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Abstract 

Theory and experiment for dc and small-signal electrical modulation of an injection-locked quantum-well (QW) Fabry-Perot laser are 
presented. Our experiment is realized by performing side-mode injection locking of a multiple-quantum-well (MQW) InGaAsP Fabry-
Perot (FP) laser, which has the advantage of optical wavelength conversion. We first measure the dc characteristics and optical spectra of 
an injection-locked laser to define its locking range and linewidth enhancement factor. We then show experimentally that the bandwidth 
of an injection-locked semiconductor laser is 10.5 GHz, which is around twice the free-running electrical modulation bandwidth 
(5.3 GHz). The relaxation frequency of the injection-locked laser can be 3.5 times greater than the free-running value. Our theoretical 
model includes mode competition, gain saturation, low frequency roll-off, and optical confinement factor of the QW structure. The the
ory shows good agreement with our experimental results. We point out that the small-signal modulation of injection-locked lasers still 
suffers severely from low frequency roll-off, which comes from the carrier transport effect and parasitic effect of the bias circuit. If we can 
reduce those effects, the modulation bandwidth can be further increased to 15 GHz, which is around 3 times of the free-running value. 
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1. Introduction 

Recently, an intensive work has been conducted to 
investigate the injection locking in photonic devices and 
systems. This is because that by using the injection-locking 
technique, variety of ultra-fast optical components or sys
tems can be designed, such as simultaneous repolarization 
polarization-scrambled wavelength channels [1], error-free 
detection of OC-192 DPSK signal [2], all-optical modula
tion format conversion and multicasting [3], optical fre
quency modulation and intensity modulation suppression 
[4], injection locking of VCSELs [5], 35-GHz intrinsic 
bandwidth for direct modulation in 1.3 lm semiconductor 
lasers [6], an all-optical switch using a multi-wavelength 
mutual injection-locked laser diode [7], MEMs injection-
locked laser [8], and all-optical packet demultiplexing using 
a multi-wavelength mutual injection-locked laser diode [9]. 

An injection-locked laser system contains two semicon
ductor lasers. The light from a pump laser is injected into 
the test laser oscillating above threshold, and the injected 
radiation competes with the spontaneous emission of the 
test laser being amplified. If the optical frequency of the 
injected light is close to the eigenfrequency of the unper
turbed laser, the test laser will adjust its frequency and 
coherence properties to that of the injected light. When a 
complete locked state is reached, all of the power of the 
test laser is emitted at the optical frequency of the master 
laser. This phenomenon is known as injection locking. 
Injection locking is a complex phenomenon because of 



the competition between the amplified spontaneous emis
sions and the amplified pump laser signal as well as the 
beating of these two fields. The change in gain by injection 
leads to a change of refractive index with carrier density. 
The inclusion of the gain change mechanism increases the 
complexity of laser behavior. 

The electrical modulation of injection-locked lasers is 
one of the hottest topic and attracted considerable attention 
[5,6,10]. Because it is predicted that the modulation band
width of strongly injection-locked semiconductor lasers 
can be significantly improved compared to free-running 
electrical modulation [11,12]. The modulation bandwidth 
can be 2–3 times of the free-running value. This is very 
attractive since it may allow one to achieve large modula
tion bandwidths with conventional semiconductor lasers 
at room temperature, avoiding the use of advanced devices 
and the need for complicated fabrication techniques. Fur
thermore injection locking in semiconductor lasers is an 
attractive method to ensure single mode operation [13], 
reduce the linewidth of a free-running laser [14], and 
eliminate mode partition noise [15], mode hopping, and fre
quency chirp from modulated lasers [16]. The injection-
locking technique may also prevent spurious feedback 
effects that are random and difficult to avoid and can 
strongly disturb the behavior of the laser. Furthermore, 
injection locking in semiconductor lasers is a promising 
method to generate microwave signals and synchronize 
one or more free-running lasers to a pump laser [17]. 

