assembly language programs, many of them
a result of the ability of clever programmers to promulgate a variety of potentially "dangerous"
programming techniques in assembly code. Di�culties that may be encountered in assembly
code include: widespread use of global data, hard coded data references, reentrant code, self
modifying code, variable aliasing, pointers and other forms of indirection, overlays, and built

5

in delays predicated on known performance of a speci�c processor. Furthermore, the lack o f
concurrency in system designs makes it di�cult to exploit a large parallel processor, and the use
of programming constructs like pointers makes the automatic analysis of concurrency trouble-
some. Also, the �at module hierarchy structure permits the access of global data structures by
every procedure, leading to ine�ciencies due to synchronization of accesses to such structures.
Another de�ciency is the lack of usage of modern software engineering concepts like abstract
data types and objects, and generic �as can be implemented by Ada packages and C++ classes�.
The use of such constructs increases layering, improves reusability, and simpli�es development,
reengineering, timing analysis, and concurrency extraction �20, 3 7 , 2 5 �. The hardware model
makes it impossible to achieve the large scale concurrency necessitated by the massive capa-
bilities of modern software systems. Additionally, the degree of concurrency managed by the
systems is very low, and modern concurrent execution paradigms such as asynchronous remote
procedure call �37� are not supported. Another void in the systems is in the run-time support for
e�cient use of modern software engineering constructs such as abstract data types and abstract
data objects.

2.2 The Target Paradigms of Reengineering

Many of the shortcomings of �yesterday's" system development paradigms are being overcome
by employing modern paradigms. Layering, loose coupling, reuse �20, 2 2 �, high cohesion, encap-
sulation, and information hiding are facilitated by the proper use of programming constructs
such as abstract data types �ADTs� and abstract data objects �ADOs�. The ability to de�ne
generic ADTs and ADOs enables the development of parameterized abstractions, resulting in
increased reuse and in a high payo� when such a component is produced by reengineering �since
the cost of reengineering a component can be amortized over multiple uses of the component�.
The speci�cation of concurrency can be performed in modern languages such as Ada by de�ning
tasks within ADT or ADO modules. The ability to lexically nest modules reduces the visibility
of data structures to only those needing to access them, thus lowering module coupling, sim-
plifying analysis of concurrency, and leading to systems with fewer bugs. The amount of direct
�assembly� code can be minimized in modern systems, leading to increased portability.

As an example, consider an AEGIS cruiser with several doctrine regions. An AEGIS cruiser
is responsible for defending a �eet of ships. One of its many functions is to detect all objects
�tracks� of interest, to classify detected tracks as friend or foe, to further classify into a particular
kind of entity, and to respond appropriately if a entity is classi�ed as a threat. Entering a doctrine
region triggers detection, classi�cation and possible response. As shown in Figure 2, doctrine
regions are geometric areas in which certain actions may be taken. The engageability region is
one in which tracks can be engaged with countermeasures. The early detection region surrounds
the AEGIS cruiser, and is the region in which tracks are detected and classi�ed. The Figure
depicts a ship being protected by the AEGIS cruiser; thus, there is also an early detection region
surrounding the other ship. The tight zone is a region in which engagements are prohibited �e.g.,
a commercial airway�.

The AEGIS cruiser with doctrine region processing can be implemented with ADTs as rep-
resented in Figure 3, which shows the ADT instances used in the implementation, as well as call
relationships among the instances. The track �le is implemented as a list of tracks. A track i s
an ADT implemented as a queue of the last n snapshots of the track's state.

An abundance of concurrency is available when the asynchronous remote procedure call

6

AEGIS

SHIP

ENGAGE

DETECT

747

TIGHT

Figure 2: Sample doctrine regions.

ARRAY INTEGER

QUEUE

ARRAY INTEGER

TRACK

FILE

LIST

TRACK

RECORD

Figure 3: A design of doctrine processing software �ADT paradigm�.

7

PE1

PE3

PE5

PE2

PE4

PE6

FILE
TRACK

TRACK

C&D

LIST

QUEUE

WCS

. .

.

T1

T2

T1

T2

T1

T2

. .

. .

Figure 4: A possible assignment of ADT modules to processors.

model of parallel execution is applied to programs constructed from ADT and ADO modules
�in addition to task-based concurrency�. Instances �consisting of code and possibly state� are
statically assigned to PEs �multiple instances may reside on the same PE�. Instances' operations
are invoked by sending call messages between PEs. To hide the latency of a remote call, an
operation is permitted to continue execution until it attempts to access a �locked" variable �this
model of concurrent execution is termed asynchronous remote procedure call, or ARPC �37��.
A v ariable is automatically locked when it is passed as a parameter to a call and is unlocked
upon return of the call. An operation attempting to access a locked variable must wait for a
remote call to return before retrying the access. ARPC can achieve concurrency at multiple
levels in the abstraction hierarchy. T h us, potential concurrency within a program increases with
the numb e r o f l e v els of abstraction, and the model encourages development of highly cohesive,
loosely coupled modules.

With the increase in potential concurrency comes the added complexity of exploiting the
concurrency. Software components must be partitioned�clustered according to some binding
relationships �such as communication, concurrency or shared data access�, and the clusters
assigned to processors in a way that causes e�cient utilization of hardware resources and simul-
taneously obeys system constraints �32, 33, 34, 35, 29�. For example, the ADTs implementing
the software for the AEGIS cruiser with doctrine regions could be assigned to processors as
shown in Figure 4.

The assignment shown in Figure 4 will yield concurrency when ARPC is used as the execution
model. However, the C&D and the WCS elements will serialize when they need to access tracks,
even if they need di�erent tracks. This is because all tracks are managed by the same code

8

T2

T4
 .
 .

PE1

PE3

PE5

PE2

PE4

PE6

FILE
TRACK

C&D

LIST

QUEUE

WCS

. .

.

T1

T1

T2

T1

. .

. .

TRACK

QUEUE

PE7

PE8

. .

. .

T3

TRACK

T3 T2

T4
 .
 .

Figure 5: Assignment with cloning of track and queue instances.

module. Replication of the code module and redistribution of the track v ariables among the
replicas can increase concurrency. Figure 5 shows the assignment following a single replication
of the track and queue ADT instances. Note that the replication can increase performance
by a factor of two: since the track �le has been split in half, two tracks can be manipulated
concurrently.

The explicit concurrency available in task-based systems, and the implicit concurrency avail-
able via ARPC can be exploited on modern hardware platforms, which are characterized by
a large numb e r o f i n terconnected processing elements �PEs�. For example, the Intel Paragon
computer contains thousands of computing nodes, running according to the MIMD paradigm,
and interconnected by a 2-dimensional mesh network. Its computing nodes contain multiple
CPUs that share memory. Although there is shared memory within a node, there is no globally
shared memory. Additionally, one CPU per node is dedicated to communication processing and
the others are general-purpose processors.

2.3 The Reengineering of Two AEGIS Weapon System Modules

This Section presents summarizes two e�orts �18� to reengineer portions of the AEGIS Weapon
System from CMS-2 to Ada, and to migrate from a militarized AN�UYK-43 to commercial
workstations. These projects were performed for two primary reasons: to aid in the re�nement
of a process for reengineering complex systems, and to provide proven algorithms for an ex-
perimental open system hardware and software environment �HiPer-D� directed at de�ning the
future architecture and functionality o f N a vy ship computer systems.

