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SUMMARYSTJMMABY 

An unknown polynomial is to be estimated over aa finitefinite interval fromfrom NN independent, 
normally distributed observations.observations. priorprior distribution isis placed onon the polynomialpolynomial 

An unknown polynomial is to be estimated over  interval  independent, 
normally distributed AA distribution placed the 
coefficients expressing the opinion that the coefficients decrease in absolute value as thecoefficients expressing the opinion that the coefficients decrease in absolute value as the 
degree of the corresponding terms increase. The data are used to estimate the parameters indegree of the corresponding terms increase. The data are used to estimate the parameters in 
the prior distribution of the coefficients. AA Monte Carlo study is presented which comparesthe prior distribution of the coefficients.  Monte Carlo study is presented which compares 
the proposed method with the lack-of-fit procedure. This study indicates that the proposedthe proposed method with the lack-of-fit procedure. This study indicates that the proposed 
method performs well in terms of minimizing  squared error loss as well as in yielding themethod performs well in terms of minimizing aa squared error loss as well as in yielding the 
correct degree of the polynomial being estimated.correct degree of the polynomial being estimated. 
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INTRODUCTION. 1.1. INTBODTJCTION 

There are many methods for polynomial regression. Most classical methods are well known.There are many methods for polynomial regression. Most classical methods are well known. 
Bayesian approaches have been devised by Guttman (1967), Halpern (1973) and YoungBayesian approaches have been devised by Guttman (1967), Halpern (1973) and Young 
(1977). Hager  Antle (1968) studied Guttman's method for determining the degree of(1977). Hager && Antle (1968) studied Guttman's method for determining the degree of aa 
polynomial and concluded that it was not of practical value. They also recommended thatpolynomial and concluded that it was not of practical value. They also recommended that 
future approaches to this problem be compared to the lack-of-fit procedure. Halpern madefuture approaches to this problem be compared to the lack-of-fit procedure. Halpern made 
such  comparison which indicated that his method, using  vague prior on the parameters,such aa comparison which indicated that his method, using aa vague prior on the parameters, 
was of practical value. However, unless  vague prior is used on the parameters, Halpern'swas of practical value. However, unless aa vague prior is used on the parameters, Halpern's 
method appears to be computationally cumbersome.method appears to be computationally cumbersome. 

Young's procedure is not designed for determining the correct degree of the polynomial,Young's procedure is not designed for determining the correct degree of the polynomial, 
but is designed only for optimal prediction. Hence, Young's procedure always yields aabut is designed only for optimal prediction. Hence, Young's procedure always yields 
polynomial of maximal degree. Young's procedure requires numerical methods to approxipolynomial of maximal degree. Young's procedure requires numerical methods to approxi
mate  mode.mate aa mode. 

The initial assumptions of the method proposed here closely resemble those of Young.The initial assumptions of the method proposed here closely resemble those of Young. 
However, we also attempt to determine the correct degree of the polynomial being estimated.However, we also attempt to determine the correct degree of the polynomial being estimated. 
As recommended by Hager  Antle, we have compared our procedure with the lack-of-fitAs recommended by Hager && Antle, we have compared our procedure with the lack-of-fit 
procedure. The results of this comparison are presented in  4. The computations required forprocedure. The results of this comparison are presented in §§4. The computations required for 
our method are simple and exact.  numerical example is given inour method are simple and exact. AA numerical example is given in §§5.5. 

2. THE MODEL2. THE MODEL 

We are to estimate the polynomial function  We have  independent observations YtWe are to estimate the polynomial function P.P. We have NN independent observations ~ 

of  at the points x{ of the form T{ = P(xi) + ei (t = 1, ...,N), where the et are normallyof PP at the points Xi of the form l( = P(Xi)+£i (i = 1, ... ,N), where the £i are normally 
distributed with mean zero and unknown variance a2. We write  as the sum of orthonormaldistributed with mean zero and unknown variance u2. We write PP as the sum of orthonormal 



polynomials, that ispolynomials, that is 

PW = S ^ ^ i ) (»=1 N). 

where \p{ is a polynomial of degree j such thatwhere .pj is a polynomial of degree j such that 