In this study, we report experiment results and theoret
ical calculations of the small-signal modulations of a side-
mode injection-locked Fabry-Perot (FP) laser. Our test 
laser is a compressively-strained multi-quantum-well 
(MQW) InGaAsP semiconductor laser. The side-mode 
injection locking of FP lasers has the advantage of multi
mode selection over that of a single mode DFB laser, which 
is useful for wavelength division multiplexing (WDM) 
channel selection. In this way, the modulation signal at 
free-running frequency can be switched optically to differ
ent wavelength channels [18]. We first measure the dc char
acteristics of the injection-locked laser and obtain the 
linewidth enhancement factor of the test laser, which is in 
agreement with a measurement using an independent 
method based on amplified spontaneous emission spectros
copy [19]. We show that by injection locking the chirp is 
reduced and the side-mode suppression ratio of the FP 
laser improves. We also show the improvement of 3 dB 
modulation bandwidth of an injection-locked FP laser, 
which is twice of its free-running value. The relaxation fre
quency is 3.5 times of its free-running value. We also point 
out that the small-signal modulation of injection-locked 
lasers still suffers low frequency roll-off, which comes from 
the carrier transport effect and parasitic effect of the bias 
circuit. We improve the existing small-signal model for 
injection locking by adding the optical confinement factor 
of separate-confinement-heterostructure (SCH) QW lasers, 
nonlinear gain saturation of the test laser due to the master 
laser, and low frequency roll-off due to carrier transport 
and parasitic effects. Our model includes all relevant phe
nomena, either observed experimentally or predicted theo
retically in weak to moderate injection regimes and shows 
good agreement with our experimental results. This paper 
is organized as follows: in Section 2, the theory of dc and 
the small-signal electrical modulation of injection-locked 
lasers is presented. In Section 3, the experimental setup is 
described, and experimental results are shown and com
pared with theory. The conclusion is presented in Section 4. 

2. Theory for electrical modulation of injection-locked 
quantum-well lasers 

We consider two semiconductor lasers with a small dif
ference in resonant wavelength (or frequency). The single-
mode pump laser injects light into the other laser, referred 
to as the test laser. An optical isolator blocks the reverse 
light path. The locking occurs within a certain frequency 
locking range defined by the injection level and the ampli
tude-phase coupling coefficient. It is assumed that the 
effects of spatial hole burning in a FP laser are negligible. 
The theoretical analysis describing the injection-locked test 
laser is based on the rate equations, shown as below. We 
also need to consider the possible excitation of the neigh
boring longitudinal mode with different injections. This 
can be accounted for by a rate equation for the photon 
density Su in the side modes or the group of side modes, 
which represents the unlocked photon density. Therefore, 
the total photon density is S = Su + Sl, where Sl is the pho
ton density in the locked mode. 

dSlðtÞ ¼ ClvgSlðtÞGl½1� elSlðtÞ � euSuðtÞ � eiSi� 

¼ Cu SuðtÞGu½1� elSlðtÞ � euSuðtÞ � eiSi� 

dt 

dSuðtÞ 

� Sl þ 2kc SlðtÞSi cosð/lðtÞ � /iÞ spl 

pffiffiffiffiffiffiffiffi ffiffiffiffiffi 
ð1Þ 

vg
dt 

SuðtÞ � ð2Þ 
spu sffiffiffiffiffiffiffiffi ffi 

d/lðtÞ Si¼ �kc sinð/lðtÞ � /iÞ � ðxi � x0Þ 
dt SlðtÞ 

a þ Clvgg0½NðtÞ � N 0�½1� elSlðtÞ � euSuðtÞ � eiSi� 
2 l

ð3Þ 
dNðtÞ IðtÞ NðtÞ ¼ � 

dt eV sn 

� vgSlðtÞGl½1� elSlðtÞ � euSuðtÞ � eiSi� 
� vgSuðtÞGu1� elSlðtÞ � euSuðtÞ � eiSi� ð4Þ 

where Si is injected photon density into the test laser cavity 
from the master laser, /l(t) and /i(t) are the phase of the 
locked mode and injected laser field, N(t) is the carrier 
density, xi is the master laser frequency, x0 is the cavity 
resonance frequency of the test laser, a is the linewidth 
enhancement factor, kc ¼ c is the coupling coefficient, 

2ngL 
ng is the group index of the test laser, L is the test laser 
cavity length, the I(t) is the test laser current, V is the 