9

The �rst reengineering experiment w as completed in spring 1994, and the second experiment
is scheduled to be completed in 1995. The reengineering experiments involved two di�erent
functional components from the AEGIS Weapon System Command and Control elements. The
completed e�ort involved the Weapon Selection function, and the second e�ort focuses on the
Surface Operations function. 1

2.3.1 Weapon Selection Module

The �rst e�ort involved the reengineering of Weapon Selection, a module that automatically
recommends a weapon to engage a target based on de�ned criteria. The reengineered Weapon
Selection module is a rule based algorithm that evaluates the current tactical situation and
automatically recommends when a target should be engaged. It also determines parametric
values for such things as weapon intercept point and weapon intercept time. When required,
this information is fed to the appropriate element to initiate engagement.

The goal of the �rst e�ort was to become familiar with the task of reengineering a set of
mission critical AEGIS code. The requirements were that the code was to be translated and
integrated into an open system infrastructure. In this e�ort, the software was translated from
CMS-2 language into Ada using three di�erent translators.

2.3.2 Surface Operations Module

The current e�ort is the reengineering of the Surface Operations module, which is responsible
for making recommendations about steering a vessel to either reach o r t o a void other vessels.
this module makes recommendations about how an AEGIS ship should be maneuvered to adapt
to certain situations. These include recommendations about the course to steer to obtain the
closest point of approach to another vessel, the course to steer to try to avoid a torpedo, and
the course to steer in order to remain a �xed distance from some vessel or shoreline.

The goal of this second e�ort is to validate a repeatable process that can be used to reengineer
other portions of the AEGIS Weapon System, as well as to reengineer other computer-based
systems. Thus, the emphasis is not on translation or evaluating translation, but is on identifying
and performing the steps that are needed to produce a �nal product with high quality. A t critical
steps in this process, metrics are collected for analysis of the reengineering process and product.

3 The Reengineering Process

This section describes a process for reengineering which has evolved in conjunction with e�orts
to reengineer portions of the AEGIS Weapon system �18, 4 0 �. The diagram 2 shown in Fig-
ure 6 indicates the major inputs and outputs of the reengineering process, which consist of the
following items:

1AEGIS System software functions are composed of one or more units called modules. The functions that were
chosen for reengineering are individual modules. In the case of the module from the Weapon Selection function,
the module is one of many modules that make up the function. Whereas the module selected from the Surface
Operations functions is actually the entire application.

2The diagram uses structured design notation, wherein circles denote processes, edges indicate the �ow of data
among processes, and boxes indicate entities that are external to the process.

10

Reeng.
Decision

IR1:
Legacy
Design,
Code

New
System
Metrics

New

Configuration

IR2:
New
Design,
Code

New
Requirements

and
Objectives

Legacy
System
Metrics

System
Legacy

Process

Reengineering

Figure 6: Context diagram for the reengineering process.

�	 Legacy system|the system �consisting of hardware, human and software elements� to be
reengineered and all of its artifacts.

�	 IR1|an abstract representation of the legacy system, in machine-processable form.

�	 Legacy system metrics|concise characterizations of important aspects of the legacy sys-
tem.

�	 Reengineering decision|the answer to the question �Which components from the legacy
system should be reengineered�".

�	 New requirements and objectives|a description of the constraints and desirable properties
that the reengineered system is to have.

�	 IR2|an abstract representation of the new system, in machine-processable form.

�	 New system metrics|concise characterizations of important aspects of the new system.

�	 New con�guration|a description of the interactions of the hardware, operating system,
application software and humanware of the new system.

As indicated in Figure 7, the �rst step of the reengineering process is reverse engineering,
i.e., the capture of important features of the legacy system's hardware, software, and human-
ware. The reverse engineering process produces several outputs: IR1, legacy system metrics,
and the reengineering decision. Given IR1, the legacy system metrics, and the new require-
ments and objectives, the task of software transformation manipulates IR1 until it satis�es the
new goals and constraints. The transformation task is guided by the metrics for the legacy
system. Transformation produces IR2 and metrics for the new software. Transformation is
succeeded by con�guration, which marries hardware, operating system, transformed software,
and humanware. Software components are optimized for the execution paradigm provided by
the hardware-operating system platform. The optimized software components are partitioned
into tightly coupled clusters, which are assigned �30, 31, 4 3 � o n to the hardware platform in a
way that �1� satis�es the new system requirements and �2� considers the new system objectives.

11

Decision

Reeng.

Code
Design,
Legacy

IR1:

Code
Design,
New

IR2:

Configuration

New

Engineering

Reverse

1

Transform.

Software

2

Configuration
System

3
New System

for

Metrics

Objectives

and
Requirements

New

System

Legacy

Metrics for

System

Legacy

Figure 7: Steps of the automated reengineering process.

1.7

Assembly
CMS-2,

Trans-Decision

Decision

Translation

Make

CRG

StmtTab
SymTab,

GDG, CFG

StmtTab

StmtTab
SymTab,

Ada

Ada

Assembly
CMS-2,

Analysis

Interaction

Analysis
Flow

Dependence,

1.4

1.31.2

1.6

Translation

1.1

Design
Code,
Legacy

IR1:

Parsing

Capture

Context

Requirements
Document.

Humanware
O.S.

Hardware

Metrics for
Legacy
System

1.5

Metrics

Computation

Legacy

Software

Decision

Reeng.

Reeng.

Decision

Figure 8: The reverse engineering process.

The output of the con�guration process is a description of the partitioning, a speci�cation of
how partitions are assigned to processors, and a collection of metrics characterizing the new
con�guration. Following reengineering, an assessment of the reengineered product is made by
comparing its metrics against the metrics for the pre-reengineered system. The three steps of
the reengineering process are further explained in the remainder of this section.

3.1 Reverse Engineering

The goal of reverse engineering is to enable systems engineers to understand the important
features of a legacy system's hardware, software, operating system, requirements, documentation
and humanware. The approach taken in the reverse engineering of Navy systems such as AEGIS
is indicated in Figure 8. The �rst step �process 1.1� is to make a decision about whether the
legacy software, written in CMS-2 and assembly languages, should be translated into Ada.
The decision is based on metrics extracted from CMS-2 tools such a s O L TOOLS, and is also

12

based on managerial and strategic factors �such as economics and technology advances� �21�.
If the decision is �no", then the reengineering process terminates �such a decision with respect
to translation implies an equivalent reengineering decision�. Otherwise, the legacy software is
translated into Ada and is incorporated into IR1. Additionally, the important aspects of the
hardware, operating system �O.S.�, humanware, documentation and requirements are captured
in IR1. Following translation, the Ada code is parsed and the symbol table �SymTab� and the
statement table �StmtTab� �13� are extracted and placed into IR1.

Process 1.5 of reverse engineering performs dependence analysis and �ow analysis. Depen-
dence analysis involves processing of the StmtTab to extract graphs that represent statement-
level precedence relations due to control dependences, data dependences, and code dependences.
Similarly, � o w analysis extracts the statement-level control �ow graph by examining the Stmt-
Tab. The general dependence graph �GDG� represents the precedence relationships and the
control �ow graph �CFG� contains the �ow information 3 .

