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Introduction 
When testing for differences between the population means of two or more groups with two or 

more dependent variables, one has two main testing options. The first is to run multiple Analysis of 

Variance Tests (henceforth ANOVA): one univariate test for each dependent variable. However, 

performing multiple tests will increase the global Type I error rate. This, if one were more interested in 

performing a test that simultaneously accounts for differences in each dependent variable, while 

maintaining an equivalent error rate, we need a different testing method. This second method is known 

as Multivariate Analysis of Variance. This analysis method was developed to test if the vectors of means 

of two or more dependent variables significantly differ across three or more populations. 

Like with all parametric testing methods, there are mathematical conditions that must be met 

for the test results to be valid. A test’s ability to correctly find significant results, despite violations to its 

mathematical conditions for validity is known as robustness. This project was conceived to evaluate this 

important characteristic of MANOVA testing, particularly concerning violations in MANOVA’s 

assumption of multivariate normality. The majority of this project was coding and performing 

simulations to try and evaluate the robustness of MANOVA, i.e. under what circumstances is the test still 

reliable and when is it not. Using the software package R 2.13.0, I investigated different characteristics 

of data sets and how to create randomly generate data sets that have these set characteristics. Some of 

these characteristics would be marginal variances, distribution, correlation structure, number of groups, 

and sample size.  

In this report you will find the methodology, coding philosophy, and findings of my simulations. I 

will also highlight the most interesting results and several forms to present these results. All other 

simulation results are included in the appendix. 
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Literature Review 
 

If MANOVA is properly considered as a viable statistical method, it is easy to run across the issue 

of robustness. For example, one might come across data that’s more multivariate uniform than 

multivariate normal. If that’s the case, it would be useful to know if MANOVA is still a viable test and to 

what degree. Since this is the case there are certainly going to be several people studying and 

researching this issue. 

In the article by Stefan van Aelst and Gert Willems published in the Journal of the American 

Statistical Association, they propose robust tests as alternatives to the classical Wilk’s Lambda test for 

MANOVA. This suggests that Wilk’s Lambda is not a statistic that is sufficiently robust. This is further 

agreed upon by the academic article by Valentin Todorov and Peter Filzmoser, published in 

Computational Statistics and Data Analysis (Todorov and Filzmoser. 2010, 37-48). They write that Wilk’s 

Lambda, being based on multivariate normal theory, is generally highly sensitive to outliers. This would 

suggest that distributions that have many extreme values, such as skewed distributions or even 

distributions with heavy tails. The Exponential distribution is one such distribution that could adversely 

affect the MANOVA results.   

Todorov has also done previous research into the robustness of MANOVA mainly dealing with 

the Wilk’s Lambda statistic. In his article in 2007 published in Statistical Methods and Applications 

(Todorov 2007 395-407) he also evaluates the robustness of the Wilks MANOVA in terms of linear 

discriminant analysis, in which he concludes that Wilks is not a robust way of testing. It should be noted 

that Stefan van Aelst and Gert Willems also came to a similar solution, but with a particular focus on the 

effects of outliers (van Aelst and Willems, 106,494). 

Both of these articles use Monte Carlo distributions in some degree, in which they identify a 

domain of parameters or possible inputs, generate the inputs randomly from a probability distribution 

and then perform computation. Others in the statistical community also use Monte Carlo Simulations to 

evaluate the robustness of MANOVA. This makes sense as mathematically computing the power of a 

MANOVA test in any given situation would be much more tedious and difficult. Taking this into 

consideration, the simulations done in this report will be of a Monte Carlo nature. 
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Multivariate Analysis of Variance 
 

A Brief Introduction to MANOVA 

 Multivariate Analysis of Variance, also known as MANOVA, is an extension of the univariate 

analysis of variance, also known as ANOVA. MANOVA is a procedure to analyze data where there are 

two or more dependent variables. In general, where ANOVA compares means and evaluates if at least 

one difference between groups with respect to a single dependent variable, MANOVA compares vectors 

of means, where each component of the vector is the mean of a different dependent variable. 

 Suppose that we have a two sided hypothesis test with p independent variables. Then the 

hypothesis for the two group test would be as below. 

Table 1: MANOVA Hypothesis  

Term Definition 
    Mean for group i for variable j. 

Null Hypothesis  

[

   

   

 
   

]  [

   

   

 
   

]   

 

Alternative Hypothesis  

[

   

   

 
   

]  [

   

   

 
   

]   

 

 

 Another way to think about it would be graphically. For example, suppose that we have data 

sampled from two bivariate populations and we would like to assess whether the bivariate sample 

means of these observations are significantly different. For simplicity, let us assume that the samples are 

drawn from two populations whose means are expressed as the following: 

  =[
 
 
]       =[

 
 
]   

Further suppose that both variables in both populations have a variance of 1.  

 Through random samples from each of these populations, MANOVA allows us to assess if the 

population means are jointly different across all dependent variables, without having prior knowledge of 

the means. Two groups are depicted below in Figure 1. The red dots represents the sample mean vector 

for each group, the blue dot indicates the true mean vector of each population. The surrounding points 

represent a sample of approximately 1000 observations from each population. 
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In this case, we know the population means and since the sample mean vectors are close to the true 

mean vectors, we can expect a formal MANOVA test to lead to the conclusion that the two groups are 

significantly different. 

Figure 1: Graphical Representation of Multivariate Data (Population) 

 

 

 Unlike ANOVA, MANOVA also has a variety of global test statistics that can be used to test for 

significance. The most commonly used statistic is known as the Wilk’s test statistic, which is analogous 

to ANOVA’s F-statistic. Three other global test statistics are Pillai, Hotelling-Lawley and Roy’s statistics. 

Each of these has different formulae to achieve a similar goal, but the differences will not be covered in 

this report. 

Conditions of MANOVA 

With any statistical test, there are conditions that need to be satisfied in order for the test 

results to be valid. Like with ANOVA, this also holds true with MANOVA. The three main conditions for 

MANOVA are: 

 Independence – The observations need to be independent from one another. 