 

volume of the active region, e is the unit charge of the car
rier, sn is the carrier lifetime, vg is the group velocity, spl 

and spu are the photon lifetime for locked mode and un
locked mode, and Gl ¼ gl0 þ g0ðNðtÞ � N 0Þ and Gu 

g0 
l ¼ gu0þ 

u ðNðtÞ � N 0Þ are the gain of the locked and unlocked la
ser, and g0 l and g0 u are the differential gain. For the small-
signal analysis, the quantity N(t) � N0 will equal the 
small-signal change in carrier density, denoted by n. The 
spontaneous emission term has been neglected because 
the test laser is biased above threshold. We also include 
both nonlinear gain saturation coefficients, el and eu, as
an improvement of a previous model [13,20] for injection 
locking in semiconductor QW lasers. Our contributions 
are listed bellow. First, we include, the optical confinement 
factor C, which is an important parameter for SCH QW la-
ser structures, in the rate equations. The factor is well-known 
to be important for separate confinement quantum-well 
structures, however, it is usually ignored in the literature 
on injection locking. Second, we include the nonlinear gain 
saturation of the test laser due to the injected photon den
sity ei and all optical modes in the cavity, which has been 
used in earlier studies [19,21] on high-speed lasers where 
the gain of the test laser light is suppressed due to the pres
ence for the injected light. This is an important phenome
non if we inject light in the laser gain region and it 
cannot be neglected. As we will show later, inclusion of C 
and ei is important to extra consistent parameters for the 
gain and differential gain for quantum-well lasers. 

If no light is injected into the test laser (free-running 
Si = 0), we can see from Eqs. (1)–(4) that only the photon 
density and carrier density are coupled. The phase term is 
not necessary for solving the photon density and carrier 
density. However in an injection-locked laser, whose 
injected photon density Si is non-zero, there is an addi
tional coupling of the magnitude and phase of photon field 
and carrier density through externally injected light from 
the master laser. This is a unique and important character
istic of injection-locked semiconductor lasers called mutual 
amplitude and phase coupling. 

By solving for the steady-state solution of the rate equa
tions, we obtain the expression of the locking bandwidth, 
which is given as a function of the injection rate and the 
phase difference D/ = / � /i [22] rffiffiffiffi h ic Si a 
Dx ¼ xi � x0 ¼ sinðD/Þ �  cosðD/Þ ð5Þ 

2ngL S 2 

There are two ways by which a laser field oscillating at 
cavity resonance frequency x0 in the absence of injection 
can be forced instead to oscillate at the frequency of the 
master laser xi. The first mechanism, which appears in 
every locking system, is to have the injected field add an 
out-of-phase component to the lasing mode of the test 
laser. This alters the phase of the test laser field and 
changes the frequency of the test laser field. The first term 
on the right-hand side of Eq. (5) represents this frequency 
shift. The second way to have the test laser field oscillate at 
xi is to alter the cavity resonance frequency x0 by the 
injected field changing the gain required to maintain the 
steady-state test laser intensity. The change in gain is 
accompanied by a shift in cavity resonance frequency. This 
is an extra term peculiar to semiconductor lasers arising 
from the refractive index dependence on carrier density. 
The second term of the expression (5) accounts for this cav
ity frequency shift due to the refractive index dependence 
on gain change mechanism [22], characterized by the line-
width enhancement factor a. 

The injection-locking range is determined by both the 
detuning (Dx = xi � x0) and the injection power. Using 
Eq. (5) and the condition that the injection locking is a con
structive interaction with regard to the power balance, we 
obtain an asymmetric locking bandwidth [22] rffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffi rffiffiffiffi 

c Si c SiDxmin ¼ �  ð1þ a2Þ < Dx < � ¼ Dxmax
2ngL S 2ngL S 

ð6Þ 

Outside this region is the unlocked region, where the 
injection level is too low or the detuning is too high to 
reach locking condition. A detailed stability analysis can 
be found in [23], which also calculates a self-pulsation zone 
(a Hopf bifurcation), chaotic zone, and a coherence col
lapse zone. Here, we focus on the stable locking zone. 
We carefully control our experiment to make sure that 
the injected power is not strong enough to cause self-
pulsation. 

We also derive the small-signal modulation response of 
an injection-locked laser from rate equations, Eqs. (1)–(4). 
The changes in the lasing mode photon densities and carrier 
density due to small-signal modulation are assumed to 
be much smaller than the steady-state value of the photon 
and carrier densities. To solve for the small-signal modula
tion response, the expressions for carrier and photon densi
ties are 

NðtÞ ¼ N 0 þ nðxÞejxt ð7Þ 
SlðtÞ ¼ Sl0 þ slðxÞejxt ð8Þ 
SuðtÞ ¼ Su0 þ suðxÞejxt ð9Þ 
/lðtÞ ¼ /l0 þ /lðxÞejxt ð10Þ 
IðtÞ ¼ I0 þ iðxÞejxt ð11Þ 