During interaction analysis �process 1.6�, interactions among tasks, packages, and procedures
are identi�ed. Speci�cally, i n teraction analysis produces a call-rendezvous graph �CRG�, which
is the union of the following two graphs:

�	 procedure call graph:

�	 vertices represent program units such as subprograms, packages and tasks

�	 directed edges represent caller-callee relationships �edges are directed from caller to
callee�

�	 task rendezvous graph

�	 depicts tasks, packages and subprograms as vertices

�	 directed edges represent e n tities which rendezvous �edges are directed from the ren-
dezvous initiator to the rendezvous acceptor�

3.2 Software Transformation

The translated code produced by the reverse engineering process has virtually the same design
properties as the untranslated code. The only di�erence is in the implementation language,
thus the post-translation product could hardly be called a �reengineered system." The tasks of
transformation, optimization and con�guration perform the core of the �re�engineering process.
Following reverse engineering, the software design and code contained in IR1 are transformed
to improve important properties, to meet requirements and to achieve objectives. Transfor-
mations are guided by the metrics described in �40�. For example, object-orientedness can be
enhanced by considering �in IR1� the undesirable sources of low cohesion, high coupling, poor in-
formation hiding and low encapsulation. Similarly, concurrency and communication metrics can
drive transformations to improve scalability of software by restructuring, to reduce intermodule
communication and to enhance intermodule concurrency. Also, traditional compiler optimiza-
tions such as strength reduction, code motion and dead code elimination �1� can be performed,
even by commercially available tools. During the transformation stage, components that were
not reengineered, but were developed from scratch, or were reused from previous development

3Although this information involves �ne-grain program units, it is needed to allow later phases of analysis to
compute accurate metrics at higher levels of granularity.

13

Task Task Task

Method Method Method

Package Package Package

Program C++ Program Ada Program etc.

Program Instructions

Figure 9: Mission critical software architecture.

e�orts, are integrated with the transformed components. Given the complete set of program
components, threads of control are identi�ed and Ada tasks are inserted to de�ne the threads.
The timing properties of the system are also indicated with respect to the tasks. For example,
it may be stated that a particular task has a deadline and a period, or that a particular task
will execute each time that a certain event occurs. Due to the insertion of concurrent tasks,
the transformation process must insert code to perform synchronization and deadlock handling.
Furthermore, the fault tolerance properties �e.g., the degree of replication� of the software are
speci�ed with respect program units such as tasks, packages and subprograms.

3.3 System Con�guration

Following software transformation, the software components �tasks, packages and procedures�
are partitioned into tightly coupled groups �based on communication and concurrency relations
among components�, and each group is assigned �30, 43� to a processor of a parallel or distributed
computer. Following this phase, distribution metrics are computed, and integration testing of
program components is performed. The assignment of partitions to processors, and even the
de�nition of partitions, continue to evolve during operation of the system, in order to adapt to
changing load conditions and hardware faults.

4 Intermediate Representation

14

This section de�nes a language-independent i n termediate representation �IR� for capturing
computer-based systems' features that are essential for the reengineering process described in
the previous section.

The systems under consideration have the structure depicted in Figure 9�. We term this
structure the mission critical software a r chitecture �MCSA� �38�, in order to contrast it with the
grand challenge software a r chitecture Such software systems are composed of several layers �or
tiers�. Elements at tier i are implemented in terms of elements at tier i , 1. Tier 1 consists of
independently developed programs, which m a y be implemented in di�erent languages. At tier 2
are tasks �independent threads of control�, which m a y share resources, and are permitted to run
concurrently. Tier 3 is composed of modules with multiple entry points �as in CMS-2�, ADT
packages �as in Ada, Modula, and Clu� and object classes �as in C++, Smalltalk and Ei�el�.
The employment of tier 3 components provides conceptual clarity, enables tier 2 tasks to be
implemented �on top of" abstractions exported by modules, and promotes module reuse. The
elements of tier 3 are implemented in terms of subprograms|the tier 4 elements. Methods are
implemented as a collection of instructions �tier 5 elements�. This section describes how the IR
represents information at the tiers 2, 3, 4 and 5 of the mission critical software architecture.

4.1 Task Tier

The task tier is represented as a directed graph TRG � �V,E�, wherein:

1.	 a vertex v in V denotes a task object, f�v�;

2.	 an edge �x, y� in E indicates that the code of task object f�x� initiates a rendezvous with
an entry provided by task object f�y�.

In addition to rendezvousing with other tasks, Ada tasks may call subprograms. Furthermore,
subprograms may initiate rendezvouses with tasks. Such i n teractions must be considered during
the system con�guration process. Thus, the call-rendezvous graph �CRG � combines the nodes
and vertices of TRG , CGRAP HP , and CGRAP HS , and inserts directed edges representing calls
from tasks to subprograms and indicating rendzvous initiations from subprograms and packages
to tasks. A sample CRG is given in Figure 10.

4.2 Package�Class Instance Tier

At the package instance level, a directed graph is used to show call relationships among instances.
A program is modeled by directed graph, CGRAP HP � � V ; E �, where:

1.	 a vertex v 2 V denotes package instance, f �v�;

2.	 an edge �x; y� 2 E indicates that the code of instance f �x� calls some subprogram�s�
provided by instance f �y�.

A sample CGRAP HP is given in Figure 3.

15

Call-rendezvous Graph (CRG)

subprogramtaskpackage
call

rendezvous

Figure 10: A call-rendezvous graph �CRG �.

4.3 Subprogram Tier

At the granularity of the subprogram, a directed graph, CGRAP HS � � V ; E �, is used to repre-
sent the call relationships as follows:

1.	 a vertex m 2 V denotes a subprogram f �m�

2.	 an edge �m; n� 2 E indicates that the code of subprogram f �m� calls subprogram f �n�.

The edges of the graph are labeled to indicate call frequencies and metrics for communication
and concurrency.

4.4 Statement�Instruction Tier

At the statement level �or at the assembly language instruction level�, dependence graphs repre-
sent program statements as nodes and use directed edges to denote statement ordering implied
by the dependences in a source program �see Figure 11�. Di�erent kinds of ordering requirements
are represented in di�erent dependence graphs, as described below.

�	 Data dependence graph �DDG�: a directed edge denotes a data dependence �destination
and source nodes need the same value�.

�	 Control dependence graph �CDG�: a directed edge denotes that �ow of control to the
destination statement is determined by the source statement.

16

D(X)
1. X := Y + Z ;

S2S1

O(TRACK. UPDATE)

INSTANCE
DEPENDENCE

S2S1

DATA
DEPENDENCE 2. A := X / 5 ;

METHOD/ENTRY
DEPENDENCE 2. TRACK. UPDATE (T2, DATA) ;

1. TRACK. UPDATE (T1, DATA) ;

1. TRACK. READF1 (T1, FIELD1) ;
2. TRACK. UPDATE (T2, DATA) ;

CONTROL
DEPENDENCE

1. IF COND
2. THEN
3. ELSE

S2S1

S1

S2

S3

K

K

F(TRACK)

Figure 11: Statement dependence graphs.

�	 Instance dependence graph �IDG�: an undirected edge denotes an instance dependence|
two nodes use operations exported by the same instance 4

�	 Subprogram dependence graph �SDG�: an undirected edge denotes a subprogram depen-
dence �two nodes use the same subprogram of a particular instance�.

In addition to the dependence graphs, the control �ow graph �CFG� is extracted at the
statement level, indicating the sequential �ow o f c o n trol dictated by the order of the statements
in the source code.

5	 Reverse Engineering Tools for Constructing the Intermedi-

ate Representation

The reverse engineering e�orts of the NJIT�NSWC team have resulted realizations of software
tools to extract the IR from Ada programs. In this section, the techniques and algorithms
embodied in the tools that construct the intermediate representation are presented.

4The IDG was invented for the purpose of ADT instance clone analysis.

17

5.1 Construction of Call and Task Rendezvous Graphs

Since the use relation among program units �tasks, packages, and procedure � is explicitly
declared in the source code, call graphs can be easily constructed during program parsing. The
procedure for building call graphs is shown in Figure 25. The partial call graph of the package
Concatenation , P rocessor is shown in Figure 26. As mentioned before the CG is built during
program parsing. During the parsing, information is collected from the Ada parser production
rules. From this we build a symbol table for each program unit which contains, besides other
relevant information, the call list for that unit. The complete application CG is an union of all
the individual units' call lists.