N 
S M*k) Hxk) = 8<j (», j = 0,...,TO); 

t—i 

the coefficients fy are unknown. This assumes that we have at least  distinct values ofthe coefficients (Jj are unknown. This assumes that we have at least mm ++11 distinct values of 
the X4'B. By defining the  (m +1) matrix <2 with the element of the ith row andj'th columnthe x/so By defining the NN xx (m+ 1) matrix Q with the element of the ith row andjth column 

if>j(x{), we obtain Q'Q= I,= / , wherewhere I  I is the identity matrix.asas tPj(x,), we obtain Q'Q is the identity matrix. 
Our assumptions thus far may be expressed in matrix notationOur assumptions thus far may be expressed in matnx notation asas 

Y\e~N{Q6,o*I).YI (J- N(Q(J, u2 I). 

That is, we observe an  dimensional random vector  which given the  dimensionalThat is, we observe an NN dimensional random vector YY which given the mm ++11 dimensional 
vector 8 has  multivariate normal distribution with mean Q8 and covariance matrix a2vector (J has aa multivariate normal distribution with mean Q(J and covariance matrix u2 1.1. 

The least squares estimator 6 for 6 and the error sum of squares s are independent sufficientThe least squares estimator ~ for (J and the error sum of squares 8 are independent sufficient 
statistics for the problem. Hence, the components #< given 8 are independently normallystatistics for the problem. Hence, the components ~, given (J are independently normally 
distributeddistributed with meanwith mean (J{.6t andand variancevariance u<r2, and are independent of s given 8, which is such that2 , and are independent of 8 given (J, which is such that 
so--2 is chi-squared with n degrees of freedom. That is8U-2 is chi-squared with n- degrees of freedom. That is 

6t\8~N[8t,o*), 8lo*\8~xl, (2-1)(2'1) 
wherewhere nn == NN -m-1.— m — 1. 

We put  prior distribution on 8 and assume that its components 8t are independentlyWe put aa prior distribution on (J and assume that its components (J, are independently 
normally distributed with mean  and variance of. We allow a? == 0, that is, some componentsnormally distributed with mean 00 and variance u:. We allow u: 0, that is, some components
 
of 8 may be degenerate at zero.
of (J may be degenerate at zero.
 

If aa zero mean would contradict our prior opinion for some of the (J, we may use somethingIf  zero mean would contradict our prior opinion for some of the 8{ we may use something 
other than zero. Then, the procedures given here would only require aa slight adjustment.other than zero. Then, the procedures given here would only require  slight adjustment. 
If one has aa vague opinion about (J" then a sufficiently large value of u: will negate the effectIf one has  vague opinion about 8{, then a sufficiently large value of erf will negate the effect 
of assigning aa prior mean of zero to it.of assigning  prior mean of zero to it. 

Hence, 
(2·2) 

Hence, 
e^-NUl  - Z i ) ^ ) 2 l a f} , (2-2)

wherewhere 

Also, the marginal distributions of the 6t are independent normal distributions with meanAlso, the marginal distributions of the ~, are independent normal distributions with mean 
0 and variance o2[z{. Henceoand variance u2/z,. Hence 

(2·3)ONi^fa). (2-3) 

As  result of (21) and (2-3) the joint marginal distribution of the 8t and s is proportional toAs aa result of (2'1) and (2'3) the joint marginal distribution of the ~{. and 8 is proportional to 

8i(n-21 ( 8) m zl (Z, ~:) (2'4)--n-exp -2-2 n -exp --22 • (2'4) 
u u- iooO U U—M-s?)fl?H-£*)

The mean of the distribution (2-2) will provide us with the Bayes rule for estimating 8tThe mean of the distribution (2·2) will provide us with the Bayes rule for estimating (J, 

whenCT2and of and hence zi are known. We proceed in  manner somewhat similar to that ofwhen u2 and u: and hence Zi are known. We proceed in aa manner somewhat similar to that of 
Efron  Morris (1973) and use the data to estimate the zt. However, this procedure differsEfron && Morris (1973) and use the data to estimate the z,. However, this procedure differs 
from theirs in that we shall not assume the zi are all equal nor shall we use  loss function infrom theirs in that we shall not assume the Zi are all equal nor shall we use aa loss function in 
obtaining our estimates. Indeed, the process of selecting an appropriate model for regressionobtaining our estimates. Indeed, the process of selecting an appropriate model for regression 
is accomplished by estimating certain zi to be 1.is accomplished by estimating certain z, to be 1. 