Multivariate Normality – The multivariate data are drawn from a Multivariate Normal 

distribution. 
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Homogeneity of Variance – Each group has the same covariance structure as the other 

group(s) being tested against.  

Why MANOVA? 

 MANOVA allows us to test for significant differences between two or more groups, jointly 

accounting for multiple variables of interest. This essentially controls our Type I error rate without the 

need for any additional adjustment. MANOVA also accounts for inter-dependencies among the response 

variables enhancing our power to detect significant differences between groups. Such differences may 

be missed when only testing one variable at a time with a technique such as MANOVA.  

 An example of a situation where MANOVA could be used is the following: 

Suppose we have a hypothesis that SAT scores vary from one sex to the other. We may 
want to formally test to see if there is an association between SAT Math and SAT 
Reading scores and sex. The MANOVA procedure allows us to test our hypothesis that 
the variables are jointly associated with sex. 

 

Type I Error 

 Recall that a Type I error occurs when the null hypothesis is rejected when in reality, the null 

hypothesis is true. So for example, if a test procedure finds significant evidence for a difference between 

the proportion of males and females in the Democratic Party versus the Republican Party, and in reality, 

these proportions are the same, we have committed a Type I error. We normally control for this by 

assigning a value α to something like, say, 0.05. That means we design the test such that we have a 5% 

probability of making a Type I error. (This quantity is also known as a Significance Level.)   
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Simulations 
 This investigation deals mainly in an effort to assess the robustness of MANOVA. To do this we 

will start by purposely violating the Multivariate Normality assumption, to see if that will affect our Type 

I error rate. In order to evaluate the robustness of MANOVA, we will generate data sets that we know 

have the same mean. Then with that knowledge kept in mind, we will run 5000 simulations of the test 

and count the proportion of times we reject the null hypothesis at some nominal α (in this case 0.05). So 

if we reject the null hypothesis substantially more or less than the 0.05 mark, we know there is 

something wrong with the test under the conditions we set. But in order to thoroughly evaluate 

MANOVA’s robustness against distribution, we also need to identify other parameters to use in the test 

to generate these conditions. 

Multivariate Distribution 

  One of the assumed conditions for a MANOVA statistical analysis is the assumption that the 

data being tested is sampled from a Multivariate Normal Distribution. So what would happen to the test 

if say, we sample from a Multivariate Uniform? A Multivariate Exponential? In this report we will cover 

both Multivariate Uniform and Multivariate Exponential. We are looking to evaluate if this assumption is 

truly important to  

Variance-Covariance Structure 

 Although we will not be violating the assumption of homogeneity of variance-covariance, we 

will be varying the structure, perhaps to see if the robustness of MANOVA is affected by large variance, 

or certain types of inter-dependencies. This can be described by the Variance-Covariance Matrix. 

 Simply put, a Variance-Covariance Matrix is a matrix that is used to incorporate the 

interdependencies of the dependent variables of a data set, along with their marginal variance. The 

diagonals of the matrix are the variances of each of the dependent variables and the off diagonal 

components are the covariances between each of the dependent variables. So if there are p dependent 

variables, there will be a p x p variance covariance matrix. 

Figure 2: Variance-Covariance Matrix 

 

∑=  

[
 
 
 
 
  

          

     
  

   
       

 ]
 
 
 
 

  

 

One way to vary the structure of the Variance-Covariance matrix is to incorporate the 

correlation (the inter-dependencies) of the dependent variables. To be complete, it also stands to 

reason that we also need to incorporate the variances of these dependent variables. By including both 

of these two components we can essentially obtain any variance covariance structure we would like. 
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To begin, we can use a correlation matrix.  A correlation matrix has diagonal components of 1, 

where the correlation between each dependent variable is in the off-diagonals. We will vary the 

correlation between each of the variables from 0.1 to 0.9, incrementing by 0.1, essentially determining 

the degree of association between each of the dependent variables in the data. For simplicity and 

without loss of generality, I set the variance for one dependent variable and allow the variance of the 

other dependent variables to be a multiple of that variance, creating a variance ratio. So for a two 

dimensional case, for example, the ratio will be 1:2, 1:3, or 1:4. It should be noted for the purposes of 

these simulations the variance-covariance structure across groups will remain homogeneous. 

To combine the properties of the correlation matrix with the variances of each of the variables 

to create a variance covariance matrix we can use some matrix algebra in conjunction with the 

correlation matrix to create a Variance Covariance Matrix. The technique we will use is known as Outer 

Multiplication coupled with a simple matrix multiplication. Let S denote a vector of standard deviations 

obtained by taking the square root of the variances. Also, let R denote a correlation matrix. We can then 

do the following to obtain ∑: 

 

∑        

 

Sample Size 

 Sample size is also an important factor, as we know for the single dimension case, the larger the 

sample, the more robust ANOVA becomes against violations in the distribution condition for ANOVA. 

Since that is the case, we will try sample sizes of 10, 20, and 30. 

Number of Groups 

 We will also vary the number of groups begin tested. So, for example, we will test for significant 

differences between the mean vectors between 2 and 5 groups. 

 We will obtain the multivariate distribution by simply sampling from multivariate distributions 

which have independent components. This allows us to begin with a dataset that theoretically has no 

covariance between the dependent variables. So from a two dimensional multivariate uniform case, we 

will sample each dimension from independant univariate uniform distributions with a mean of 0 and a 

variance of 1. An example of this is shown below. The top, from left to right, is an example of a 

multivariate normal with mean 0 and variance 1 in two dimensions and three dimensions respectively. 

The bottom left is an example of a two dimensional multivariate uniform with the same mean and 

variance. The bottom right is an example of a three dimensional multivariate uniform distribution with 

the same mean and variance. 
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Figure 2: Multivariate Distributions 

 

 Once this data has been generated, we can transform it to have the desired covariance 

structure. We can use an Outer Matrix Multiplication using that vector of variances on the correlation 

matrix to generate a Variance-Covariance Matrix, as described above. We can then transform the 

previously independent multivariate data with this Variance-Covariance Matrix to give the data the 

appropriate properties. 