Due to special language constructs that must be used in the source code, the task rendezvous
graph, like the call graph, can also be easily constructed during program parsing. This process
is similar to the call graph construction using the symbol table. The procedure for building
task rendezvous graphs is also shown in Figure 25. The partial Task Rendezvous graph of a
procedure test1 is sh o wn in Figure 24.

Given the call graph and the task rendezvous graph, the IR we named call rendezvous graph
is a simple union of the previous two as shown in Figure 25.

5.2 Construction of Statement-Level Graphs

In this section, a statement table is introduced �rst, which is used to collect information needed
for constructing the statement-level intermediate representation of programs. This is followed
by the algorithms for building the di�erent dependence graphs. An Ada package Concatena-
tion Processor with a single method Concatenate �shown in Figure 12� is used to illustrate the
dependence analysis techniques.

5.2.1 Statement T ables

There are many w ays to construct program dependence graphs �8, 6 , 3 , 1 0 �. For object-based
systems, PDGs can be constructed at compile time, for each module, De�ne a Statement Table
which contains the following attributes for each statement:

1.	 Statement Type indicates the type of the statement �e.g., method c all, if-then-else, or while
loop�

2.	 Dependence Nesting Level keeps track of the numbe r o f region nodes on the path from the
root to it. �A region node is de�ned as a virtual node which has a zero execution time. A
region node is used to group all the nodes that have a dependence relation on the same
node, by forcing all those nodes to depend on the region node, and letting the region node
depend on the single node.�

3.	 Address is a line number in the source code.

4.	 ADT Instances Used is the set of ADT instances directly used by the statement.

5.	 Parameter List is the set of variables used by the statement.

18

WITH Output-File, Input-File, Command-Line-Processor, Error-Log;

WITH Text-IO;

PACKAGE BODY Concatenation-Processor IS

�| Purpose
�| The Concatenation-Processor CATs the �les together.
�|
�| Initialization Exceptions �none�
�| Notes �none�

USE Command-Line-Processor;

PROCEDURE Concatenate IS

�| Purpose
�| Concatenate performs the Concatenation-Processor functions.
�|

Output-File-Id : Output-File.File-Type;

input-File-Id : Input-File.File-Type;

Input-File-Name-Length, In-Line-Length : INTEGER;

Input-File-Name, In-Line : STRING�1..400�;

Get-Y-Or-N : Character;

Command-Line-Option : Command-Line-Processor.Command-Line-Options-Type;

Copy-File : BOOLEAN;

BEGIN
S1 Output-File.Create�Output-File-Id, Command-Line-Processor.Output-File-Name�;
S2 Error-Log.Open�""�;
S3 Command-Line-Option :� Command-Line-Processor.Command-Line-Options;
S4 WHILE NOT �Command-Line-Processor.Is-End-Of-File-List� LOOP
S5 Command-Line-Processor.Next-Input-File�Input-File-Name, Input-File-Name-Length�;
S6 Copy-File :� TRUE;
S7 IF �Command-Line-Option � Inquire� OR �Command-Line-Option � Inquire-Pager� THEN
S8 Text-IO.Put�"Copy File: " & Input-File-Name�1..Input-File-Name-Length� & " �Y�N� �"�;
S9 Text-IO.Get�Get-Y-Or-N�;
S10 IF �Get-Y-Or-N �� 'Y'� AND �Get-Y-Or-N �� 'y'� THEN
S11 Copy-File :� FALSE;

END IF;
END IF;

S12 IF Copy-File THEN
S13 Input-File.Open�Input-File-Id, Input-File-Name�1..Input-File-Name-Length��;
S14 IF �Command-Line-Option � Pager� OR �Command-Line-Option � Inquire-Pager� THEN
S15 Output-File.Put-Line�Output-File-Id, "�::::::::::::"�;
S16 Output-File.Put-Line�Output-File-Id, "�" & Input-File-Name�1..Input-File-Name-Length��;
S17 Output-File.Put-Line�Output-File-Id, "�::::::::::::"�;

END IF;
S18 Input-File.Get-Line�Input-File-Id, In-Line, In-Line-Length�;
S19 WHILE NOT Input-File.End-Of-File�Input-File-Id� LOOP
S20 Output-File.Put-Line�Output-File-Id, In-Line�1..In-Line-Length��;
S21 Input-File.Get-Line�Input-File-Id, In-Line, In-Line-Length�;

END LOOP;
S22 Input-File.Close�Input-File-Id�;

END IF;
END LOOP;

S23 Output-File.Close�Output-File-Id�;
END Concatenate;

END Concatenation-Processor;

Figure 12: An Ada Package Body

19

6.	 Child points to a statement table containing all its dependents in another dependence level.
If a statement has more than one group of statements depending on it, a Child �eld is
created for each of the groups. This occurs when the statement is an if-statement, case, or
loop, where there exist multiple execution paths. For all statements which do not create
multiple branches, the child �eld is just a null pointer.

For method Concatenation P rocessor in Figure 12, the statement table of the method is
shown in Figure 13. In the statement table, two c hild �elds are created for each while or if

statement.

Label Type Level Line# Facility Parameters LeftC RightC

S1 call 1 1 CLP, OF Output_File_Id, CLP.Output_File_Name null null

S2 call 1 2 null null null null

S3 assign 1 3 CLP Command_Line_Option, CLP.Command_Line_Options null null

S4 while 1 4 CLP CLP.Is_End_Of_File_List null

Label Type Level Line# Facility

call

if

CLP

call

3

3

3

8

9

10 Get_Y_Or_N

Input_File_Name_Length

Get_Y_Or_N

Parameters LeftC RightC

null

null null

null

nullS8

S9

S10

Text_IO

Text_IO

Label Type Level Line# Facility

S11 assign 4 11 null Copy_File, FALSE

Parameters LeftC RightC

null null

Label Type Level Line# Facility

S6

S7

S5 call

assign

if

2

2

2

5

6

7

CLP

null

null Command_Line_Option, Inquire_Command_Line_Option, Inquire_Pager

Copy_File, TRUE

Input_File_Name, Input_File_Name_Length

Parameters LeftC RightC

null null

null null

null

LeftC RightC

null null

null null

null

Figure 13: The Statement T able of method Concatenate

5.2.2 Construction of Control Dependence Graphs

A CDG of a method can be directly constructed from the statement table of the method since
the statement table describes the control dependence relations among statements. A special
region node called entry is added to the CDG and it indicates that all statements of the method
are control dependent upon the entry node of the method. Also, for a statement which has two
or more branches �like an if or a loop statement�, a region node is added to the CDG for each
branch. Thus the start of a branch is indicated by the region node and the region node then
becomes control dependent upon the statement that branches. All statements in each branch
are control dependent upon the region node.

The algorithm for building a CDG from a statement table is shown in Figure 14. The CDG
shown in Figure 15 is constructed by using the statement table of Figure 13 as input to the
algorithm.

20

BuildCDG�StaTab : StaTab TYPE, entry : NODE TYPE�
var Q: QUEUE of node;
x, y, z: NODE TYPE;

begin
ENQUEUE�entry, Q�:

while not EMPTY�Q� do

begin

x : � F R ONT�Q�;

DEQUEUE�Q�;

for each none NULL ChildStaTab C of x in the StaTab do

�* ChildStaTab is either x.LeftC or x.RightC *�

begin

if �x.Type � �if"� then

begin

y :� getRegionNode; �* get a new region node *�

insert�x,y,CDG�; �* insert an edge from x to y in the CDG *�

end

else

y:�x;

for each entry N in C do

begin

z :� getNode�N�; �* get a new node with the label, N.label *�

insert�y,z,CDG�;

ENQUEUE�z,Q�;

end for

end for

end while

end BuildCDG

Figure 14: Algorithm for building CDGs.

