An empirical Bayes approach to polynomial regression under order restrictions By LEONARD W. DEATON #### SUMMARY An unknown polynomial is to be estimated over a finite interval from N independent, normally distributed observations. A prior distribution is placed on the polynomial coefficients expressing the opinion that the coefficients decrease in absolute value as the degree of the corresponding terms increase. The data are used to estimate the parameters in the prior distribution of the coefficients. A Monte Carlo study is presented which compares the proposed method with the lack-of-fit procedure. This study indicates that the proposed method performs well in terms of minimizing a squared error loss as well as in yielding the correct degree of the polynomial being estimated. Some key words: Bayes rule; Empirical Bayes procedure; Isotonic regression; Least squares estimate; Maximum likelihood procedure; Monte Carlo study; Order restriction; Orthonormal; Polynomial regression. ## 1. Introduction There are many methods for polynomial regression. Most classical methods are well known. Bayesian approaches have been devised by Guttman (1967), Halpern (1973) and Young (1977). Hager & Antle (1968) studied Guttman's method for determining the degree of a polynomial and concluded that it was not of practical value. They also recommended that future approaches to this problem be compared to the lack-of-fit procedure. Halpern made such a comparison which indicated that his method, using a vague prior on the parameters, was of practical value. However, unless a vague prior is used on the parameters, Halpern's method appears to be computationally cumbersome. Young's procedure is not designed for determining the correct degree of the polynomial, but is designed only for optimal prediction. Hence, Young's procedure always yields a polynomial of maximal degree. Young's procedure requires numerical methods to approximate a mode. The initial assumptions of the method proposed here closely resemble those of Young. However, we also attempt to determine the correct degree of the polynomial being estimated. As recommended by Hager & Antle, we have compared our procedure with the lack-of-fit procedure. The results of this comparison are presented in § 4. The computations required for our method are simple and exact. A numerical example is given in § 5. ## 2. THE MODEL We are to estimate the polynomial function P. We have N independent observations Y_{i} of P at the points x_{i} of the form $Y_{i} = P(x_{i}) + \varepsilon_{i}$ (i = 1, ..., N), where the ε_{i} are normally distributed with mean zero and unknown variance σ^{2} . We write P as the sum of orthonormal polynomials, that is $$P(x_i) = \sum_{j=0}^m \theta_j \psi_j(x_i) \quad (i = 1, ..., N),$$ where ψ_i is a polynomial of degree j such that $$\sum_{k=1}^{N} \psi_{i}(x_{k}) \psi_{j}(x_{k}) = \delta_{ij} \quad (i, j = 0, ..., m);$$ the coefficients θ_j are unknown. This assumes that we have at least m+1 distinct values of the x_i 's. By defining the $N \times (m+1)$ matrix Q with the element of the *i*th row and *j*th column as $\psi_i(x_i)$, we obtain Q'Q = I, where I is the identity matrix. Our assumptions thus far may be expressed in matrix notation as $$Y \mid \theta \sim N(Q\theta, \sigma^2 I)$$. That is, we observe an N dimensional random vector Y which given the m+1 dimensional vector θ has a multivariate normal distribution with mean $Q\theta$ and covariance matrix $\sigma^2 I$. The least squares estimator $\hat{\theta}$ for θ and the error sum of squares s are independent sufficient statistics for the problem. Hence, the components $\hat{\theta}_i$ given θ are independently normally distributed with mean θ_i and variance σ^2 , and are independent of s given θ , which is such that $s\sigma^{-2}$ is chi-squared with n degrees of freedom. That is $$\hat{\theta}_i \mid \theta \sim N(\theta_i, \sigma^2), \quad s/\sigma^2 \mid \theta \sim \chi_n^2,$$ (2.1) where n = N - m - 1. We put a prior distribution on θ and assume that its components θ_i are independently normally distributed with mean 0 and variance σ_i^2 . We allow $\sigma_i^2 = 0$, that is, some components of θ may be degenerate at zero. If a zero mean would contradict our prior opinion for some of the θ_i we may use something other than zero. Then, the procedures given here would only require a slight adjustment. If one has a vague opinion about θ_i , then a sufficiently large value of σ_i^2 will negate the effect of assigning a prior mean of zero to it. Hence, $$\theta_i \, | \, \hat{\theta}_i \sim N\{(1-z_i) \, \hat{\theta}_i, z_i \, \sigma_i^2\}, \tag{2\cdot 2} \label{eq:delta_i}$$ where $$z_{i} = \sigma^2/(\sigma^2 + \sigma_{i}^2).$$ Also, the marginal distributions of the $\hat{\theta}_i$ are independent normal distributions with mean 0 and variance σ^2/z_i . Hence $$\hat{\theta}_i \sim N(0, \sigma^2/z_i). \tag{2.3}$$ As a result of $(2\cdot 1)$ and $(2\cdot 3)$ the joint marginal distribution of the θ_i and s is proportional to $$\frac{s^{\frac{1}{4}(n-2)}}{\sigma^n} \exp\left(-\frac{s}{2\sigma^2}\right) \prod_{i=0}^m \frac{z_i^{\frac{1}{4}}}{\sigma} \exp\left(-\frac{z_i \hat{\theta}_i^2}{2\sigma^2}\right). \tag{2.4}$$ The mean of the distribution $(2\cdot2)$ will provide us with the Bayes rule for estimating θ_i when σ^2 and σ_i^2 and hence z_i are known. We proceed in a manner somewhat similar to that of Efron & Morris (1973) and use the data to estimate the z_i . However, this procedure differs from theirs in that we shall not assume the z_i are all equal nor shall we use a loss function in obtaining our estimates. Indeed, the process of selecting an appropriate model for regression is accomplished by estimating certain z_i to be 1. We eventually express complete vagueness in our prior opinion of θ_0 , the constant term of the polynomial, by taking $\sigma_0^2 = \infty$. Hence, we use the least squares estimator $\hat{\theta}_0$ to estimate θ_0 . The theory at this point will not allow such an assignment. So, temporarily we assume σ_0^2 is fixed at some large positive value. We also assume that $$\sigma_1^2 \geqslant \dots \geqslant \sigma_m^2 \geqslant 0. \tag{2.5}$$ Young (1977) also assumes (2.5) and uses a vague prior on θ_0 . The constraint (2.5) reflects a prior opinion that becomes increasingly stronger, as the index *i* increases, that θ_i is near zero. The assumptions in (2.5) can be relaxed in varying degrees to the point of being eliminated entirely. However, we believe that (2.5) is appropriate for most practical problems. In terms of the z_i our assumptions are $$z_0 = \varepsilon \quad (0 < z_1 \leqslant z_2 \leqslant \ldots \leqslant z_m \leqslant 1), \tag{2.6}$$ where ε is a known positive number near zero. Although estimates of the z_i are enough to give us an estimate of θ , it is both practical and convenient also to estimate σ^2 . One way to do this is to use a maximum likelihood procedure and select σ^2 and the unknown z_i to maximize (2.4) subject to the restrictions in (2.6). First, we