In our notation, capital letters stand for steady-state 
values. Taylor’s series expansion is used to simplify the 
small-signal form of the rate equations. Terms containing 
products of the steady-state and small-signal components 
are linearized, and only the first-order terms are retained. 
The small-signal rate equations can be expressed as 
follows: 

2 32 3 2 3 
a11 � jx a12 a13 a14 slðxÞ 0 6 76 7 6 7a21 a22 � jx a23 a24 suðxÞ 0 6 76 7 6 7 6 76 7 ¼ 6 xÞ7 a31 a32 a33 � jx a34 5 xÞ 5 54 4 nð 4 � ið

eV 

a41 a42 a43 a44 � jx /ðxÞ 0 

ð12Þ 



where 

1 
a11 ¼ �Clvggl0ð2elSl0 þ euSu0 þ eiSi � 1Þ �  

spl rffiffiffiffiffiffi 
þ kc	 

Si 
cosð/l0 � /iÞSl0 

a12 ¼ �Clvggl0euSl0 

0a13 ¼ Clvgg Sl0ð1� elSl0 � euSu0 � eiSiÞlpffiffiffi ffiffiffiffiffiffiffi 
a14 ¼ �2kc Sl0Si sinð/l0 � /iÞ 
a21 ¼ �Cuvggu0elSu0 

1 
a22 ¼ �Cuvggu0ðelSl0 þ 2euSu0 þ eiSi � 1Þ �  

spu 

0a23 ¼ Cuvgg Su0ð1� elSl0 � euSu0 � eiSiÞ u 

a24 ¼ 0 

a31 ¼ vggl0ð2elSl0 þ euSu0 þ eiSi � 1Þ 
þ vggu0elSu0 

a32 ¼ vggu0ðelSl0 þ 2euSu0 þ eiSi � 1Þ 
þ vggl0euSl0 

1 0a33 ¼ �  � vgg Sl0ð1� elSl0 � euSu0 � eiSiÞlsn 

g0� vg u Su0ð1� elSl0 � euSu0 � eiSiÞ 
a34 ¼ 0 r ffiffiffiffiffiffi 
a41 ¼ 

kc 

2Sl0 

Si 

Sl0 

sinð/l0 � /iÞ 

a42 ¼ 0 

a 0a43 ¼ Clvgg ð1� elSl0 � euSu0 � eiSiÞ 
2	 lrffiffiffiffiffiffi 

Si a44 ¼ �kc cosð/l0 � /iÞSl0 

After eliminating the carrier density n, the phase term /l 

and solving for S = Sl(x + Su(x), the intrinsic modulation 
response is obtained jMint (x)j2 = j[Sl(x) +  Su(x)]/i(x)j2. It  
is very important to note that the electrical modulation is 
an extrinsic modulation, which includes parasitic and 
transport effects. Parasitic effects come from the bias circuit 
and the shunting of modulation current around the active 
layer, which will cause a low frequency roll-off of modula
tion response. At the same time, the carriers are injected 
from the outer edge of SCH region. The injected carriers 
diffuse through the SCH region and are captured into the 
quantum wells before recombining by stimulated emission 
processes. In the separate confinement structure QW lasers, 
the carrier diffusion, capture, and escape into and from 
QWs are usually defined to characterize the carrier trans
port processes [23] which give a parasitic-like roll-off and 
are indistinguishable from parasitic effects. In quantum-
well lasers, the carrier transport time is an important limit 
for MQW laser modulation bandwidth. To complete the 
� � 

theory, the final modulation response of injection-locked 
lasers is 

2 1 2jMðxÞj ¼ jM intðxÞj
1þ ðx=xpÞ2 � �2

1 �S lðxÞ þ SuðxÞ� ¼	 ð13Þ
2 � �1þ ðx=xpÞ iðxÞ 

where xp = 2pfp is the low frequency roll-off due to the 
transport effect and parasitic effect. 