 To transform the data, we can use a method known as Singular Value Decomposition to 

decompose the Variance-Covariance matrix ∑ into two matrices that are transposes of each other -  V 

and VT   - and a diagonal matrix D.  

         

The two matrices V and VT represent the linear transformation we need to introduce the 

variance and correlation properties set from before. So if X is our desired matrix and A is a matrix of 

untransformed, independently simulated data, then we can obtain X via the following equation. 

      

  We can manipulate the simulated data matrix X to have different dimensions to change the 

number of groups and the sample size.  
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 The simulations were all done in the statistical package R. The functions used for all the 

computation can be found the Appendix Section 1. An example of the exact way I used these functions 

can be found in the Appendix Section 2. Table 2 shows the various settings I used. 

Table 2: The Simulation Parameter Settings 

Setting 

Sample Size 10,20,40 

Number of Groups 2,3,5 

Distribution Uniform and Exponential 

Correlation 0.1 to 0.9 in steps of 0.1 

Variance Ratio 1:2, 1:3, 1:4 

Test Statistic Wilks, Pillai, Hotelling-Lawley 

 

 There are many additional parameter settings that can be changed. I have limited myself to 

what is shown in the table above. For each combination of parameter settings, I simulated 5000 data 

sets, and then I ran a MANOVA with a specific test statistic such as Wilks on each simulated data set. I 

then calculated the proportion of times the p-value was less than 0.05, the nominal alpha level. If this 

proportion was less than 0.05, we have a conservative test. If it is greater, we have a liberal test. Both of 

these conditions are not desirable when evaluating the robustness of MANOVA.  
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Results 

Wilk’s Test Statistic 

 In the first batch of simulations, I had used mainly Wilks test statistic. This test statistic is the 

most commonly used in MANOVA procedures, and thus would be the most practical. As described 

above, I simulated 5000 p-values for each combination of parameter settings from both Multivariate 

Uniform and Multivariate Exponential distributions, each time with manipulated covariance structures 

and simulation settings. 

What was uniformly true 

across all settings was that the test 

did not seem to be dependent on 

the actual correlation between each 

variable. MANOVA, when using the 

Wilks test statistic, seemed to be 

robust against the multivariate 

uniform distribution at any sample 

size or variance-covariance 

structure.  The simulation results 

collected for this case can be found 

in the appendix (Tables A.1 to A.3). 

A graphical representation of the 

simulated empirical alpha levels is 

shown here. 

We can see that despite any 

of the parameter settings, the 

empirical alpha rate has settled 

around the nominal 0.05 level of the 

test. This is good, as it suggests that 

MANOVA is robust against the 

uniform distribution. 

However, from this we cannot reasonably believe that MANOVA is robust against all non-normal 

distributions. Since the Uniform is symmetric, we next examine a skewed distribution. I have chosen the 

exponential distribution for that purpose. This distribution is only one other case, so even if we 

determine MANOVA is robust, we would still need to check other distributions. 

I have found that the Wilks test tends to fails to detect a difference between the population 

mean vectors more often for the simulations coming from the multivariate exponential distribution. This 

is, as before, regardless of correlation. This is more apparent when considering the two group case. We 

see in Figure 4 that for sample sizes of 10 and 20 that the empirical alpha level is lower than that of the 

nominal 0.05 alpha level we assigned. This suggests that in the exponential case, the Wilks test statistic 

Figure 3: MANOVA Empirical Alpha Level for the Multivariate 

Uniform Distribution(Wilks) 
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is largely conservative. That is to say that the method rejects the null hypothesis fewer times than it 

should.  

For a sample size of 40, we see that just like in the uniform case the empirical alpha level 

appears to approach 0.05. As the number of groups increase we also can observe that the empirical 

alpha level approaches about 0.05, the nominal level. I suspect this is due to an increase in overall 

sample size. The following graphs will demonstrate this phenomenon (Figure 4). 

Figure 4: MANOVA Empirical Alpha Level for the Exponential Distribution 

 

The simulation results are also available in the appendix (Tables A.4-A.6). 

 

Pillai’s Test Statistic 

 Another test statistic that can be used for MANOVA procedures is Pillai’s test statistic. Again 

using the statistical package R, I simulated a specific number of observations for each parameter 

combination from both Multivariate Uniform and Multivariate Exponential distributions. 

 As was true with the Wilk’s test statistic, the correlation didn’t seem to affect the results. And 

again, as was true with the results from the Wilk’s statistic, the empirical alpha rate has settled around 

the nominal 0.05 alpha level.  

 However, we find that when we look at the empirical alpha rate for the Multivariate Exponential 

Distribution, we observe that many are lower than 0.05. Almost every simulation with two groups is 
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under the 0.05 nominal alpha level. This only begins to change for sample sizes over 10 with more than 

two groups, such as is demonstrated in the table below (Table 3). 

Table 3: Exponential Distribution Results using Pillai’s Test with Three Groups 

Multivariate Exponential Distribution 

Pillai Test Empirical α level with 3 Groups 

  
             

  

  
 

Variance Ratio of 1:2 
 

  

  
 

                      
 

  

  
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

  
 

10 0.0462 0.0460 0.0412 0.0440 0.0458 0.0462 0.0434 0.0452 0.0438   
 

  

  
 

20 0.0514 0.0462 0.0452 0.0508 0.0452 0.0498 0.0498 0.0460 0.0402   
 

  

  
 

40 0.0460 0.0478 0.0526 0.0518 0.0506 0.0488 0.0432 0.0045 0.0486   
 

  

  
 

                      
 

  

  
             

  

  
 

Variance Ratio of 1:3 
 

  

  
 

                      
 

  

  
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

  
 

10 0.0506 0.0468 0.0468 0.0486 0.0462 0.0420 0.0444 0.0450 0.0408   
 

  

  
 

20 0.0424 0.0530 0.0450 0.0458 0.0464 0.0452 0.0410 0.0510 0.0490   
 

  