5.2.3 Construction of Data Dependence Graphs

Data dependence graphs �DDGs� describe the data dependence relationship among statements
in a method or task. The DDG of a method can be constructed from the control �ow graph of the
method by examining the data dependence relations along the control �ow of the statements
of the method. The algorithm for building the DDG of a method is presented in Figure 16,
Figure 17, and Figure 18. The DDG of the Concatenate method is shown in Figure 19.

5.2.4 Construction of Program Dependence Graphs

A program dependence g r aph �PDG� �8� of a method represents a union of the control de-
pendence graph and the data dependence graph of the method. The algorithm for building the
PDG of a method from its DDG and CDG is shown in Figure 20. Figure 21 �a� shows the PDG
for Concatenate.

5.2.5 Construction of Instance Dependence and General Dependence Graphs

In PDGs, all statements that are immediate successors of a common region node can run con-
currently. In general, any t wo statements can run concurrently if they have neither direct nor
transitive precedence relations. Note the two conclusions above m a y not hold when instance
dependence is considered. For example, if two calls go to the same ADT instance, they cannot
run concurrently even though they have neither direct nor transitive precedence relations, since
the code of an ADT instance cannot be used concurrently �though it may be reentrant� since
only one PE contains a copy of the code.

By adding instance dependence into the PDG of a method or task, a graph representing three
kinds of dependences - control, data, and instance is created. The new graph is called a General
Dependence Graph �GDG� of the method or task. The GDG of the method Concatenate

21

S0

S1 S2 S3 S4 S23

R41

S5 S6 S7 S12

R71 R121

S8 S9 S10 S13 S14 S18 S19 S22

R101 R141 R191

S11 S15 S16 S17 S21S20

Figure 15: The CDG of method Concatenate

is shown in Figure 22. Since local statements �not incurring method calls� have to be executed
sequentially, successive local statements can be treated as a super node called local super node.
With super nodes, the GDG of a method can be simpli�ed. Figure 21 �b� shows the simpli�ed
GDG of method Concatenate. F or each used ADT instance of a method, the statements using
the ADT instance form a subgraph called an instance dependence g r aph �IDG�. The numbe r of
subgraphs of a method's GDG is equal to number of ADT instances used by the method. The
IDGs of method Concatenate are shown in Figure 23.

An instance dependence edge �in the IDG� represents contention for the code of an ADT
instance. This instance dependence edge could be removed by cloning the code, thus enhancing
concurrency. This is not true if two nodes using the same ADT instance have date or control
dependence. In other words, the data or control dependence prevents the two statements from
executing concurrently. Detailed discussion on ine�ective instance dependence relations can be
found in �42�. Therefore, while building the GDG, we add only those instance dependences
into the PDG that connect a node with one of its siblings. In other words, we do not add any
instance dependence that connects a node to its descendant in the PDG.

22

SearchDD�tt : StatementType�
PS : stack�StatementType�
begin

if �tt.rightc �6 n ull� or �tt.leftc 6� n ull� then

Push tt.rightc & tt.leftc into stack PS;

else

begin

st � successiveStatement�tt�;

if �st �6 n ull� then stack.push�st, PS�;

end

while not stack.empty�PS� do

begin

st � stack.pop�PS�;

if �st �6 n ull� then

begin

if �checkDD�st,tt� � true� then

begin

DDG�tt,st� � true;

Remove �st.Parameters � tt.Parameters� from tt;

if no more parameters in tt remain to be checked then

while not stack.empty�PS� do st � stack.pop�PS�;

else

begin

st � successiveStatement�tt�;

if �st �6 n ull� then stack.push�st, PS�;

else �ag � true;

end

end

else

if �st.rightc �6 n ull� or �tt.leftc 6� n ull� then

Push st.rightc & st.leftc into stack PS;

else

begin

st � successiveStatement�tt�;

if �st �6 n ull� then stack.push�st, PS�;

end

end

if ��ag � true� then

while not stack.empty�PS� do st � stack.pop�PS�;

end while

end SearchDD

Figure 16: Algorithm for building DDG �searching for data dependence�

6 Navigating Intermediate Representations via Hypertext

An essential prerequisite for reengineering consists in an understanding of the original program
across di�erent levels of abstraction. The information provided through the intermediate rep-
resentation presented in the previous section greatly helps towards such an understanding, but
it probably is most helpful only after the basic workings of the programs have been compre-
hended. The reason for this is that the intermediate representation captures relevant features
of entities on a certain tier, e.g. the statement�instruction tier, which are closely related, but
represents these features in separate graphs, and displays them separately to the user. A similar
observation holds for information captured on di�erent tiers. This section describes the use of
some hypertext techniques used to retain the contextual and pragmatic relationships among the
di�erent pieces of information in the intermediate representation.

6.1 Zooming

When trying to obtain an understanding of a program, it is often necessary to switch b e t ween
di�erent levels of abstraction. One might, for example, start at a high level, looking at the
main components the program consists of, and the way they are integrated. Then, in order to
understand the role of one of the components more clearly, a more detailed look at it can be
necessary, if possible without losing the information displayed previously. Such techniques have
been widely applied in various contexts, and are often referred to as `zooming'. In our context

23

successiveStatement�st : StatementType� returns StatementType;
begin
if �st.rightc �6 n ull� or �st.leftc �6 n ull� then
begin
if �st.leftc �6 n ull� then
return �st.leftc�;

if �st.rightc �6 n ull� then
return �st.rightc�;

end

else

if �st.sibling �6 n ull� then

return �st.sibling�;

else

begin

while �st.parent �6 n ull and st.parent.sibling � null� do

st :� st.parent;

if �st.parent �6 n ull and st.parent.sibling �6 n ull� then

return �st.parent.sibling�;

else
return null;

end

end successiveStatement

Figure 17: Algorithm for building DDG �searching for the successive statement�

checkDD�st, tt : StatementType� : boolean;
begin
if �st.Parameters � tt.Parameters � ;� then
return true;

else
return false;

end checkDD

Figure 18: Algorithm for building DDG �checking data dependence among parameters�

here, it can be realized in several ways, depending on the way the initial information is displayed.

A starting point could be the directed graph displaying the call relationships among instances
at the package�class level. Then one of the packages or classes can be inspected more closely,
by opening another window displaying its contents. In order to keep track of the hierarchical
relationships between windows, it is useful to indicate this, e.g. by drawing thin lines between
the detailed and the short view of the package. As an example, consider a system similar to
the one depicted in Figure 3, but with a larger number of modules. In the high-level view, the
internals of the single modules would not be visible, and only displayed on demand.

On the other hand, if a textual representation is used initially, similar approaches can be
applied to display di�erent levels of detail in the source code. Whereas the graph representation
on the package level would provide information on the relationships among the packages, the cor-
responding textual representation describes the interfaces of the packages, possibly augmented
by comments. Folding editors or outline modes make uses of these techniques, too, and can be
adapted for our purpose with moderate e�ort. Figure 27 shows the multiple zooming layers.

6.2 Cross-Linking

So far, textual and graphical representation of the components have been considered separately.
Tying these two together can provide further enhancement to the understanding of the pro-
gram. One method here is to apply certain operations like highlighting to both representations
simultaneously, t h us emphasizing the correspondence of particular elements in the di�erent rep-
resentations. Going one step further, the inspection of one component in one representation can

24

S12

S23

S1 S2 S3 S4

S5 S6 S7

S8 S9 S10 S13 S14 S18 S19 S22

S11 S15 S16 S17 S21S20

Figure 19: The DDG of method Concatenate

trigger the display of that component in the other representation as well. Figure 28 sketches the
integration between the graph and the text representation.