We eventually express complete vagueness in our prior opinion of 800 , the constant term 
of the polynomial, by taking o-§==00. Hence, we use the least squares estimator boto estimate 

We eventually express complete vagueness in our prior opinion of d , the constant term 
of the polynomial, by taking u8 oo. Hence, we use the least squares estimator 90 to estimate 
8d00,. The theory at this point will not allow such an assignment. So, temporarily we assumeThe theory at this point will not allow such an assignment. So, temporarily we assume 
u8 is fixedfixed at some large positive value. We also assume thata% is  at some large positive value. We also assume that 

(2·5)(2-5) 

Young (1977) also assumes (2·5) and uses aa vague prior on 800• The constraint (2·5) reflectsYoung (1977) also assumes (2-5) and uses  vague prior on 6 . The constraint (2-5) reflects
aa prior opinion that becomes increasingly stronger, as the index ii increases, that 8, is nearprior opinion that becomes increasingly stronger, as the index  increases, that dt is near 
zero. The assumptions in (2·5) can be relaxed in varying degrees to the point of being elizero. The assumptions in (2-5) can be relaxed in varying degrees to the point of being eli
minated entirely. However, we believe that (2-5) is appropriate for most practical problems.minated entirely. However, we believe that (2·5) is appropriate for most practical problems. 

In terms of the z, our assumptions areIn terms of the zi our assumptions are 

(2·6), (2-6) 

where E is aa known positive number near zero.where e is  known positive number near zero. 
Although estimates of the z, are enough to give us an estimate of 8, it is both practical andAlthough estimates of the zi are enough to give us an estimate of 6, it is both practical and 

convenient also to estimate u2• One way to do this is to use aa maximum likelihood procedure 
and select a2 andand the unknownthe unknown z,zi to maximize (2·4) subject to the restrictions in (2·6). 
convenient also to estimate a2. One way to do this is to use  maximum likelihood procedure 
and select u2 to maximize (2-4) subject to the restrictions in (2-6). 
First, we make the transformationFirst, we make the transformation 

V^zia-\ Vm+1 = *-* (2·7)(2-7) 

forfor ii == 1, ... ,m. Then (2·4) may be rewritten as1, ...,m. Then (2-4) may be rewritten as 

^ ^ ^ .siln - m+1(s+zobm ii {vtexp (-!~Dm·} ( 2 . 8 )2l zt V~~tll exp{ -!V (2·8) 
i-I 

3.3. ESTIMATINGESTIMATING THE HYPEBPABAMETEBSTHE HYPERPARAMETERS 

We could estimate the hyperparameters TJ by selecting them to maximize (2-8) subject toWe could estimate the hyperparameters ~ by selecting them to maximize (2·8) subject to 
the restrictions in (2-6). In terms of the Vt, (2-6) becomesthe restrictions in (2·6). In terms of the ~. (2·6) becomes 

(3-1)(3·1) 

Thus (2-8) could be maximized subject to (3-1). But we prefer to put  prior on (zt  z m , m+1)Thus (2'8) could be maximized subject to (3'1). But we prefer to put aa prior on (Zl' ...• zm' VVm+1) 
which is proportional towhich is proporlionalto 

Vy.,+1-1 exp (- Vm+1) ii: zy.-l (3·2)
m+l f3. 11 'Pm+Vm+l i~-

for the zt satisfying the restrictions in (2-6) and +1 > O.for the z, satisfying the restrictions in (2'6) and VVmm+1 > 0. 
Apart from the restrictions in (2-6) we see that (3-2) is  product of independent betaAparl from the restrictions in (2·6) we see that (3·2) is aa product of independent beta 

distributions and  gamma distribution. The choice y{ —1 gives a uniform distribution1 gives a uniform distribution ofof z,ztdistributions and aa gamma distribution. The choice y, = 
and larger values of y4 express stronger opinions that the zi are near 1. In testing the hypo-and larger values of y, express stronger opinions that the Zi are near 1. In testing the hypo
thesisthesis thatthat 8,8t = —0, in the classical sense. we essentially express a prior opinion that 8, = 00, in the classical sense, we essentially express a prior opinion that 6i = 0 
and will stay with that opinion unless sampling evidence is sufficiently strong to reject theand will stay with that opinion unless sampling evidence is sufficiently strong to reject the 
hypothesis. Apart from the restrictions in (2-6), we believe that selecting values of yt largerhypothesis. Aparl from the restrictions in (2·6), we believe that selecting values of y, larger 
than  is in spirit similar to selecting significance levels less than 50% in testing the hypo-than 11 is in spirit similar to selecting significance levels less than 50% in testing the hypo
thesis that Bt = o.0.thesis that 8, = 