  
 

40 0.0450 0.0560 0.0536 0.0462 0.0478 0.0442 0.0556 0.0472 0.0508   
 

  

  
 

                      
 

  

  
             

  

  
 

Variance Ratio of 1:4 
 

  

  
 

                      
 

  

  
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

  
 

10 0.0450 0.0464 0.0448 0.0440 0.0438 0.0442 0.0462 0.0470 0.0446   
 

  

  
 

20 0.0510 0.0474 0.0436 0.0438 0.0502 0.0416 0.0514 0.0466 0.0438   
 

  

  
 

40 0.0510 0.0474 0.0436 0.0438 0.0502 0.0416 0.0514 0.0466 0.0438   
 

  

  
 

                      
 

  

                              

We can see the alpha values represented visually looking at a graph of the simulation results for Pillai’s 

test, testing 3 groups, with a variance ratio of 1:2.  (Shown in the Figure 5) 

  



P a g e  | 16 

 

Figure 5: MANOVA Empirical Alpha Level for the Exponential Distribution (Pillai) 

 

 

 

 

 

 

 

 

 

Hotelling-Lawley’s Test Statistic 

 The last common MANOVA test statistic is Hotelling-Lawley’s test statistic. At this point, I had 

largely expected that Hotelling-Lawley’s test statistic would yield similar results to the Wilk’s test 

statistic, and that was also the case here. The empirical alpha levels of the Hotelling-Lawley test were 

approximately 0.05 regardless of the setting the simulation was run in, with some degree of error. I 

suspect that if more simulations were run, this test would be liberal in that it would reject more times 

than the nominal alpha level would suggest. This is based off the fact that in my simulation that the data 

yielded using Hotelling-Lawley trace was the only one that saw high empirical alpha levels such as 

0.0618. 

 Next the multivariate exponential distribution was explored. What was most interesting about 

Hotelling-Lawley was that in the two group simulations the empirical alpha values seemed to be mostly 

below 0.05. However, as the number of groups increased, the empirical alpha level approaches 0.05, 

where sample sizes were greater than 10. This is the same behavior we saw in the simulations utilizing 

Pillai’s test. Table 4 gives the data for testing with three groups. We see that instead of sample sizes over 

10 where test seems viable, it is now slightly higher. We needed 40 observations to see the empirical 

alpha level converge to 0.05 with more than 2 groups. (Table 4)  
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Table 4: Exponential Distribution Results using Hotelling-Lawley’s Test with Three Groups 

Multivariate Exponential Distribution 

Hotelling-Lawley Test Empirical α level with 3 Groups 

  
             

  

  
 

Variance Ratio of 1:2 
 

  

  
 

                      
 

  

  
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

  
 

10 0.0446 0.0458 0.0556 0.0405 0.0438 0.0424 0.0458 0.0452 0.0418   
 

  

  
 

20 0.0490 0.0484 0.0446 0.0510 0.0488 0.0444 0.0438 0.0458 0.0496   
 

  

  
 

40 0.0508 0.0494 0.0486 0.0458 0.0504 0.0494 0.0448 0.0434 0.0458   
 

  

  
 

                      
 

  

  
             

  

  
 

Variance Ratio of 1:3 
 

  

  
 

                      
 

  

  
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

  
 

10 0.0418 0.0442 0.0460 0.0432 0.0484 0.0416 0.0456 0.0484 0.0488   
 

  

  
 

20 0.0448 0.0422 0.0478 0.0428 0.0472 0.0436 0.0466 0.0444 0.0460   
 

  

  
 

40 0.0476 0.0522 0.0800 0.0414 0.0480 0.0464 0.0480 0.0440 0.0484   
 

  

  
 

                      
 

  

  
             

  

  
 

Variance Ratio of 1:4 
 

  

  
 

                      
 

  

  
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

  
 

10 0.0462 0.0424 0.0440 0.0456 0.0476 0.0406 0.0452 0.0462 0.0434   
 

  

  
 

20 0.0454 0.0442 0.0454 0.0484 0.0494 0.0452 0.0466 0.0454 0.0518   
 

  

  
 

40 0.0482 0.0456 0.0498 0.0466 0.0500 0.0522 0.0398 0.0486 0.0472   
 

  

  
 

                      
 

  

                              

 

 As before, we can also show this graphically. Using the results for Hotelling Lawley’s test, testing 

3 groups, with a variance ratio of 1:2 yields the following graph (Figure 6). We also note the large 

empirical alpha value at sample size 40, highlighted in Table 4 above. Although this report does not 

cover why or how this value happened, it is worth noting and perhaps further investigating. 
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Figure 6: MANOVA Empirical Alpha Level for the Exponential Distribution (Hotelling-Lawley)   



P a g e  | 19 

 

Conclusion 
 After all the simulations had been run, there were some observations towards the robustness of 
MANOVA that could be made. I have observed that with regards to the Uniform distribution that the 
MANOVA test, regardless of the test statistic, was robust. I suspect this is due to the symmetric nature 
of a multivariate uniform distribution being close to that of a multivariate normal distribution (See 
Figure 2). It can also be noted that if the distribution is symmetric, I suspect MANOVA to be robust 
against it. 

In regards to other distributions, it seems that Pillai’s test statistic and Hotelling-Lawley’s test 
statistic are largely conservative, Hotelling-Lawley slightly more so than Pillai’s. We also considered the 
possibility of a difference when the true distribution was asymmetric. For that purpose we considered 
one of the most extreme asymmetric distributions; the exponential distribution. We can also observe 
that the simulations seem to suggest that the larger the sample size, be it group or overall sample size, 
affects the results. It seems that larger sample sizes seem to help the robustness of the test, perhaps 
because of some multivariate version of the central limit theorem. Although it was not apparent where 
a violation of multivariate normality would be negligent with a large enough sample, it seemed that for 
the Wilk’s test statistic that number was around 30. For Pillai and Hotelling-Lawley, we see that we need 
more than 2 groups and a sample size greater than 10. We also note that it seems as the number of 
variables increase, the empirical alpha rate approaches the nominal one. 