Obviously the integration of di�erent views can be applied on various levels of abstraction.
On lower levels, for example the statement�instruction tier, the picture becomes more compli-
cated since di�erent kinds of dependence graphs show di�erent kinds of relationships between
statements. Here the help provided by a method like highlighting corresponding statements in
di�erent views becomes even more meaningful. On the same level in the textual mode, hyper-
text can be used to provide within the source code the information residing in the edges of the
respective dependence graph. Note, however, that in this case the information is not visually

BuildPDG�DDG,CDG,CDDG�
begin
copy CDG to CDDG;
for each Si !

d Sj in DDG do
begin
if Si is not the ancestor of Sj in CDG then
begin
if parent�Sj � is a region node which is the ancestor of Si in CDG then
remove the edge from parent�Sj � to Sj in CDDG;

add an edge from Si to Sj in CDDG;
end

end for

end BuildPDG

Figure 20: Algorithm for building PDGs

25

S9S8

S23

S22

R121

S13

S18

S19

R141

S15

R191 S16

S17

S21

S20

S9S8

S10

R101

S11

S23

S12 S22

R121

S13 S14

S18

S19

R141

S15

R191 S16

S17

S21

S20

S0

S1 S2 S3 S4

R41

S5 S6 S7

R71

S0

S1 S2 S3 S4

R41

S5

R71

S10
-S12

S7
S6

S14

(a) (b)

Figure 21: �a� The PDG of method Concatenate , �b� The simpli�ed PDG of method Concatenate

displayed; it can only be exploited by following the respective link to where it points. Care must
also be taken to distinguish the di�erent dependences that may exist for one statement; this can
be done via color-coding, or pop-up menus for selecting the desired dependence. Following such
a link can be done in two w ays: the focus of the current view changes, and the position in the
source code to which the link points will be the new focus. This method has the disadvantage
that the original context is lost, and after following a few links, one can get disoriented and have
no idea in which part of the program one ended up. An alternative is to open a new window
each time a link is being followed. The problem with this method is a potential proliferation
of windows; also, most hypertext systems do not display the the connection between the two
pieces of text belonging to a link.

6.3 Coordinating Views of Dependence Graphs

Especially on the lower tiers of the software architecture, the wealth of information provided
in the intermediate representation can be very helpful for understanding the intricacies of the
program. On the other hand, however, it can also present a major challenge to the person
trying to understand what is going on in that program. One reason for this is that there are
separate graphs displaying the di�erent dependences, but all the graphs refer to one and the
same program. Some particular elements will be present in di�erent graphs, possible in di�erent
arrangements, and thus maybe di�cult to identify. In the following we will describe some
techniques which help the user to maintain his focus of attention throughout the inspection of
one particular part of the program, while possibly viewing di�erent t ypes of dependence graphs.

26

S9S8

S23

S22

R121

S13

S18

S19

R141

S15

R191 S16

S17

S21

S20

S0

S1 S2 S3 S4

R41

S5

R71

S10
-S12

S7
S6

S14

Figure 22: The GDG of method Concatenate

Cross-Linking The method of highlighting across di�erent views mentioned before can o�er
some relief here for locating single elements; it is more di�cult, however, to investigate the
di�erent dependences of a set of elements. In this case, one possibility is to extend highlighting
by using di�erent colors or other visual clues. In this approach, the di�erent graphs are still
displayed seperately; the system essentially helps the user with the identi�cation of speci�c
elements in separate graphs.

Uniform View Since all the dependence graphs are based on the same program, the nodes
of the di�erent graphs will be � possibly di�erent � subsets of the overall set of nodes given by
the elements of the program on that particular level. One possibility n o w is to use the superset
of all nodes as basis for the graphical display, and provide the user with a choice of link types
corresponding to the di�erent dependences. This would also allow the simultaneous display o f
several dependences, using colors or line thickness to distinguish between the dependences. The
advantage of this method is the unchanged spatial arrangement of the nodes, making it easier for
the user to stay oriented when comparing di�erent dependences. On the other hand, this might
lead to distorted arrangements for particular dependences, making it di�cult to understand the
relationships between the nodes for that type of dependence. In addition, the sheer numbe r o f

27

S16

S17

S20

S15

S1 S23

S18

S19

S21

S22

S13

S1 S3 S4

S5 S8 S9

Text_IOCommand_Line_Processor Inpput_File Output_File

Figure 23: The IDGs of method Concatenate

nodes can present a problem for the visual representation: for a given type of dependence, the
number of relevant nodes can be substantially smaller than the number of all nodes, and thus
far easier to display.

Merging In many cases, di�erent dependence graphs of one program will be rather similar
As an example, consider the di�erent dependence graphs for the method Concatenate shown in
Figures 15-22. As shown in Section 5, the control, data and instance graph can be integrated
into one single graph, the general dependence graph shown in Figure 22. This graph provides
a lot of information about di�erent aspects of the program, and indicates interactions across
di�erent t ypes of dependences. If one is interested in one particular aspect of the program,
e.g. the potential for concurrency which crucially depends on instance dependences, a di�erent
spatial arrangement of the nodes, however, can be much more helpful �see Figure 23�.

Overlays Another way of inspecting di�erent dependence aspects of a program is to use one
dependence graph as starting point, and to �blend in" the edges and�or nodes representing
another type of dependence. On the statement level, one can start from the control �ow graph,
and then add the additional information provided by the data dependence graph, for example.
Note that with this approach it can be necessary to add nodes as well as edges, depending on
the initial graph. This way one can familiarize oneself with one aspect of the program, and
add another one without having to regain orientation because the arrangement of the nodes
might h a ve c hanged. In many cases, the resulting display can be similar to the one obtained
from merging similar nodes as described in the previous paragraph. The advantage here is that
the user can start from one graph and incrementally add information as needed, whereas in
the merged graph everything is presented at once, and it may require considerable e�ort to
separate di�erent aspects. Whereas to the user, the dynamic aspect of adding information can
be bene�cial, it poses sopme challenges on the realization of the graph display: Graph matching
needs to be done on the �y. Again, in many cases the various dependence graphs will be similar
anyway; and for very dissimilar graphs, it is questionable if the overlay method is bene�cial to

28

7

procedure test1 is
subtype item is integer range 0..100;
N : constant integer:=10;
incount : integer:=0;
outcount : integer:=0;

task buffer is
 entry insert(x: in item);

 entry remove(x: out item);

end buffer;
task producer;
task consumer;

task body buffer is
 bounded_buffer: array(0..N) of item;
num_items: integer range 0..N:=0;

begin
loop

 select
 when num_items < N =>

 accept insert (x: in item) do
bounded_buffer(incount):=x;

 end insert;
incount:=incount mod N +1;
 num_items:=num_items+1;

 or when num_items >0 =>
 accept remove (x: out item) do

x:=bounded_buffer(outcount);
 end remove;
 outcount:=outcount mod N +1;
 num_items:=num_items-1;

 or terminate;
end select;

 end loop;
end buffer;

task body producer is
 item_in : item:=0;

begin
loop

 item_in:=item_in + 1;

buffertask.insert(item_in);

 end loop;

end producer;

task body consumer is
 item_out : item;

begin
loop

 buffertask.remove(item_out);

end loop;

end consumer;

begin
delay 4.0;
end;

consumerproducer

buffer

remove

insert

Figure 24: The �partial� task rendezvous graph of the procedure test1

the user.

The goal of this section was to illustrate the use of hypertext techniques which can provide
some help for understanding a program to be reengineered. Most of them are directed at
integrating the information captured by an analysis of various aspects of that program which
are represented in the di�erent dependence graphs.