The posterior distribution of (Zj 2m>^m+i) givenm+1 ) given band8 and « is proportional to the products is proporlional to the productThe posterior distribution of (~, ... , zm' V
of (3-2) and (2-8) which can be written asof (3·2) and (2·8) which can be written as 

ft (3-3) (3·3) 



 

wherewhere 

n = n  + 1 + 2j(ym+1 - 1 ) - S (y< -1)1, 

Wm+1 = s+2/f1m+l +zoD~, ~ = 0: (i = I, ... ,m), 

provided that (3-1) is satisfied.provided that (3'1) is satisfied. 
Our problem is to select Vt to maximize (3-3) subject to the restrictions (3*1). If (3-3) isOur problem is to select ~ to maximize (3'3) subject to the restrictions (3'1). If (3'3) is 

maximized by takingmaximized by taking P<~ == Vo then we would use (2-7) to solve for the estimates £t of zi so that~, then we would use (2·7) to solve for the estimates z( of z( so that 
our  estimates of 6i are #((1 — zt). Our estimate of 6t is zero provided our estimate ii is one.our finalfinal estimates of 8( are 0(( I - z(). Our estimate of 8( is zero provided our estimate z( is one. 
This occurs providedThis occurs provided %~ = 'Pfm+1.= m+1. 

We now define g{ byWe now define g( by 

gm+1 m+lI <= (2y(-I)/~ = I, ... ,m). (3-4)9m+i = = *IW?i/Wm+i, g(<7  = (2y,-l)/KJ (i( » - l , . . . , » ) • (3'4) 

If we ignore the restrictions in (3'1) and if the g( are positive, then taking PJ to~ be gtIf we ignore the restrictions in (3-1) and if the gi are positive, then taking to be g( 
for  1, ...,m  + 1 maximizes (3-3). If such Vt satisfysatisfy the restrictions in (3-1) our problem isthe restrictions in (3'1) our problem isfor ii == I, ... ,m+ I maximizes (3'3). If such ~ 

solved. The following theorem gives us  more general solution.solved. The following theorem gives us aa more general solution. 

THEOREM I.  gt  (3-4)  (3-3)  Vto{ to be thebe the isotonicisotonicTHEOREM 1. IfIf thethe g( inin (3·4) areare positive,positive, thenthen (3'3) isis maximizedmaximized byby takingtaking ~ 

regressionregression ofofgg({ withwith weightsweights ~Wfor i{for t I,1,... , m + 1.==  ...,m+1. 

The proof is too long to be included here. For an account of isotonic regression, see BarlowThe proof is too long to be included here. For an account of isotonic regression, see Barlow
 at. (1972, p. 9).etet al. (1972, p. 9). 
The next theorem gives aa formula for computing the isotonic regression.The next theorem gives  formula for computing the isotonic regression. 

THEOREM 2.  % be.  gt  Wtfor i = 1, . . . , m + 1.THEOREM 2. LetLet l{ be thethe isotonicisotonic regressionregression ofof g( withwith weightsweights ~for i = I, ... , m+ 1. ThenThen 

(i = 1, . . . ,m+l) ,Vt~ ==maxminAv(s,t)maxminAv(s,<) (i = 1, ... ,m+1), 
8E;( I;1;i 

wherewhere 
Av (s, t) = (1:grAv(s,t) = (LgrIf,:)/(1:lf,:)Wr)lpWr)

wherewhere bothboth sumssums areare fromfrom rr == ss toto  rr == t.t. 

in Theorem 22 is called aa max-min formula and is given by Barlow etet al.al.The formula for ^ in TheoremThe formula for ~ is called  max-min formula and is given by Barlow 
(1972, p. 19).(1972, p. 19). 