The most significant discovery yielded by these simulations was in terms of the two group tests 
(Table 5). I had suspected that the two group tests would yield similar results regardless of the test 
statistic. This should be the case, because when all conditions are satisfied, the two group case should 
yield identical (or extremely similar) conclusions, since MANOVA simply reduces to something 
equivalent to Hotelling’s T2 Test. But we find that none of the MANOVA test statistics yielded similar 
results to one another. Regardless of sample size, variance ratio, and correlation, we notice that 
empirical alpha values constantly hit below the 0.5 nominal mark. This could be due to random 
variation, although it seems strange Pillai and Hotelling-Lawley would be largely conservative. 
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Table 5: Exponential Distribution Results using Hotelling-Lawley Test with Two Groups 

Exponential Distribution 

Hotelling-Lawley Test Empirical α level with 2 Groups 

               

     

               

  
Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9    

  10 0.0434 0.0404 0.0408 0.0464 0.0434 0.0412 0.0374 0.0444 0.0374    

  20 0.0430 0.0404 0.0452 0.0464 0.0428 0.0436 0.0436 0.0486 0.0422    

  40 0.0462 0.0472 0.0472 0.0452 0.0440 0.0482 0.0450 0.0484 0.0486    

               

               

     

               

  

Sample 

Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9    

  10 0.0362 0.0402 0.0442 0.0454 0.0432 0.0404 0.0408 0.0344 0.0438    

  20 0.0526 0.0398 0.0436 0.0506 0.0428 0.0436 0.0436 0.0486 0.0422    

  40 0.0454 0.0472 0.0428 0.0438 0.0416 0.0472 0.0448 0.0420 0.0444    

               

               

     

               

  

Sample 

Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9    

  10 0.0474 0.0402 0.0406 0.0418 0.0384 0.0456 0.0410 0.0412 0.0404    

  20 0.0430 0.0432 0.0490 0.0438 0.0468 0.0450 0.0448 0.0420 0.0444    

  40 0.0432 0.0456 0.0440 0.0434 0.0436 0.0460 0.0428 0.0480 0.0406    

               

               

 
What I have done in this report is only a small part of possible research done to evaluate the 

robustness of MANOVA. Many more distributions could be studies, such as Chi-Squared or the F 
distribution. More simulations could be run, to check for varying conclusions due to random variation. It 
is also possible to combine several assumption violations together and run simulations, such as 
heterogeneous variance-covariance structures and a multivariate Gamma distribution. There also could 
be studies on non-parametric multivariate tests that would surely be useful to the statistical community. 

These are just some suggestions to future studies on this topic. What I have done here is simply 
explore the surface of a very deep and complex problem. I, as well as many other budding statisticians 
welcome anyone to investigate further.  
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Appendix 

Section 1: The Simulation Functions 
###############################################################  

##### MANOVA Empirical  Type I Error  

#####  Functions to evaluate Robustness of MANOVA  

#####  

#####  Written and Maintained by Chris Ling  

#####   for Partial Fulfillment of Degree, Statistics B.S.  

#####  

##### California Polytechnic University, San Luis Obispo  

###################### #########################################  

 

require(corpcor);  

 

dependant.bivar.unif = function(Sig, mu = c(0,0), n = 1000, Check=TRUE){  

##########################################  

##### Sig is a covariance matrix. It must be symmetric and semi -

positive,defin ite.  

##### mu is a vector of means that allows us to generate a sample.  

##### n is the number of oservations requested.  

##### Check will add the covariance matrix of the new data in the output.  

#####  

##########################################  

 library(corp cor);  

 library(MASS);  

 p<-  length(mu);  

 if (!all(dim(Sig) == c(p, p))){  

        stop("incompatible arguments")  

 }  

 

 if (is.positive.definite(Sig) && isSymmetric(Sig)){  

       decomp < -  svd(Sig);  

       A = decomp$u;  

     SigX = diag(decomp$d);  

     diagX =  decomp$d;  

 }else{  

      warning("Matrix is not a Symmetric Positive Definite  

              Matrix. ");  

 }  

 Range = NULL;  

 Range[1] = (diagX[1]*12)^0.5;  

 Range[2] = (diagX[2]*12)^0.5;  

 

 X1 < -  runif(n, min= mu - Range[1]/2, max=mu+Range[1]/2);  

 X2 < -  runif(n,  min= mu - Range[2]/2, max=mu+Range[2]/2);  

 X < -  cbind(X1,X2);  

 Xtransform < -  X %*% A;  
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 if (Check){  

  Output = list(Xtransform, var(Xtransform));  

  names(Output) = c('Data','Variance - Covariance Matrix');  

 }else{  

  Output = list(Xtransform);  

  names(Output)  = c('Data');  

 }  

 Output;  

}  

 

dependant.gen = function(Sig, mu, n = 1000, dist = 'norm', empirical = FALSE, 

Check=FALSE){  

##########################################  

##### Sig is a covariance matrix. It must be symmetric and semi - positive 

definite.  

##### mu is a vector of means that allows us to generate a sample.  

##### n is the number of oservations requested.  

##### dist is an argument that will define the multivariate distribution. It 

can only take 'norm', 'exp' and 'unif' at this time.  

##### empirical is a  logical argument that will take into account emperical 

data for the normal argument. (See mvt norm for usage)  

##### Check will add the covariance matrix of the new data in the output if 

TRUE. 