make the transformation $$V_i = z_i \sigma^{-2}, \quad V_{m+1} = \sigma^{-2}$$ (2.7) for i = 1, ..., m. Then (2.4) may be rewritten as $$s^{\frac{1}{2}(n-2)} z_0^{\frac{1}{2}} V_{m+1}^{\frac{1}{2}(n+1)} \exp\left\{-\frac{1}{2} V_{m+1} (s + z_0 \hat{\theta}_0^2)\right\} \prod_{i=1}^m \left\{V_i^{\frac{1}{2}} \exp\left(-\frac{1}{2} V_i \hat{\theta}_i^2\right)\right\}. \tag{2.8}$$ # 3. ESTIMATING THE HYPERPARAMETERS We could estimate the hyperparameters V_i by selecting them to maximize (2.8) subject to the restrictions in (2.6). In terms of the V_i , (2.6) becomes $$z_0 = \varepsilon \quad (0 < V_1 \leqslant V_2 \leqslant \ldots \leqslant V_m \leqslant V_{m+1}). \tag{3.1}$$ Thus (2.8) could be maximized subject to (3.1). But we prefer to put a prior on $(z_1, ..., z_m, V_{m+1})$ which is proportional to $$V_{m+1}^{\gamma_{m+1}-1} \exp\left(-\frac{V_{m+1}}{\beta_{m+1}}\right) \prod_{i=1}^{m} z_i^{\gamma_i-1}$$ (3.2) for the z_i satisfying the restrictions in (2.6) and $V_{m+1} > 0$. Apart from the restrictions in $(2\cdot6)$ we see that $(3\cdot2)$ is a product of independent beta distributions and a gamma distribution. The choice $\gamma_i = 1$ gives a uniform distribution of z_i and larger values of γ_i express stronger opinions that the z_i are near 1. In testing the hypothesis that $\theta_i = 0$, in the classical sense, we essentially express a prior opinion that $\theta_i = 0$ and will stay with that opinion unless sampling evidence is sufficiently strong to reject the hypothesis. Apart from the restrictions in $(2\cdot6)$, we believe that selecting values of γ_i larger than 1 is in spirit similar to selecting significance levels less than 50% in testing the hypothesis that $\theta_i = 0$. The posterior distribution of $(z_1, \ldots, z_m, V_{m+1})$ given $\hat{\theta}$ and s is proportional to the product of (3.2) and (2.8) which can be written as $$V_{m+1}^{\frac{1}{n}} \exp\left(-\frac{1}{2}V_{m+1}W_{m+1}\right) \prod_{i=1}^{m} \left\{V_{i}^{\frac{1}{2}(2\gamma_{i}-1)} \exp\left(-\frac{1}{2}V_{i}W_{i}\right)\right\}, \tag{3.3}$$ where $$\begin{split} \bar{n} &= n + 1 + 2 \Big\{ (\gamma_{m+1} - 1) - \sum_{i=1}^{m} (\gamma_i - 1) \Big\}, \\ W_{m+1} &= s + 2/\beta_{m+1} + z_0 \, \hat{\theta}_0^2, \quad W_i = \hat{\theta}_i^2 \quad (i = 1, ..., m)_{\parallel} \end{split}$$ provided that (3.1) is satisfied. Our problem is to select V_i to maximize (3.3) subject to the restrictions (3.1). If (3.3) is maximized by taking $V_i = \hat{V}_i$, then we would use (2.7) to solve for the estimates \hat{z}_i of z_i so that our final estimates of θ_i are $\hat{\theta}_i(1-\hat{z}_i)$. Our estimate of θ_i is zero provided our estimate \hat{z}_i is one. This occurs provided $\hat{V}_i = \hat{V}_{m+1}$. We now define g_i by $$g_{m+1} = \bar{n}/W_{m+1}, \quad g_i = (2\gamma_i - 1)/W_i \quad (i = 1, ..., m).$$ (3.4) If we ignore the restrictions in $(3\cdot 1)$ and if the g_i are positive, then taking V_i to be g_i for $i=1,\ldots,m+1$ maximizes $(3\cdot 3)$. If such V_i satisfy the restrictions in $(3\cdot 1)$ our problem is solved. The following theorem gives us a more general solution. THEOREM 1. If the g_i in (3·4) are positive, then (3·3) is maximized by taking V_i to be the isotonic regression of g_i with weights W_i for i = 1, ..., m+1. The proof is too long to be included here. For an account of isotonic regression, see Barlow et al. (1972, p. 9). The next theorem gives a formula for computing the isotonic regression. THEOREM 2. Let \hat{V}_i be the isotonic