It is rather difficult to make any simple statement as to how many coefficients D( will beI t is rather difficult to make any simple statement as to how many coefficients $t will be 
eliminated by this procedure. If  given coefficient is eliminated, then all coefficients ofeliminated by this procedure. If aa given coefficient is eliminated, then all coefficients of 
higher degree orthonormal polynomials will also be eliminated. As for those coefficients whichhigher degree orthonormal polynomials will also be eliminated. As for those coefficients which 
are left in, the shrinkage factors increase with the degree of the polynomial. Roughly speak-are left in, the shrinkage factors increase with the degree of the polynomial. RougWy speak
ing,  coefficient dt is eliminated provided gt is 'significantly' larger than gm+1. The previousing, aa coefficient D( is eliminated provided g( is 'significantly' larger than gm+l' The previous 
statement is an oversimplification since all gi and their weights WJ must be taken into account.statement is an oversimplification since all g( and their weights ~ must be taken into account. 
For maximum elimination, we would want gm+1 small and all other gt large. As shown in theFor maximum elimination, we would want gm+1 small and all other g( large. As shown in the 
Monte Carlo study in  4, it seems difficult to overeliminate when some elimination is required.Monte Carlo study in §§4, it seems difficult to overeIiminate when some elimination is required. 
In that study gm+1 was essentially zero and excellent results were obtained.In that study gm+l was essentially zero and excellent results were obtained. 

The assumption in Theorem 1 that the gt are positive is met provided thatThe assumption in Theorem I that the g, are positive is met provided that 

m 
~y,<t{n-1+2(m+Ym+1)}' Yi>! (i=I, ... ,m). 
i-Ii-l 

The requirement that Y, >> 1for i = does restrict our ability to expressThe requirement that yi  J for t = I,1,...... ,, mm does restrict our ability to express aa strong priorstrong prior 



opinion that any ẑ  is near zero. However, if we have  very strong prior opinion that ziopinion that any Zi is near zero. However, if we have aa very strong prior opinion that Zi isis 
very near zero, we can simply takevery near zero, we can simply take zZii == 00 as we do with zoo It would seem rather rare thatas we do with z0.  It would seem rather rare that 
Theorem  could not be applied in any practical case.Theorem 11 could not be applied in any practical case. 

By comparing (3·3) to (2·8) we see that the problem of maximizing one is equivalent to 
maximizing the other. In fact, if in (3*3) and (3-4) we take jSm+1 = 00 and the Yi = 11 thethe 

By comparing (3-3) to (2-8) we see that the problem of maximizing one is equivalent to 
maximizing the other. In fact, if in (3·3) and (3·4) we take fJm+1 = oo and the y< =
problems are equivalent.problems are equivalent. 

We now consider the problem of expressing complete vagueness in our prior opinion of 800• 

We note that there is no mathematical difficulty encountered with simply taking zWe note that there is no mathematical difficulty encountered with simply taking Zo0 == ee =—00 
in (3-1), (3-3) and (3-4). An appropriate continuity result justifies the process of taking z0 = 00 

We now consider the problem of expressing complete vagueness in our prior opinion of 0 . 

in (3·1), (3·3) and (3·4). An appropriate continuity result justifies the process of taking Zo = 
when selecting the Vt to maximize (3-3) subject to (3-1). This procedure can be applied towhen selecting the V. to maximize (3·3) subject to (3·1). This procedure can be applied to 
express vagueness for any 6t. For example, if we wanted our estimate to be at least  quad-express vagueness for any 8i • For example, if we wanted our estimate to be at least aa quad

zx Z2 = 0.ratic,ratic, we couldwe could take ztake Zo0 = = Zl = = zz = o. 

4. MONTE CAKLO STUDIESSTUDIES4. MONTE CARLO 

The Monte Carlo study consisted of adding aa N(O,1)1) deviate to aa polynomial P(x).P(x). Two 
observations wereobservations were made at each of the seven pointsmade at each of the seven points xx == 0, + 1, +  and + 3. With these 14 

The Monte Carlo study consisted of adding  N(0,  deviate to  polynomial  Two 
0, ± 1, ± 22 and ± 3. With these 14 

observations the following estimates of  were computed:observations the following estimates of P(x)P(x) were computed: 
(i) Hager  Antle's (1968) lack-of-fit test using  5% level of significance for each  test.(i) Hager && Antle's (1968) lack-of-fit test using aa 5% level of significance for each FF test.
 