3. Experimental setup and results 

3.1. Experimental setup 

Electrical modulation of an injection-locked laser is per
formed on an InGaAsP Fabry-Perot laser, which is used as 
the test laser. The test laser threshold is 16 mA at 25 �C, 
and its active region has seven �0.9% compressively-
strained quantum wells with an 80 Å well width. The 
detailed composition of the undoped active region is 
described in previous work as sample A [24]. The experi
mental setup for small-signal modulation of injection-
locked lasers is shown in Fig. 1. The dc injection signal 
from a tunable pump laser passes through an erbium-
doped fiber optical amplifier (EDFA) which is used to con
trol the injection power level. A tunable 3-nm bandwidth 
optical filter is used to remove excess signals on the side 
modes. The injection level is monitored by an optical power 
meter through an 1–99% optical coupler. The HP 8510 net
work analyzer provides a small signal at frequencies swept 
from 500 MHz to 18 GHz, which is coupled to the test laser 
electrodes through a high speed probe. The small-signal 
response is converted to an electrical signal using a photo
detector and is increased by an 18 dB-gain RF amplifier 
before entering the network analyzer, which measures the 
magnitude of the modulation response jM(x)j2. The data 
has been averaged to reduce noise. An optical isolator is 
used to prevent feedback. An optical spectrum analyzer 
(OSA) is also used to measure the optical spectra of the test 
laser and master laser. 

3.2. DC analysis 

We first measure the lasing spectra of the pump laser 
and the injection-locked quantum-well test laser. Fig. 2 is 
the optical power spectrum of (a) the pump laser with 
3.96 mW output power, (b) the free-running (dashed line) 
and injection-locked (solid line) test laser at 25 mA bias, 
and (c) the free-running (dashed line) and unlocked (solid 
line) test laser at 80 mA bias. The injection power in this 
paper represents the pump laser power measured before 
being coupled into the test laser, which is used as a stan
dard for comparison. Fig. 2(a) shows that the pump laser 
is a tunable laser source emitting at 1557.45 nm, which is 
close to the fifth side-mode on the longer wavelength side 
of the lasing mode of the test laser biased at 25 mA. In 
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Fig. 1. The experimental setup for the small-signal modulation of injection-locked semiconductor lasers. The master laser is a tunable laser source. The 
test laser is an InGaAsP quantum-well laser, which can be directly modulated by current. 
Fig. 2(b), the dashed line shows the laser emission spectrum 
of the test laser (biased at 25 mA, 25 �C) with the main 
peak wavelength at 1551.2 nm. This is a typical FP laser 
spectrum, and the side-mode suppression ratio (SMSR) 
of the laser is around 20 dB. When the external pump laser 
light is injected into the test laser biased above threshold, 
the injected light competes with the spontaneous emission 
of the laser for amplification. When the external light is 
strong enough and close to the eigenfrequency of the test 
laser, it is amplified since there is gain available. At the 
same time it saturates the gain of the other modes and 
extinguishes all the other free-running modes. Once a per
fect locking state is reached, all of the power of the test 
laser is emitted at the optical frequency of the pump laser, 
as shown by the solid line in Fig. 2(b). Injection locking 
greatly improves the SMSR of the test laser and shifts 
the lasing wavelength from 1551.2 to 1557.45 nm. This 
side-mode injection locking of a FP laser has the advantage 
of mode selection over that of a single-mode DFB laser. 
This inter-modal injection locking can switch the informa
tion from the free-running mode to any side mode as long 
as the injection-locking condition is satisfied, and can be 
used for optical wavelength conversion in wavelength divi
sion multiplexing (WDM) channel selection. In this way, 
the modulation signal at the free-running lasing wavelength 
can be switched optically to different wavelength channels 
[18]. When we increase the dc bias of the test laser, the 
wavelength of the test laser shifts from 1557.28 nm 
(25 mA) to 1557.75 nm (80 mA). The detuning between 
the two lasers changes from �20.89 GHz to +37.08 GHz, 
which changes the required power for injection locking. 
For example, if we inject the same injection signal into 
the test laser biased at a higher current of 80 mA, the 
injected power is not strong enough to lock the test laser. 
We obtain unlocked test laser spectrum under injection, 
shown as the solid line in Fig. 2(c). The test laser is in multi
mode operation. We can also see the four-wave mixing 
peaks at several side modes. The resonant frequencies are 
not shifted by the external signal. The inability to lock 
the test laser is mainly because the injected power is smaller 
than the minimum required locking power at that de-
tuning. The side-mode suppression is only the result of 
injection locking, which is determined by the relative inten
sity of the injected signal and the test signal under locking 
condition. 