#####  

##########################################  

 library(corpc or);  

 p<-  length(mu);  

 if (!all(dim(Sig) == c(p, p))){  

        stop("incompatible arguments");  

 }  

 if (is.positive.definite(Sig) && isSymmetric(Sig)){  

       decomp < -  svd(Sig);  

       A = decomp$u;  

     SigX = diag(decomp$d);  

     diagX = decomp$d;  

 }else {  

      stop("Matrix is not a Symmetric Positive Definite  

              Matrix. ");  

 }  

 if (dist == 'unif'){  

  eS < -  eigen(Sig, symmetric = TRUE, EISPACK = TRUE);  

     ev < -  eS$values;  

  X < -  matrix(runif(p*n, - sqrt(12)/2,sqrt(12)/2), n);  

  if (empirical) {  

          X < -  scale(X, TRUE, FALSE);  

         X < -  X %*% svd(X, nu = 0)$v;  

          X < -  scale(X, FALSE, TRUE);  

  }  
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  X < -  drop(mu) + eS$vectors %*% diag(sqrt(pmax(ev, 0)), p) %*% 

t(X);  

  nm < -  names(mu);  

      if (is.null(nm) && !is.null(dn < -  dimnames (Sig))){  

          nm < -  dn[[1L]];  

       dimnames(X) < -  list(nm, NULL);  

  }  

      if (n == 1){  

          drop(X);  

  }else{  

   Xtransform = t(X);  

  }    

 }  

 if(dist == 'norm'){  

  eS < -  eigen(Sig, symmetric = TRUE, EISPACK = TRUE);  

     ev < -  eS$values;  

  X < -  matrix(rnorm(p * n), n);  

  if (empirical) {  

          X < -  scale(X, TRUE, FALSE);  

         X < -  X %*% svd(X, nu = 0)$v;  

          X < -  scale(X, FALSE, TRUE);  

  }  

  X < -  drop(mu) + eS$vectors %*% diag(sqrt(pmax(ev, 0)), p) %*% 

t(X);  

  nm < -  names(mu);  

      if (is.null(nm) && !is.null(dn < -  dimnames(Sig))){  

          nm < -  dn[[1L]];  

       dimnames(X) < -  list(nm, NULL);  

  }  

      if (n == 1){  

          drop(X);  

  }else{  

   Xtransform = t(X);  

  }     

 }  

 if(dist == 'exp'){  

  eS < -  eigen(Sig, symmetric  = TRUE, EISPACK = TRUE);  

     ev < -  eS$values;  

  X < -  matrix((rexp(p*n,1) -  1), n);  

  if (empirical) {  

          X < -  scale(X, TRUE, FALSE);  

         X < -  X %*% svd(X, nu = 0)$v;  

          X < -  scale(X, FALSE, TRUE);  

  }  

  X < -  drop(mu) + eS$vectors %*% d iag(sqrt(pmax(ev, 0)), p) %*% 

t(X);  

  nm < -  names(mu);  

      if (is.null(nm) && !is.null(dn < -  dimnames(Sig))){  

          nm < -  dn[[1L]];  
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       dimnames(X) < -  list(nm, NULL);  

  }  

      if (n == 1){  

          drop(X);  

  }else{  

   Xtransform = t(X);  

  }     

 }  

 if (Check){  

  Output = list(Xtransform, var(Xtransform));  

  names(Output) = c('Data','Variance - Covariance Matrix');  

 }else{  

  Output = list(Xtransform);  

  names(Output) = c('Data');  

 }  

 Output;  

}  

 

manova.typeI = function(simsize = 5000,dist,mean = c(0,0), cor = 

cbind(c(1,0),c(0,1)), var = c(1,2), n=10, groups = 2, test = 'wilks'){  

##########################################  

##### simsize is the simulation size to obtain empirical alpha from.  

##### dist is the distribution to be sampled from.  

##### cor is a correlation matrix.  

##### var is a vector of the variances(in this case variance ratios).  

##### mean is a vector of means that allows us to generate a sample.  

##### n is the number of oservations requested.  

##### groups is the number of groups to  be tested in the manova.  

#####  

##########################################  

 sds < -  sqrt(var);  

 sig < -  outer(sds, sds) * cor;  

 p = NULL;  

 for(i in 1:simsize){  

  X = NULL;  

  for (j in 1:groups){  

   X<-  rbind(X,cbind(dependant.gen(sig,mu = mean, n = n, dist= 

dist)$Data,rep(j,n)));  

  }  

  fit < -  manova(X[,1:2]~X[,3]);  

  p < -  rbind(p,summary(fit, , test = test)$stats[11]);  

 }  

 table(p < 0.05)[2]/simsize;  

}  
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Section 2: Example Simulation Code 
set.seed(100);  

###################################################### #########  

##### MANOVA Emperical Type I Error Simulation Code  

#####  Simulations to evaluate Robustness of MANOVA  

#####  

#####  Written and Maintained by Chris Ling  

#####   for Partial Fulfillment of Degree, Statistics B.S.  

#####  

##### California Polytechnic University, San Luis Obispo  

###############################################################  

 

###############################################################  

# Wilks test with two groups; Uniform Distribution, n = 10  

Wilks2Unif = matrix();  

length(Wilks2Unif) = 27;  

dim(Wilks2Unif) = c(3,9);  

for(varrat in 2:4){    #This cycles through the variance ratios  

 for(corcount in 1:9){   #This cycles through the correlations  

  Wilks2Unif[varrat - 1,corcount] = 

manova.typeI(dist='unif',cor=cbind(c(1,corcou nt/10),c(corcount/10,1)),var = 

c(1,varrat),n=10,groups=2,test='Wilks');  

 }  

}  

Wilks2Unif;  
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Section 3: Simulation Results 

 

Table A.1 

Multivariate Uniform Distribution 

Wilks Test Empirical α level with 2 Groups 

    
             

  

    
 

Variance Ratio of 1:2 
 

  

    
 

                      
 

  

    
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

    
 

10 0.0564 0.0568 0.0538 0.0486 0.0538 0.0526 0.0506 0.0512 0.0474   
 

  

    
 

20 0.0452 0.0416 0.0606 0.0502 0.0566 0.0604 0.0556 0.0506 0.0532   
 

  

    
 

40 0.0536 0.0520 0.0518 0.0524 0.0516 0.0482 0.0428 0.0492 0.0504   
 

  

    
 

                      
 

  

    
             

  

    
 

Variance Ratio of 1:3 
 

  

    
 

                      
 