(ii) The isotonic regression rule proposed in this paper in which the assumed restrictions
 

onon thethe V.V{werewereTiVt .̂.....~Vm+1.4;Vm+1. The parameters in (3-2) were selected to express as strong an
 
(ii) The isotonic regression rule proposed in this paper in which the assumed restrictions 

~ The parameters in (3·2) were selected to express as strong an 
opinion as possible that the zt were near  while still keeping the gt positive. In factopinion as possible that the Zi were near 11 while still keeping the gi positive. In fact 

Yl = Y2 = YaYz = 1·5, ==  == 20
Y6 2·49999999, == 1, fJ7 00, z0Yi = Yz = 1,1» = 1-S, Y4Yt  YsYo 2·0,> Ye == 2-49999999, Y7y7 1, ft = oo,= Zo == O.0. 

The strange selection for y6 is because, once the others were selected, g1 is positive providedThe strange selection for Y6 is because, once the others were selected, g7 is positive provided 
y6  2-5. This selection of the parameters will almost certainly eliminate the sixth degree termY6 << 2·5. This selection of the parameters will almost certainly eliminate the sixth degree term 
of the polynomial unless the sixth degree  is essentially perfect.of the polynomial unless the sixth degree fitfit is essentially perfect. 

(iii) This is the same as (ii) except that null values for the parameters were used. That is,(iii) This is the same as (ii) except that null values for the parameters were used. That is, 
allall Yiyt == 1, jS7 == 00oo and zand Zo0 == 0. This expresses  vague prior opinion on the zt.1, fJ7 o. This expresses aa vague prior opinion on the zi. 

Thus the rules (ii) and (iii) provide two extreme prior opinions on the Zi.Thus the rules (ii) and (iii) provide two extreme prior opinions on the z{. 
To compare the accuracy of each estimate p(x) of P(x),P(x), the loss function L(P,P) was used 

where  = \${P(x)i f{P(x)-P(x)}2dx and the limits on the integral were 3 and 3. Hence, for 
To compare the accuracy of each estimate P{x) of  the loss function L[P, P) was used 

where L(P,P)L(P,P) = — P(x)Ydx and the limits on the integral were -— 3 and 3. Hence, for 
each estimate,  loss was observed. The process was repeated for  total of 121 observationseach estimate, aa loss was observed. The process was repeated for aa total of 121 observations 
of the loss for each rule. Also observed was the number of times in the 121 trials each ruleof the loss for each rule. Also observed was the number of times in the 121 trials each rule 
yielded the correct degree of P{x).yielded the correct degree of P(x). 

The entire process was repeated for nine different polynomials P(x)P(x) which ranged fromThe entire process was repeated for nine different polynomials  which ranged from 
degree two to degree four. For each rule it was assumed that the degree of the polynomialdegree two to degree four. For each rule it was assumed that the degree of the polynomial 
was known to be between one and six inclusive. The results are summarized in Table 1.was known to be between one and six inclusive. The results are summarized in Table 1. 
For example, in case  the coefficient of the orthonormal polynomial of degree zero was 4,For example, in case 33 the coefficient of the orthonormal polynomial of degree zero was 4, 
of degree one was 10, of degree two was 20 and zero for the others. Thus case  dealt withof degree one was 10, of degree two was 20 and zero for the othets. Thus case 33 dealt with aa 
quadratic polynomial. The smallest average loss was obtained by the rule (ii) which wasquadratic polynomial. The smallest average loss was obtained by the rule (ii) which was 
0-1874. The lack-of-fit rule yielded the correct degree 116 times in 121 trials. Although not0·1874. The lack-of-fit rule yielded the correct degree 116 times in 121 trials. Although not 
shown in the table, the average loss for the least squares estimator of the full model,  sixthshown in the table, the average loss for the least squares estimator of the full model, aa sixth 
degree polynomial, was also computed and was 0-8069 for every case.degree polynomial, was also computed and was 0·8069 for every case. 