In Fig. 3(a), the wavelength of the test laser output ver
sus the test laser bias current with (circles) and without 
(crosses) a 2.79 mW constant injection power is shown. 
Without injection, the test laser wavelength mode-hops as 
a function of current and is detrimental for modulation. 
The frequency chirp is also an important drawback under 
modulation. If we bias the test laser below 65 mA and 
injection lock the test laser, the output wavelength is fixed 
by the master laser regardless of its small-signal current 
variation. The electrical modulation of this injection-
locked laser system has the advantage of low chirp. 
Depending on the injection level and laser frequencies, 
the master field saturates gain more or less strongly. There
fore, it is not necessary that the two frequencies be close 
together to achieve synchronization, but then the locking 
may not be complete. This means that, if the injection level 
is not high enough to saturate the gain and to extinguish all 
the free-running modes, the energy is distributed among 
the free-running and locked modes. In the case, the locking 
is incomplete [22]. This is a unique characteristic of FP 
lasers. There is no incomplete locking in DFB lasers 
because the side mode suppression ratio of DFB lasers is 
much higher than FP lasers. If we change the test dc bias, 
we shift the oscillation frequency as well as increase the 
power of the test laser. A higher injection power is required 
to completely lock the laser. If we keep a constant injection 
level, we will start from a well-locked range to an incom
plete locked range and finally to the unlocked regime. This 
is reflected in the test laser SMSR, which changes with the 
test laser bias, shown in Fig. 3(b). At low bias current 
(below 65 mA), the SMSR is improved by injection locking. 
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Fig. 3. Measured results for an injection-locked FP laser. (a) Test laser 
wavelength versus bias current. (b) Side-mode suppression ratio versus 
bias current for the free-running mode (crosses) and the 2.97 mW injection 
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Fig. 2. Measured optical spectrum of (a) the test laser, (b) the test laser 
without injection (dashed line) and with injection (solid line) at 25 mA 
bias, (c) the test laser without injection (dashed line) and with injection 
(solid line) at 80 mA bias. The solid line in (b) is the injection-locked and 
(c) is unlocked test laser. 

detuning for a fixed test laser bias of 30 mA at 25 �C. 
When the dc bias of the test laser increases, the SMSR 
decreases from 47 dB (locked) to 5 dB (unlocked). We can 
see a sudden 20 dB drop of SMSR between 65 mA and 
70 mA, which represents the boundary of locking and 
unlocking range. In summary, the overall locking range of 
a FP semiconductor laser is determined by both frequency 
detuning and the external injection power at a fixed test 
laser bias, shown in Fig. 3(c). From Eq. (5) and the two 
slopes at the boundaries of the locking range in Fig. 3(c), 
we can extract the linewidth enhancement factor of the test r ffiffiffiffiffiffiffiffiffiffiffiffiffi ffiffiffiffiffiffiffiffiffiffiffiffi � �2 

Dxminlaser, a ¼ � 1 ¼ 1:8, which is in agreement with Dxmax 
our previous independent measurement based on amplified 
spontaneous emission spectroscopy [19]. We will use this 
value in our theoretical calculation of the modulation 
response. 
3.3. Small-signal electrical modulation of injection-locked 
FP lasers 

The small-signal amplitude-modulation response of the 
injection-locked test signal is measured when a dc master 
laser signal is injected into the test laser biased above the 
threshold with small-signal modulation. Fig. 4 shows the 
modulation response of the injection-locked test laser 
under a constant test laser bias I = 30 mA at different injec
tion powers (0, 0.34, 0.65, 1.32, and 2.79 mW). The power 
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of the master laser is measured before it is injected into the 
test laser. Our small-signal modulation data was taken at 
different times from the dc data; thus, the coupling of the 
injected power into the test laser cavity is slightly different 
from that of the dc experiment. At 30 mA laser bias, we 
measure the optical spectra of the pump laser and the test 
laser. The frequency detuning is calculated from the differ
ence of the lasing wavelength, which is �15.3 GHz and will 
be used for our modulation response calculation. The 
pump laser is offset at negative frequencies with respect 
to the free-running test laser to realize a stable locked con
figuration of the test laser at higher injection levels. The 
3 dB bandwidth of injection-locked laser is 10.5 GHz at 
30 mA, which is twice the free-running laser value 
(5.3 GHz). Our data also show that the relaxation fre
quency of the free-running test laser at 30 mA bias current 
is 4 GHz. The relaxation frequency increases with increas
ing injection power and reaches 14 GHz at an injection 
power around 2.79 mW, which is about 3.5 times greater 
than the free-running value (4 GHz). Also at higher laser 
bias (above 40 mA), the free-running FP laser is in multi
mode operation, and its SMSR is below 10 dB as shown 
in Fig. 3(b). The injected signal reduces more unwanted 
fluctuations and feedback, more stimulated emission than 
random spontaneous emission occurs, and enhances the 
peaks. For an injection-locked FP laser, the total photon 
number in the test laser cavity increases very little under 
injection, which is only about several percent at high bias 
current. This means the improvement of relaxation fre
quency is not from the dramatic increase of the total power 
of the test laser. With external optical injection, the cavity 
gain is reduced to compensate the increase of the lasing 
mode photon density to realize the steady-state condition. 
The decrease in gain due to the optical injection brings 
about a decrease in the carrier number and spontaneous 
emission rate. For injection locking laser system, the pho
ton density of the test laser is coupled mutually with its 
phase, which enhances the bandwidth. Note that this mod
ulation method still cannot remove transport effects of QW 
structures and parasitic effect of the bias circuit. As shown 
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Fig. 4. Measured small-signal modulation response of the injection-locked 
test laser with a fixed test laser bias of 30 mA and injection powers of 0, 
0.34, 0.65, 1.32, and 2.79 mW. 
in Fig. 4, there is a severe drop-off of the modulation 
response at low frequencies. If the laser design can be 
improved to limit the transport and parasitic effects, injec
tion locking can increase the modulation bandwidth to 
three times its free-running value. 