Concurrency Metrics

Reverse engineering involves more than just capturing the IR|it involves analysis to identify
potential concurrency. During the computer-based systems reengineering process, it is necessary
to identify potential concurrency during reverse engineering. The concurrency information is
used to guide the reengineering processes of software transformation and system con�guration,
which seek to produce a system with a high degree of concurrency. The metrics are also used to
assess the concurrency in a reengineered system. Speci�cally, the following metrics are employed:

�	 Inherently sequential percentage �39� of methods, class�package instances, and tasks mea-
sured in various units: �1� the percentage of statements that can not execute concurrently,
or �2� the percentage of ARPCs that can not execute concurrently.

�	 Inherently parallel percentage �39� of methods, class�package instances, and tasks de�ned
as: �1� the number of statements that can execute concurrently, �2� the number of ARPCs
that can execute concurrently, or �3� percentage of statements in the largest group.

29

Graph (CRG)
Call Rendezvous

program unit

link

 instances
Collect used

partial

call graphs (CGs)

complete
call graph

link
partial CGs

Collect task
 rendezvous calls

partial task rendez­

vous graphs (TRGs)

partial TRGs

rendezvous graph
complete task

Figure 25: The procedures for building call graphs

�	 Concurrency dependences �32� �e.g., A and B can run concurrently i� B and C can run
concurrently�.

�	 Maximum number of replicas of methods and class�package instances that can be used
concurrently �42, 36�.

�	 The set of potentially concurrent e n tities, at each level of granularity �statement�instruction,
method, class�package instance, task, and program� �32, 4 2 , 3 9 , 30�.

�	 Potential concurrency among beads and tasks �39, 3 0 �.

�	 Amount �lines of code� of potential concurrency among methods, among class�package
instances, among tasks, and among programs.

Our approach to obtaining concurrency metrics is aggregation of metrics across tiers of the
mission critical software architecture �for example, see �32, 31, 29, 3 6 , 2 5 , 3 4 ��. Concurrency

30

Concatenation_Processor

Output_File Input_File C.L.P. Error_Log Test_IO

Note: C.L.P. --- Command_Line_Processor

Figure 26: The �partial� call graph of the package Concatenation-Processor

metrics for a component at tier i are obtained by aggregating concurrency metrics of components
at tier i , 1. For example, the concurrency metrics pertaining to a class�package instance
are de�ned in terms of the concurrency metrics de�ned for the methods within the instance.
This approach accommodates the layered structure of computer-based systems, and reduces the
complexity of obtaining metrics for a component b y abstracting information across levels.

8 Related Work

While much w ork has been published on the topics of reverse engineering and reengineering,
little has been published within the context of concurrency enhancement in computer-based
systems. In �4�, an approach is presented for capturing abstractions inherent in software systems
and for transforming those abstractions into an object-oriented paradigm; the focus was not
on concurrency, but large-scale systems were considered. The consideration of concurrency
is proposed in �12�, by considering the translation of Unix systems calls into Ada constructs.
Techniques and tools have been developed for source-to-source translation of program code �17,
2�; these tools are pragmatic, allowing a reengineered system to become operational quickly, but
they do not attempt transformation of the nature required in computer-based Navy systems.
Additionally, several techniques and tools have been developed to perform basic dependence
analysis, including the Xinotech program composer �41�, a tool and language independent I R
developed by MITRE �16�, and Re�ne �14�, which performs reverse engineering of code written
in Fortran, Cobol, C and Ada. However, none of these tools attempts to perform the analysis
required for concurrency enhancement. Other techniques and tools for dependence analysis are
presented in �7, 15, 5�. A hierarchical approach to reverse engineering was taken in �9�, but
the levels of the hierarchy w ere not based on granularity, as in our model, but consisted of
implementation, structure, function and domain levels.

9 Conclusions

This paper describes a comprehensive process for the reengineering of computer-based systems.
It considers the entire system, not just software. Indeed, it considers the interactions of software,
hardware and humanware. The robustness of the process is seen by noting that it encompasses

31

Package1 Source Code

Interface:

Package7

Package6Package5

procedure2

types;

Package2

Package4

Package3

Package1
procedure1

Figure 27: Zooming to get detailed views.

all major phases necessary for deploying a reengineered legacy system, not just the phases of
reverse engineering and translation of software. A major strength of the process is that it has
been, and continues to be, applied to the AEGIS Weapon System, a large, computer-based
system of the United States Navy.

The focus of the paper is reverse engineering within the context of reengineering for concur-
rency and quality enhancement in computer-based Navy systems. Thus, computer-based Navy
systems of the past and future are discussed, and two reengineering case studies are presented.
Sections 4 and 5 de�ne a novel view of software systems|a paradigm-independent IR based on
the mission critical software architecture. Furthermore, a reengineering analysis toolset for con-
structing the IR at several tiers of the software architecture is presented. Building on the IR, the
paper presents a metrics-based approach to reverse engineering and de�nes concurrency metrics
at several levels of the software architecture. The concurrency metrics are required inputs into
the reengineering phases of software transformation and system con�guration.

Another accomplishment of the reengineering project is validation of the reengineering pro-
cess. This is accomplished by the successful reengineering of the Weapon Selection and Surface
Operations modules of the AEGIS Weapon System, and by the deployment of the reengineered
modules within the Navy's HiPer-D distributed computing environment.

Ongoing work includes the application of the reengineering process to increasingly complex
portions of the AEGIS Weapon System, application of the process to other computer-based
systems, and automation of the process. Additionally, the metrics computation tool is being
improved and re�ned, with the goal of making it available as a commercial product. Another im-
portant problem being addressed is the partitioning of program components and the assignment
of partitions onto the processors of parallel and distributed systems. Techniques for software

32

Si

Si

Sj

GDGs

Package1 Source Code

Cross-linking

Sj

Cross-linking

Interface:

procedure2

Package3

types;

Package2

Package4 Package6Package5

Package7

Package1
procedure1

Figure 28: Cross-Link the same object in di�erent views.

transformation are also being developed. To assist systems engineers with reengineering tasks
that cannot be entirely automated, graphical techniques and tools for interactive transformation,
partitioning and assignment are also being explored.

References

�1� A. V. Aho, R. Sethi and J. D. Ullman, �Compilers: principles, techniques and tools," Addison
Wesley, 1986.

�2� G. Arango et al., �Maintenance and Porting of Software by Design Recovery," Proceedings of The
Conference on Software Maintenance, pages 42-49, IEEE CS Press, 1985.

�3� R. A. Ballance, A. B. Maccabe, and K. J. Ottenstein. The Program Dependence Web: A Repre-
sentation Supporting Control-, Data-, and Demand-Driven Interpretation of Imperative Languages.
In Proceedings of the ACM SIGPLAN'90 Conference o n P r ogramming Language Design and Imple-
mentation, pages 257�271. ACM, June 1990.

�4� T. J. Biggersta�, �Design Recovery for Maintenance and Reuse," IEEE Computer, v olume 22,
number 7, July, 1989.

�5� C. Castells-Scho�eld, �Engineering a Language-Independent Approach t o P arsing for Analysis and
Testing," Vitro T ech.Journal, v olume 8, number 1, 1990.

�6� R. Cytron, J. Ferrante, B. K. Rosen, and M. N. Wegman. E�ciently Computing Static Single
Assignment F orm and the Control Dependence Graph. ACM Trans. on Programming Languages
and Systems, 13�4�:451�490, October 1991.

33

�7� S. Dietrich and F. Calliss, �A Conceptual Design for a Code Analysis Knowledge Base," Software
Maintenance: Research and Practice, v olume 4, 1992.