One can see that in terms of loss, (ii) did better than lack-of-fit in every case. In terms ofOne can see that in terms of loss, (ii) did better than lack-of-fit in every case. In terms of 
degree, (ii) beats lack-of-fit in  out of the  cases. Method (iii) beats lack-of-fit indegree, (ii) beats lack-of-fit in 66 out of the 99 cases. Method (iii) beats lack-of-fit in 44 
cases in terms of degree and in  cases in terms of loss.cases in terms of degree and in 44 cases in terms of 1088. 



The fivefive cases numbered 3, 4, 5, 7, 99 have coefficients that appear rather unlikely on theThe  cases numbered 3, 4, 5, 7,  have coefficients that appear rather unlikely on the 
basis of the prior assumptions for the rules (ii) and (iii). Of those, only in two cases didbasis of the prior assumptions for the rules (ii) and (iii). Of those, only in two cases did 
lack-of-fit outdo rule (ii) in terms of degree.lack-of-fit outdo rule (ii) in terms of degree. 

Table 1. M ante Garlo re8ult8Table 1. Movie Carlo results 

Number of timesN u m b e r of tunes 
correct degree AverageAverage lossloss xx 10'correct degree 10* 

Case ActualActual 00 (ii) (iii) (i) (iii)Case (i) (iii) (i) (ii) (iii)(i) (ii) (ii)
 

11 63 21 2592 2110 3370 
15,15, 0-5, 005, 0, 0, 0,0'5, 0,05, 0, 0, 0, 00 11 30 12 1683 1320 2484 
5, 2,6, 2, 1, 0, 0, 0,1,0,0, 0, 00 66 63 21 2592 2110 3370 

22 30 12 1683 1320 2484 
33 4,4, 10, 20, 0, 0, 0,10, 20, 0, 0, 0, 00 116116 95 3636 20672067 18741874 330695 3306 
44 10, 10, -- 20, 30, 0, 0, 00 117 109 47 2655 2392 3932 
55 10, 0, 0, 3, 0, 0, 68 108108 47 6300 2738 3999 

10, 10,  20, 30, 0, 0, 117 109 47 2655 2392 3932 
10, 0, 0, 3, 0, 0, 00 68 47 6300 2738 3999 

66 10, 1, 2, - 2 ,- 0,0, 35 100100 47 7102 3371 418810, I, 2, 2, 0, 0, 00 35 47 7102 3371 4188 
77 1, 1, 2, 3, 4, 0, 108 116116 62 5330 3643 4691I, I, 2, 3, 4, 0,  00 108 62 5330 3643 4691 

1,  5,5, 4,1,  4, 3, 2, 0,3, 2, 0,  00 444 93 59 9075 5109 509088 4 93 59 9075 5109 5090 
99 I,1, 50, 25, 50, 10, 0,50, 25, 50, 10, 0, 00 116116 116 6262 38103810 32073207 4759116 4759 

(i) Lack-of-fit; (ii) and (iii), isotonic regression rules.(i) Lack-of-fit; (ii) and (iii), isotonic regression rules. 

The rules (ii) and (iii) might have been improved by using something other than vagueThe rules (ii) and (iii) might have been improved by using something other than vague 
knowledge onCT~2or Vm+1. Since there were repeat measurements available, we could sub-knowledge on 0'-2 or Vm+l' Since there were repeat measurements available, .we could sub
stitute for the error sum of squares s, the sum of squares for pure error (Draper  Smith,stitute for the error sum of squares 8, the sum of squares for pure error (Draper && Smith, 
1966, p. 26). This may improve the rules (ii) and (iii), since gm+i as given in (3-4) is used as an1966, p. 26). This may improve the rules (ii) and (iii), since gm+l as given in (3'4) is used as an 
initial estimate for m+1 == 0'-2.a~ These ideas have not been tested in Monte Carlo studies.initial estimate for VV 2. These ideas have not been tested in Monte Carlo studies.m+1 

5.  NUMERICAL EXAMPLE5. AA NUMERICAL EXAMPLE 

As aa particular example we consider one of the results from case 66 of the Monte Carlo study.As  particular example we consider one of the results from case  of the Monte Carlo study. 
The computations required to compute the estimate of 6 using rule (ii), as described in §4,The computations required to compute the estimate of 8 using rule (ii), as described in §4, 

are given in Table 2. The table is composed of two parts. In the top part the index on theare given in Table 2. The table is composed of two parts. In the top part the index on the 
variables runs  zero to six. In the bottom part, the index on the variables runs  onevariables runs fromfrom zero to six. In the bottom part, the index on the variables runs fromfrom one 
to seven. For example, the estimate of 62 givengiven by rule (ii) is 2-5259 while the value ofby rule (ii) is 2·5259 while the value of ~% isisto seven. For example, the estimate of 82 

00973.0·0973. 