To accurately model the modulation response, we 
include the low frequency roll-off fp = 7 GHz into the 
intrinsic response, as shown in Eq. (13). The value of the 
low frequency roll-off is extracted by comparing the electri
cal modulation and optical absorption modulation of the 
test laser [25]. Our theoretical calculation results are shown 
in Fig. 5(a) for the test bias current of 30 mA. We assume 
the total photon density in the test laser is constant 
S0 = 3.6 · 1015 cm �3 for 30 mA. The injected photon num
ber varies from zero (free-running) to Si = 1.2 · 1012 cm �3 

and is linearly proportional to the injection power. The 
detunings used in the theoretical calculation are �15 GHz. 
The gain saturation coefficients are fitting parameters 
el = ei = eu = 2.02 · 1017 cm �3. The optical confinement 
factor and the linewidth enhancement factor are obtained 
from previous experiments, which are 0.2 [24] and 1.8, 
respectively. The detailed parameters are listed in Table 1. 
Our calculated responses are in good agreement with 
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Fig. 5. Theoretical calculation of the small-signal modulation response of 
an injection-locked test laser with a fixed test laser photon density 
S0 = 3.6 · 1015 cm �3 for 30 mA test laser bias. The injected photon
number varies from zero (free-running) to Si = 1.2 · 1012 cm �3 and is 
proportional to the injection power. (a) The low frequency roll-off is 
included with fp = 7 GHz. (b) The low frequency roll-off is not included 
with fp = 1GHz. 



Table 1 
The test laser modeling parameters 

Parameter Symbols Value 

Cavity length L 290 lm 
Active volume V 2.35 · 10�11 cm 3 

Effective index of refraction ng 3.3 
Group velocity vg 8.7 · 109 cm/s 
Mirror loss am 43.15 cm�1 

Intrinsic loss ai 30 cm�1 

Optical confinement factor C 0.2 
Linewidth enhancement factor a 1.8 
Photon lifetime sp 5.8 ps 
Carrier lifetime sn 0.8 ns 
Differential gain g0 l ¼ g0 u 4 · 10�16 cm 2 

Nonlinear gain saturation coefficient el = eu = ei 2.022 · 10�17 cm 3 
experimental data. The relaxation frequency increases by 
injection locking, and the relaxation peak value increases 
with increasing injection and reaches its maximum because 
of gain saturation effects. To understand the importance of 
the low frequency pole fp, we also calculate the intrinsic mod
ulation response of the injection-locked laser without the 
low frequency roll-off, shown in Fig. 5(b) using the same 
parameters as Fig. 5(a). Fig. 5(b) is similar to previous theo
retical paper on this subject [20] without low frequency roll-
off. Our calculation results show that the low frequency pole 
limits modulation bandwidth, which is indicated clearly on 
our experimental data. The sharpness of the relaxation peak 
is dependent on the values of detuning, phase difference 
between the injected signal and test signal, and test laser 
photon density etc. Also our linear model is only sufficient 
to describe the stable dynamic domain. The relaxation fre
quency as a function of injection power is plotted in Fig. 6. 
We convert the calculated injected photon density into the 
injected power Pin using Pin = 2.6 · 10�12Si mW to compare 
with our data. The solid circles are our experimental data at 
the test laser bias current of 30 mA, and the dashed lines are 
the theoretical result. Starting at a weak injection (injection 
power 0.15 mW), the relaxation oscillation frequency is 
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improved. The maximum relaxation frequency measured 
(13.8 GHz) is about 3.5 times that of the free-running value 
(4 GHz) at 30 mA laser bias. Our calculation shows very 
good agreement with our experimental data. In general, 
our model with low frequency roll-off represents a more 
complete picture of injection-locked semiconductor lasers 
and explains the experimental data very well. Note that 
our model also includes the optical confinement factor of 
the SCH QW structure and gain saturation from the injected 
signal, which are important because the value of differential 
gain would otherwise be incorrect for this system compared 
with our other independent measurement [24]. 