�8� J. Ferrante, K. J. Ottenstein, and J. D. Warren. The Program Dependence Graph and its Use in
Optimization. ACM Trans. on Programming Languages and Systems, 9�3�:319�349, July 1987.

�9� M. Harandi and J. Ning, �Knowledge-Based Program Analysis," IEEE Software, v olume 7, numbe r
1, 1990.

�10� M. J. Harrold, B. A. Malloy, and G. Rothermel. E�cient construction of program dependence
graphs. Technical Report 92-128, Clemson University, December 1992.

�11� T. J. Marlowe, A. D. Stoyenko, S. P. Masticola, and L. R. Welch, �Schedulability-Analyzable Ex-
ception Handling for Responsive Languages," Journal of Real-Time Systems, to appear.

�12� N. Prywes, G. Ingargiola, I. Lee and M. Lee, �Reengineering Concurrent Software into Ada," Pro-
ceedings of The Fourth Systems Reengineering Technology Workshop, pages 157-177, Naval Surface
Warfare Center, February 1994.

�13� B. Ravindran, �Extracting parallelism at compile-time through dependence analysis and cloning
techniques in an object-based paradigm," M.S. Thesis, New Jersey Institute of Technology, M a y
1994.

�14� Reasoning Systems, Palo Alto, CA, �Re�ne Language Tools," 1993.

�15� C. Rich and R. Wills, �Recognizing a Program's Design: A Graph-Parsing Approach," IEEE Soft-
ware, v olume 7, number 1, 1990.

�16� H. Rubenstein, R. Piazza, and S. Roberts, �Separating Parsing and Analysis in Reverse Engineering
Tools," Proceedings of the Working Conference o n R everse Engineering, M a y, 1993.

�17� C. H. Sampson, �Translating CMS-2 to Ada," Proceedings of The Fourth Systems Reengineering
Technology Workshop, pages 143-156, Naval Surface Warfare Center, February 1994.

�18� A. L. Samuel, E. Sam, J. A. Haney, L . R . W elch, J. Lynch, T. Mo�t, and W. Wright, �Appli-
cation of a Reengineering Methodology to Two AEGIS Weapon System Modules: A Case Study
in Progress," Proceedings of The Fifth Systems Reengineering Technology Workshop, N a val Surface
Warfare Center, February 1995.

�19� W. B. Scott, �Navy May Accelerate Missile Defense," Aviation Week and Space T echnology, pp.
283-284, May 30, 1983.

�20� M. Sitaraman, L. R. Welch and D. E. Harms, �On Speci�cation of Reusable Software Components,"
The International Journal of Software Engineering and Knowledge Engineering, v olume 3, numbe r
2, 1993.

�21� H. M. Sneed, �Economics of Software Re-engineering," Software Maintenance: Research and Prac-
tice, John Wiley and Sons, volume 3, number 3, Sept. 1991, pages 163-182.

�22� R. A. Steigerwald and L. R. Welch, �Reusable Component Retrieval for Real-Time Applications,"
Proceedings of the First IEEE Workshop on Real-Time Applications, M a y 1993.

�23� K. J. Stein, �Aegis Fleet Defense Nearing Sea Test," Aviation Week and Space T echnology, pp.
32-35, August 13, 1973.

�24� K. J. Stein, �Aegis System Tested Successfully," Aviation Week and Space T echnology, pp. 36-40,
April 7, 1975.

34

�25� A. D. Stoyenko, L. R. Welch, and B. C. Cheng, �Response Time Prediction in Object-Based, Parallel
Embedded Systems," to appear in Euromicro Journal, 1994, Special Issue on Parallel Processing in
Embedded Real-Time Systems.

�26� �User Handbook for Macro Assembler," NAVSEA 0967-LP-598-8040, Sept. 1988.

�27� �User's Handbook for Navy Standard 16-Bit Computers Support Software," Vol. III, Hard-
ware�Assembly�Fortran, NAVSEA 0967-LP-598-2030, April 1984.

�28� �User's Handbook for Navy Standard 16-Bit Computers Support Software," Vol. IV, CMS-2M,
NAVSEA 0967-LP-598-2040, Feb. 1987.

�29� J. P. C . V erhoosel, L. R. Welch, D. K. Hammer, and A. D. Stoyenko, �Assignment and Pre-Runtime
Scheduling of Object-Oriented, Hard Real-Time Parallel Processes Using Bead Partitioning," New
Jersey Institute of Technology Technical Report CIS-93-16, December, 1993.

�30� J. P. C . V erhoosel, L. R. Welch, D. Hammer, and A. D. Stoyenko, �Assignment and Pre-Run-
time Scheduling of Object-Based, Parallel Real-Time Processes," IEEE Symposium on Parallel and
Distributed P r ocessing, Oct. 1994.

�31� J. P. C . V erhoosel, L. R. Welch, D. K. Hammer, A. D. Stoyenko, and E. J. Luit, �A Formal
Deterministic Scheduling Model for Object-Based, Hard Real-Time Executions," Journal of Real-
Time Systems, 8�1�, January 1995.

�32� L. R. Welch, �Assignment of ADT Modules to Processors," Proceedings of the International Parallel
Processing Symposium, pages 72-75, March, 1992.

�33� L. R. Welch, A. D. Stoyenko, T. J. Marlowe, �Modeling Resource Contention among Distributed Pe-
riodic Processes," Fourth IEEE Symposium on Parallel and Distributed Computing �December 1992�.

�34� L. R. Welch, A. D. Stoyenko, T. J. Marlowe, �Response Time Prediction for Distributed Periodic
Processes Speci�ed in CaRT-Spec," Control Engineering Practice, �in press�.

�35� L. R. Welch, A. D. Stoyenko and S. Chen, �Assignment of ADT Modules with Random Neural
Networks," The Hawaii International Conference on System Sciences, pages II-546-555, Jan. 1993.

�36� L. R. Welch, �Cloning ADT Modules to Increase Parallelism: Rationale and Techniques," Fifth
IEEE Symposium on Parallel and Distributed Computing, pages 430-437, December 1993.

�37� L. R. Welch, �A Parallel Virtual Machine for Programs Composed of Abstract Data Types", IEEE
Transactions on Computers, 43�11�, N o v. 1994, pages 1249-1261.

�38� L. R. Welch, A. Samuel, M. Masters, R. Harrison, M. Wilson and J. Caruso, �Reengineering Complex
Computer Systems for Enhanced Concurrency and Layering," Journal of Systems and Software, July
1995, �in press�.

�39� L. R. Welch, G. Yu, J. Verhoosel, J. A. Haney, A. Samuel, and P. Ng, �Metrics for Evaluating
Concurrency in Reengineered Complex Systems," Annals of Software Engineering, 1�1�, Spring
1995.

�40� L. R. Welch, J. A. Haney, A . L . S a m uel, R. D. Harrison, J. Lynch, M. W. Masters, T. Mo�t, B.
Ravindran, E. Sam, and W. Wright, �Reengineering of Legacy Systems: Toward an Automated
Approach," Proceedings of The Fifth Systems Reengineering Technology Workshop, N a val Surface
Warfare Center, February 1995.

�41� Xinotech Research Inc., Minneapolis, MN, �The Xinotech Program Composer 2.0," 1992.

�42� G. Yu and L. R. Welch. Program Dependence Analysis for Concurrency Exploitation in Programs
Composed of Abstract Data Type Modules. In Sixth IEEE Symposium on Parallel and Distributed
Processing, pages 66-73, October 1994.

35

�43� G. Yu and L. R. Welch, �A Novel Approach to O�-line Scheduling in Real-Time Systems," Infor-
matica, �in press�.

36