Table 2.  eocamplefor results  6 of Table 1,Table 2. NumericalNumerical example for result8 fromfrom CaseCase 6 of TMle I, 

applicationapplication ofof metlwd (ii)(ii)method 
i=2 i=4 i=5i=Oi - 0 ii== 11 i = 2 i=3i = 3 i = 4 i = 5 ii== 66 

Actual O( 22 2 00 00 
Least squares St 9·84229-8422 1·36191-3619 2-9031 -2-1913 1·0629 -0-5344 
Actual 0̂  1010 11 -2— 00 

2·9031 -2,1913 1-0629 -0,5344 0-2356Least squares ~( 0·2356 
Z( 00 01299 0·129901299 0-2782 11 11 110·1299 0·2782
 

Rule (ii) 1-1850 2-5259 -1-5816 00
Rule (ii) O(8, 9'84229-8422 1-1850 2'5259 -1-5816 00 00 

= i=5i  77it - 1= 1 ii == 22 ii== 33 i=4i  4 = 5 ii== 66 ii == 

10-4187 
g( 0-2083 5-2525 19 xx 10-10 

3·70963-7096 16'855616-8556 9·60349-6034 2·25962-2596 0'57120-5712 0·111001110 10·4187~ 
9i 0·26960-2696 0·059300593 0·2083 1·32771-3277 5·2525 36·0380360380 19  10"10 

P; 00973 00973 0·2083 0-7485 0·7485 0-7485 0·74850·0973 0·0973 0-2083 0'7485 0-7485 0·7485 0-7485 

The value We is the residual sum of squares for the full model or s. For  = I,1, ......,l,W, 7, ~i == 2e:.2§\.The value Jfa is the residual sum of squares for the full model or 8. For ii = 

This is different  formula (3-3). The doubling of the weights is  direct result of makingThis is different fromfrom formula (3'3). The doubling of the weights is aa direct result of making 
two observations at each point instead of one. Thus, the assumption on S{ in (2-1) must betwo observations at each point instead of one. Thus, the assumption on 0, in (2·1) must be 
modified by replacing a2 with \a2. Similar modifications must be made for those parts of themodified by replacing 0'2 with !O'2• Similar modifications must be made for those parts of the 
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remaining formulae in which o-2 appears through an assumption regarding the f}{. However,remaining formulae in which 002 appears through an assumption regarding the (J,. However, 
where o-2 appears as  direct result of the assumptions on s, the formula should be left unwhere 0'2 appears as aa direct result of the assumptions on 8, the formula should be left un
changed. For example, in (2-4), we replace a by a/̂ /2 when and only when it occurs after thechanged. For example, in (2'4), we replace 0' by O'N2 when and only when it occurs after the 
product sign. The definitions of the zi are changed to zi 0'2/(002^/(o2 ++20':), but (2'7) would be leftproduct sign. The definitions of the z, are changed to z, == 2a2), but (2-7) would be left 
as it is.as it is. 

The actual computation of the ^ from the gi and Wt can be done in under  minutes withThe actual computation of the ~ from the g, and ~ can be done in under fivefive minutes with 
hand calculator using the minimum violator algorithm of Barlow  (1972, p. 19).aa hand calculator using the minimum violator algorithm of Barlow etet al.al. (1972, p. 19). 

The paper is based primarily on my Ph.D. thesis supervised by Professor H. D. Brunk atThe paper is based primarily on my Ph.D. thesis supervised by Professor H. D. Brunk at 
Oregon State University.  thank Professor Brunk and the referees for their invaluableOregon State University. II thank Professor Brunk and the referees for their invaluable 
assistance with the paper.assistance with the paper. 
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