  

    
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

    
 

10 0.0490 0.0532 0.0514 0.0622 0.0480 0.0512 0.0478 0.0548 0.0500   
 

  

    
 

20 0.0464 0.0532 0.0538 0.0510 0.0434 0.0548 0.0506 0.0542 0.0564   
 

  

    
 

40 0.0588 0.0514 0.0492 0.0536 0.0518 0.0508 0.0528 0.0524 0.0548   
 

  

    
 

                      
 

  

    
             

  

    
 

Variance Ratio of 1:4 
 

  

    
 

                      
 

  

    
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

    
 

10 0.0576 0.0522 0.0536 0.0542 0.0550 0.0496 0.0510 0.0554 0.0554   
 

  

    
 

20 0.0512 0.0462 0.0510 0.0458 0.0468 0.0526 0.0498 0.0544 0.0514   
 

  

    
 

40 0.0454 0.0508 0.0530 0.0520 0.0472 0.0532 0.0546 0.0488 0.0514   
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Table A.2  

Multivariate Uniform Distribution 

Wilks Test Empirical α level with 3 Groups 

  
             

  

  
 

Variance Ratio of 1:2 
 

  

  
 

                      
 

  

  
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

  
 

10 0.0522 0.0490 0.0544 0.0550 0.0552 0.0542 0.0442 0.0472 0.0520   
 

  

  
 

20 0.0496 0.0538 0.0482 0.0500 0.0526 0.0466 0.0486 0.0500 0.0460   
 

  

  
 

40 0.0494 0.0546 0.0496 0.0484 0.0546 0.0548 0.0476 0.0468 0.0456   
 

  

  
 

  
         

  
 

  

  
             

  

  
 

Variance Ratio of 1:3 
 

  

  
 

                      
 

  

  
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

  
 

10 0.0550 0.0476 0.0520 0.0516 0.0514 0.0526 0.0466 0.0486 0.0528   
 

  

  
 

20 0.0490 0.0482 0.0532 0.0506 0.0532 0.0524 0.0542 0.0502 0.0514   
 

  

  
 

40 0.0478 0.0491 0.0462 0.0494 0.0514 0.0478 0.0534 0.0516 0.0500   
 

  

  
 

                      
 

  

  
             

  

  
 

Variance Ratio of 1:4 
 

  

  
 

                      
 

  

  
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

  
 

10 0.0476 0.0520 0.0502 0.0496 0.0458 0.0494 0.0506 0.0492 0.0498   
 

  

  
 

20 0.0520 0.0508 0.0496 0.0546 0.0494 0.0514 0.0480 0.0494 0.0488   
 

  

  
 

40 0.0518 0.0512 0.0480 0.0542 0.0552 0.0500 0.0512 0.0530 0.0548   
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Table A.3 

Multivariate Uniform Distribution 

Wilks Test Empirical α level with 5 Groups 

  
             

  

  
 

Variance Ratio of 1:2 
 

  

  
 

                      
 

  

  
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

  
 

10 0.0538 0.0484 0.0498 0.0478 0.0494 0.0552 0.0530 0.0508 0.0518   
 

  

  
 

20 0.0534 0.0562 0.0542 0.0442 0.0478 0.0486 0.0454 0.0480 0.0588   
 

  

  
 

40 0.0532 0.0512 0.0522 0.0496 0.0520 0.0480 0.0504 0.0466 0.0514   
 

  

  
 

                      
 

  

  
             

  
  

             
  

  
 

Variance Ratio of 1:3 
 

  

  
 

                      
 

  

  
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

  
 

10 0.0500 0.0468 0.0504 0.0484 0.0478 0.0506 0.0536 0.0508 0.0534   
 

  

  
 

20 0.5460 0.0504 0.0498 0.0512 0.0550 0.0488 0.0546 0.0560 0.0504   
 

  

  
 

40 0.0488 0.0500 0.0534 0.0510 0.0540 0.0492 0.0474 0.0504 0.0496   
 

  

  
 

                      
 

  

  
             

  

  
 

Variance Ratio of 1:4 
 

  

  
 

                      
 

  

  
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

  
 

10 0.0478 0.0564 0.0504 0.0500 0.0510 0.0498 0.0438 0.0454 0.0518   
 

  

  
 

20 0.0542 0.0566 0.0520 0.0506 0.0470 0.0502 0.0502 0.0460 0.0504   
 

  

  
 

40 0.0496 0.0462 0.0498 0.0466 0.0526 0.0490 0.0512 0.0478 0.0522   
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Table A.4 

Multivariate Exponential Distribution 

Wilks Test Empirical α level with 2 Groups 

  
             

  

  
 

Variance Ratio of 1:2 
 

  

  
 

                      
 

  

  
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

  
 

10 0.0444 0.0438 0.0428 0.0390 0.0424 0.0390 0.0420 0.0368 0.0404   
 

  

  
 

20 0.0464 0.0482 0.0464 0.0460 0.0448 0.0450 0.0446 0.0456 0.0440   
 

  

  
 

40 0.0496 0.0502 0.0522 0.0422 0.0426 0.0486 0.0474 0.0470 0.0492   
 

  

  
 

                      
 

  

  
             

  

  
 

Variance Ratio of 1:3 
 

  

  
 

                      
 

  

  
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

  
 

10 0.0444 0.0430 0.0374 0.0446 0.0446 0.0458 0.0430 0.0420 0.0380   
 

  

  
 

20 0.0470 0.0402 0.0436 0.0462 0.0420 0.0458 0.0424 0.0482 0.0444   
 

  

  
 

40 0.0494 0.0456 0.0458 0.0462 0.0456 0.0404 0.0494 0.0440 0.0522   
 

  

  
 

                      
 

  

  
             

  

  
 

Variance Ratio of 1:4 
 

  

  
 

                      
 

  

  
 

Sample 
Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   

 
  

  
 

10 0.0398 0.0356 0.0414 0.0446 0.0414 0.0422 0.0398 0.0390 0.0396   
 

  

  
 