regression of g_i with weights W_i for $i=1,\ldots,m+1$. Then $$V_i = \max_{s \leq t} \min_{t \geq i} \operatorname{Av}(s, t) \quad (i = 1, ..., m+1),$$ where $$\operatorname{Av}(s,t) = (\Sigma g_r W_r)/(\Sigma W_r)$$ where both sums are from r = s to r = t. The formula for V_i in Theorem 2 is called a max-min formula and is given by Barlow et al. (1972, p. 19). It is rather difficult to make any simple statement as to how many coefficients $\hat{\theta}_t$ will be eliminated by this procedure. If a given coefficient is eliminated, then all coefficients of higher degree orthonormal polynomials will also be eliminated. As for those coefficients which are left in, the shrinkage factors increase with the degree of the polynomial. Roughly speaking, a coefficient $\hat{\theta}_t$ is eliminated provided g_t is 'significantly' larger than g_{m+1} . The previous statement is an oversimplification since all g_t and their weights W_t must be taken into account. For maximum elimination, we would want g_{m+1} small and all other g_t large. As shown in the Monte Carlo study in § 4, it seems difficult to overeliminate when some elimination is required. In that study g_{m+1} was essentially zero and excellent results were obtained. The assumption in Theorem 1 that the g_i are positive is met provided that $$\sum_{i=1}^{m} \gamma_{i} < \frac{1}{2} \{ n - 1 + 2(m + \gamma_{m+1}) \}, \quad \gamma_{i} > \frac{1}{2} \quad (i = 1, ..., m).$$ The requirement that $\gamma_i > \frac{1}{2}$ for i = 1, ..., m does restrict our ability to express a strong prior opinion that any z_i is near zero. However, if we have a very strong prior opinion that z_i is very near zero, we can simply take $z_i = 0$ as we do with z_0 . It would seem rather rare that Theorem 1 could not be applied in any practical case. By comparing (3·3) to (2·8) we see that the problem of maximizing one is equivalent to maximizing the other. In fact, if in (3·3) and (3·4) we take $\beta_{m+1} = \infty$ and the $\gamma_i = 1$ the problems are equivalent. We now consider the problem of expressing complete vagueness in our prior opinion of θ_0 . We note that there is no mathematical difficulty encountered with simply taking $z_0 = \varepsilon = 0$ in (3·1), (3·3) and (3·4). An appropriate continuity result justifies the process of taking $z_0 = 0$ when selecting the V_i to maximize (3·3) subject to (3·1). This procedure can be applied to express vagueness for any θ_i . For example, if we wanted our estimate to be at least a quadratic, we could take $z_0 = z_1 = z_2 = 0$. ### 4. Monte Carlo studies The Monte Carlo study consisted of adding a N(0,1) deviate to a polynomial P(x). Two observations were made at each of the seven points $x = 0, \pm 1, \pm 2$ and ± 3 . With these 14 observations the following estimates of P(x) were computed: - (i) Hager & Antle's (1968) lack-of-fit test using a 5% level of significance for each F test. - (ii) The isotonic regression rule proposed in this paper in which the assumed restrictions on the V_i were $V_1 \leq ... \leq V_{m+1}$. The parameters in (3·2) were selected to express as strong an opinion as possible that the z_i were near 1 while still keeping the g_i positive. In fact $$\gamma_1 = \gamma_2 = 1$$, $\gamma_3 = 1.5$, $\gamma_4 = \gamma_5 = 2.0$, $\gamma_6 = 2.49999999$, $\gamma_7 = 1$, $\beta_7 = \infty$, $z_0 = 0$. The strange selection for γ_6 is because, once the others were selected, g_7 is positive provided $\gamma_6 < 2.5$. This selection of the parameters will almost certainly