Several groups [12,20,26,27] have proposed possible 
mechanisms for the bandwidth enhancement by injection 
locking. They show bandwidth enhancement occurs under 
proper excitation conditions, for injection power and opti
cal frequency detuning. The main reason for the bandwidth 
enhancement is the additional coupling of photon number 
to the phase of the light in the test laser for injection locked 
laser system, which enhances both the relaxation resonance 
frequency and the damping rate [12,20,27]. Our research 
also shows theoretically that the coherent addition of the 
injection optical field with the test laser optical field in 
the test laser cavity, rather than by the increase in photon 
density, is the main reason for improvement of bandwidth. 
Without any injected signal Si, the rate equation of the test 
laser amplitude is coupled to its phase only through the 
linewidth enhancement factor (see Eqs. (1)–(4)). The phase 
of the photon in the test laser has no feedback to the ampli
tude. And the phase term is not necessary when solving for 
amplitude modulation. In an injection-locked laser system, 
the injected photon term directly connects the amplitude 
and phase of the test laser. The phase term must be counted 
to obtain amplitude value. At certain phase condition, the 
injection signal will produce an extra term in amplitude 
rate equation, which results an additional term of kcSi in 
relaxation frequency expression. These unique characteris
tics of the injection-locked laser system improve modula
tion bandwidth. Without any injection, the test laser 
behaves as a solitary laser. The additional terms in the 
relaxation resonance frequency of the injection locked laser 
system come from the phase-amplitude mutual coupling. 
The enhancement of the relaxation resonance frequency 
can also be attributed to the intensity of the injected field 
and the gain change (caused by nonlinear gain saturation 
terms), which is the second reason of bandwidth variation 
under injection. Generally, any change in the injection 
power or the gain will alter the relaxation resonance fre
quency. Furthermore, an important effect of external opti
cal injection in the stable locking regime is to reduce the 
cavity gain due to a reduction in carrier density, which 
shifts the optical resonance frequency and eventually mod
ify relaxation frequency and modulation bandwidth. The 
additional term in the relaxation frequency related to the 
nonlinear gain saturation can improve or reduce the mod
ulation bandwidth. To accurate explain our data; the gain 
saturation term must be included. However, this is a smal



ler effect compared to the mutual amplitude-phase cou
pling. Finally, the nonlinear gain saturation term due to 
the pump laser, which represents the gain change caused 
by the pump laser injection, modifies the damping factor 
of the laser system. 

4. Conclusions 

We have theoretically and experimentally shown the 
enhancement of modulation bandwidth of an injection-
locked quantum-well FP laser. The enhancement of modu
lation bandwidth comes from the mutual amplitude and 
phase coupling of injection-locked semiconductor lasers. 
Rate equations for injection-locked lasers including the 
optical confinement factor of SCH QW structure have been 
presented. Our model explains the variation of the relaxa
tion frequency with different injection power. Comparison 
between small-signal modulation of free-running lasers and 
injection-locked lasers is also presented, which shows the 
improvement of modulation bandwidth by injection lock
ing. We show experimentally that the bandwidth of an 
injection-locked semiconductor laser is 10.5 GHz, which 
is around twice the free-running electrical modulation 
bandwidth (5.3 GHz). The relaxation frequency of the 
injection-locked laser can be 3.5 times greater than the 
free-running laser. We point out that the small-signal mod
ulation of injection-locked lasers still suffers severe low fre
quency roll-off, which comes from the carrier transport 
effect and parasitic effect of the bias circuit. If we can 
reduce these effects, the modulation bandwidth can be fur
ther increased to 15 GHz, or about three times the free-
running value. 
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