20 0.0428 0.0426 0.0438 0.0410 0.0466 0.0432 0.0396 0.0452 0.0480   
 

  

  
 

40 0.0516 0.0426 0.0484 0.0462 0.0490 0.0436 0.0440 0.0452 0.0508   
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Table A.5 

Multivariate Exponential Distribution 

Wilks Test Empirical α level with 3 Groups 

  
             

  

  
 

Variance Ratio of 1:2 
 

  

  
 

                      
 

  

  
 

Sample Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   
 

  

  
 

10 0.0424 0.0426 0.0498 0.0472 0.0472 0.0474 0.0450 0.0474 0.0418   
 

  

  
 

20 0.0438 0.0482 0.0474 0.0468 0.0490 0.0486 0.0480 0.0492 0.0488   
 

  

  
 

40 0.0492 0.0488 0.0498 0.0538 0.0462 0.0480 0.0490 0.0510 0.0436   
 

  

  
 

                      
 

  

  
             

  

  
 

Variance Ratio of 1:3 
 

  

  
 

                      
 

  

  
 

Sample Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   
 

  

  
 

10 0.0462 0.0506 0.0518 0.0478 0.0378 0.0414 0.0492 0.0420 0.0478   
 

  

  
 

20 0.0538 0.0470 0.0468 0.0440 0.0498 0.0476 0.0454 0.0462 0.0470   
 

  

  
 

40 0.0454 0.0464 0.0536 0.0502 0.0450 0.0466 0.0498 0.0466 0.0464   
 

  

  
 

                      
 

  

  
             

  

  
 

Variance Ratio of 1:4 
 

  

  
 

                      
 

  

  
 

Sample Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   
 

  

  
 

10 0.0470 0.0528 0.0420 0.0438 0.0546 0.0446 0.0448 0.0458 0.0434   
 

  

  
 

20 0.0442 0.0484 0.0464 0.0460 0.0452 0.0546 0.0472 0.0462 0.0454   
 

  

  
 

40 0.0454 0.0484 0.0508 0.0492 0.0460 0.0498 0.0442 0.0480 0.0446   
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Table A.6 

Multivariate Exponential Distribution 

Wilks Test Empirical α level with 5 Groups 

  
             

  

  
 

Variance Ratio of 1:2 
 

  

  
 

                      
 

  

  
 

Sample Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   
 

  

  
 

10 0.0472 0.0468 0.0502 0.0486 0.0486 0.0502 0.0488 0.0466 0.0460   
 

  

  
 

20 0.0474 0.0480 0.0466 0.0436 0.0464 0.0462 0.0496 0.0538 0.0494   
 

  

  
 

40 0.0456 0.0500 0.0472 0.0478 0.0494 0.0490 0.0466 0.0490 0.0496   
 

  

  
 

                      
 

  

  
             

  

  
 

Variance Ratio of 1:3 
 

  

  
 

                      
 

  

  
 

Sample Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   
 

  

  
 

10 0.0452 0.0472 0.0486 0.0486 0.0454 0.0498 0.0522 0.0448 0.0474   
 

  

  
 

20 0.0500 0.0428 0.0482 0.0472 0.0490 0.0512 0.0444 0.0508 0.0452   
 

  

  
 

40 0.0436 0.0528 0.0504 0.0564 0.0494 0.0476 0.0510 0.0428 0.0464   
 

  

  
 

                      
 

  

  
             

  

  
 

Variance Ratio of 1:4 
 

  

  
 

                      
 

  

  
 

Sample Size 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9   
 

  

  
 

10 0.0464 0.0514 0.0528 0.0466 0.0450 0.0484 0.0500 0.0474 0.0494   
 

  

  
 

20 0.0458 0.0390 0.0470 0.0500 0.0438 0.0434 0.0482 0.0466 0.0474   
 

  

  
 

40 0.0482 0.0430 0.0466 0.0538 0.0456 0.0503 0.0544 0.0466 0.0502   
 

  

  
 

                      
 

  

                              

  



P a g e  | 32 

 

Section 4: References 

 

Todorov, V, and P Filzmoser. "Robust Statistic for the One-way MANOVA."Computational Statistics & 

Data Analysis, 54.1 (2010): 37-48. 

Todorov, V. “Robust selection of variables in linear discriminant analysis” Statistical Methods and 

Applications 15, 395-407. 2007 

van Aelst, Stefan, and Gert Willems. "Robust and efficient one-way MANOVA tests." Journal of the 

American Statistical Association 106.494. Microfilm. Cal Poly 2011. 

 


	Introduction
	Literature Review
	Multivariate Analysis of Variance
	A Brief Introduction to MANOVA
	Table 1: MANOVA Hypothesis
	Figure 1: Graphical Representation of Multivariate Data (Population)

	Conditions of MANOVA
	Why MANOVA?
	Type I Error

	Simulations
	Multivariate Distribution
	Variance-Covariance Structure
	Figure 2: Variance-Covariance Matrix

	Sample Size
	Number of Groups
	Figure 2: Multivariate Distributions
	Table 2: The Simulation Parameter Settings


	Results
	Wilk’s Test Statistic
	Figure 4: MANOVA Empirical Alpha Level for the Exponential Distribution

	Pillai’s Test Statistic
	Table 3: Exponential Distribution Results using Pillai’s Test with Three Groups
	Figure 5: MANOVA Empirical Alpha Level for the Exponential Distribution (Pillai)

	Hotelling-Lawley’s Test Statistic
	Table 4: Exponential Distribution Results using Hotelling-Lawley’s Test with Three Groups
	Figure 6: MANOVA Empirical Alpha Level for the Exponential Distribution (Hotelling-Lawley)


	Conclusion
	Table 5: Exponential Distribution Results using Hotelling-Lawley Test with Two Groups

	Appendix
	Section 1: The Simulation Functions
	Section 2: Example Simulation Code
	Section 3: Simulation Results
	Table A.1
	Table A.2
	Table A.3
	Table A.4
	Table A.5
	Table A.6

	Section 4: References