eliminate the sixth degree term of the polynomial unless the sixth degree fit is essentially perfect. (iii) This is the same as (ii) except that null values for the parameters were used. That is, all $\gamma_i = 1$, $\beta_7 = \infty$ and $z_0 = 0$. This expresses a vague prior opinion on the z_i . Thus the rules (ii) and (iii) provide two extreme prior opinions on the z_i . To compare the accuracy of each estimate $\hat{P}(x)$ of P(x), the loss function $L(\hat{P}, P)$ was used where $L(\hat{P}, P) = \frac{1}{6} \{\{P(x) - \hat{P}(x)\}^2 dx$ and the limits on the integral were -3 and 3. Hence, for each estimate, a loss was observed. The process was repeated for a total of 121 observations of the loss for each rule. Also observed was the number of times in the 121 trials each rule yielded the correct degree of P(x). The entire process was repeated for nine different polynomials P(x) which ranged from degree two to degree four. For each rule it was assumed that the degree of the polynomial was known to be between one and six inclusive. The results are summarized in Table 1. For example, in case 3 the coefficient of the orthonormal polynomial of degree zero was 4, of degree one was 10, of degree two was 20 and zero for the others. Thus case 3 dealt with a quadratic polynomial. The smallest average loss was obtained by the rule (ii) which was 0.1874. The lack-of-fit rule yielded the correct degree 116 times in 121 trials. Although not shown in the table, the average loss for the least squares estimator of the full model, a sixth degree polynomial, was also computed and was 0.8069 for every case. One can see that in terms of loss, (ii) did better than lack-of-fit in every case. In terms of degree, (ii) beats lack-of-fit in 6 out of the 9 cases. Method (iii) beats lack-of-fit in 4 cases in terms of degree and in 4 cases in terms of loss. The five cases numbered 3, 4, 5, 7, 9 have coefficients that appear rather unlikely on the basis of the prior assumptions for the rules (ii) and (iii). Of those, only in two cases did lack-of-fit outdo rule (ii) in terms of degree. Table 1. Monte Carlo results | | | Num | ber of | $_{ m times}$ | | • | | |------|---------------------------|----------------|--------|---------------|----------------------------|------|-------| | | | correct degree | | | Average loss $\times 10^4$ | | | | Case | Actual $ heta$ | (i) | (ii) | (iii) | (i) | (ii) | (iii) | | 1 | 5, 2, 1, 0, 0, 0, 0 | 6 | 63 | 21 | 2592 | 2110 | 3370 | | 2 | 15, 0.5, 0.05, 0, 0, 0, 0 | 1 | 30 | 12 | 1683 | 1320 | 2484 | | 3 | 4, 10, 20, 0, 0, 0, 0 | 116 | 95 | 36 | 2067 | 1874 | 3306 | | 4 | 10, 10, -20, 30, 0, 0, 0 | 117 | 109 | 47 | 2655 | 2392 | 3932 | | 5 | 10, 0, 0, 3, 0, 0, 0 | 68 | 108 | 47 | 6300 | 2738 | 3999 | | 6 | 10, 1, 2, -2, 0, 0, 0 | 35 | 100 | 47 | 7102 | 3371 | 4188 | | 7 | 1, 1, 2, 3, 4, 0, 0 | 108 | 116 | 62 | 5330 | 3643 | 4691 | | 8 | 1, 5, 4, 3, 2, 0, 0 | 44 | 93 | 59 | 9075 | 5109 | 5090 | | 9 | 1, 50, 25, 50, 10, 0, 0 | 116 | 116 | 62 | 3810 | 3207 | 4759 | ⁽i) Lack-of-fit; (ii) and (iii), isotonic regression rules. The rules (ii) and (iii) might have been improved by using something other than vague knowledge on σ^{-2} or V_{m+1} . Since there were repeat measurements available, we could substitute for the error sum of squares s, the sum of squares for pure error (Draper & Smith, 1966, p. 26). This may improve the rules (ii) and (iii), since g_{m+1} as given in (3·4) is used as an initial estimate for $V_{m+1} = \sigma^{-2}$. These ideas have not been tested in Monte Carlo studies. ## 5. A NUMERICAL EXAMPLE As a particular example we consider one of the results from case 6 of the Monte Carlo study. The computations required to compute the estimate of θ using rule (ii), as described in §4, are given in Table 2. The table is composed of two parts. In the top part the index on the variables runs from zero to six. In the bottom part, the index on the variables runs from one to seven. For example, the estimate of θ_2 given by rule (ii) is 2.5259 while the value of \hat{V}_2 is 0.0973. Table 2. Numerical example for results from Case 6 of Table 1, application of method (ii) | | | i = 0 | i = 1 | i = 2 | i = 3 | i = 4 | i = 5 | i = 6 | |-----------------------------------------|----------------------|--------|---------|--------|---------|----------------|---------|----------------------| | Actual | θ_i | 10 | 1 | 2 | - 2 | 0 | 0 | 0 | | Least squares $\hat{\theta}_{\epsilon}$ | | 9.8422 | 1.3619 | 2.9031 | -2.1913 | 1.0629 | -0.5344 | 0.2356 | | _ | \hat{Z}_i | 0 | 0.1299 | 0.1299 | 0.2782 | 1 | 1 | 1 | | Rule (ii) | θ_i | 9.8422 | 1.1850 | 2.5259 | -1.5816 | 0 | 0 | 0 | | | | i = 1 | i = 2 | i = 3 | i = 4 | i = 5 | i = 6 | i = 7 | | | W_i | 3.7096 | 16.8556 | 9.6034 | 2.2596 | 0.5712 | 0.1110 | 10.4187 | | | g_i | 0.2696 | 0.0593 | 0.2083 | 1.3277 | $5 \cdot 2525$ | 36.0380 | 19×10^{-10} | | | $\overset{g_i}{V_i}$ | 0.0973 | 0.0973 | 0.2083 | 0.7485 | 0.7485 | 0.7485 | 0.7485 | The value W_8 is the residual sum of squares for the full model or s. For i = 1, ..., 7, $W_i = 2\hat{\theta}_i^2$. This is different from formula (3·3). The doubling of the weights is a direct result of making two observations at each point instead of one. Thus, the assumption on $\hat{\theta}_i$ in (2·1) must be modified by replacing σ^2 with $\frac{1}{2}\sigma^2$. Similar modifications must be made for those parts of the remaining formulae in which σ^2 appears through an assumption regarding the $\hat{\theta}_i$. However, where σ^2 appears as a direct result of the assumptions on s, the formula should be left unchanged. For example, in (2·4), we replace σ by $\sigma/\sqrt{2}$ when and only when it occurs after the product sign. The definitions of the z_i are changed to $z_i = \sigma^2/(\sigma^2 + 2\sigma_i^2)$, but (2·7) would be left as it is. The actual computation of the \hat{V}_i from the g_i and W_i can be done in under five minutes with a hand calculator using the minimum violator algorithm of Barlow et al. (1972, p. 19). The paper is based primarily on my Ph.D. thesis supervised by Professor H. D. Brunk at Oregon State University. I thank Professor Brunk and the referees for their invaluable assistance with the paper. ### REFERENCES Barlow, R. E., Bartholomew, D. J., Bremner, J. M. & Brunk, H. D. (1972). Statistical Inference under Order Restrictions. New York: Wiley. DRAPER, N. R. & SMITH, H. (1966). Applied Regression Analysis. New York: Wiley. EFRON, B. & MORRIS, C. (1973). Stein's estimation rule and its competitors—an empirical Bayes approach. J. Am. Statist. Assoc. 68, 117-30. GUTTMAN, I. (1967). The use of a concept of a future observation in goodness-of-fit problems. J. R. Statist. Soc. B 29, 83-100. HAGER, H. & ANTLE, C. (1968). The choice of the degree of a polynomial model. J. R. Statist. Soc. B 30, 469-71. HALPERN, E. F. (1973). Polynomial regression from a Bayesian approach. J. Am. Statist. Assoc. 68, 137-43. Young, A. S. (1977). A Bayesian approach to prediction using polynomials. Biometrika 64, 309-17.