

Characterization Of The

RFX400 For Use In
Software Defined Radio

BY

Edward Adams

Senior Project

COMPUTER ENGINEERING DEPARTMENT

California Polytechnic State University

San Luis Obispo

2010

i

Table of Contents

List of Figures ... ii

List of Equations ... ii

Acknowledgements ... iii

Abstract .. iv

I. Introduction .. 1

II. Background ... 2

Software Defined Radio .. 2

Heterodyne Up-/Down-Conversion .. 2

Fractional-N Synthesizer .. 3

III. Requirements .. 5

IV. Design ... 6

SPI Interface to Fractional-N Synthesizer ... 6

Analog Interfacing to Board Transmit ... 6

Analog Interfacing to Board Receive .. 9

Voltage Rails for Op-Amps .. 9

V. Construction .. 11

VI. Testing .. 12

VII. Conclusions and Recommendations .. 13

VIII. Bibliography .. 14

IX. Appendices .. 15

A. ATMega8 Frequency Synthesizer Code Listing 15

B. Nexsys Frequency Synthesizer Code Listing 17

ii

List of Figures
Figure 1: Idealized SDR .. 2

Figure 2: Heterodyne up-/down-converting SDR 2

Figure 3: Simplified fractional-N synthesizer .. 4

Figure 4: Transformer circuit for RFX400 transmit 6

Figure 5: Fully differential op-amp circuit for RFX400 transmit circuit 7

Figure 6: Single-ended op-amp circuit for RFX400 transmit circuit 8

Figure 7: Differential follower circuit for RFX400 receiver circuit 9

List of Equations
Equation 1: Generalized modulated waveform 3

Equation 2: Heterodyne down-conversion ... 3

file:///C:/Users/Public/Public%20Repositories/eadams/Senior%20Project.docx%23_Toc264267211
file:///C:/Users/Public/Public%20Repositories/eadams/Senior%20Project.docx%23_Toc264267212
file:///C:/Users/Public/Public%20Repositories/eadams/Senior%20Project.docx%23_Toc264267213
file:///C:/Users/Public/Public%20Repositories/eadams/Senior%20Project.docx%23_Toc264267214
file:///C:/Users/Public/Public%20Repositories/eadams/Senior%20Project.docx%23_Toc264267215
file:///C:/Users/Public/Public%20Repositories/eadams/Senior%20Project.docx%23_Toc264267217

iii

Acknowledgements

I would like to take the time to thank my parents for always encouraging

and trusting my curiosities, as well as providing the financial and moral

support without which I would not be writing this today. I would also like

to thank Dr. Oliver for taking a risk on this project and his understanding

when I was unable to dedicate the time that this project deserved. Last,

but certainly not least, I would like to offer my gratitude to Dr. Michael

Connor: it's been years, but you still inspire me to learn and teach others.

iv

Abstract

While software defined radio is an extremely flexible technology that is

fairly rarely used, as a single purpose radio is much cheaper, it provides

an excellent means of learning RF and communications skills through the

lens of digital electronics, and it would behoove a cal poly student

interested in these areas to take on a project in software defined radio.

This project aims to lower the barrier to entry for future students to

undertake such a project. The use of an up-converter/down-converter is

documented for future students to interface with.

1

I. Introduction

At the time of writing, the predecessors to fourth-generation (4G) cellular

networks are beginning to be deployed, and along with this deployment,

there is a considerable amount of hype among gadget enthusiasts. It is a

significant marketing advantage then to have your phone branded as

being 4G compatible.

There are, at the moment, a couple competing candidate standards out

there. One candidate standard, 3GPP LTE Advanced1, has been endorsed

by multiple carriers in the US and Europe2, and its predecessor, 3GPP LTE,

has already been deployed, marketed as 4G. Another candidate, Mobile

WiMAX 802.16m3, is under development by IEEE, and its predecessor,

802.16e-2005 will be deployed by Sprint Nextel4, also marketed as 4G.

Furthermore, UMB, an extension of the EV-DO standard was a candidate

until late 2008.

As a handset designer, which standard do you design your cellular radio

for? If a standards war breaks out, you don't want to throw your lot in

with Betamax. Furthermore, these standards are moving targets — you

may release a month too soon to have incorporated an upgrade that

doubles range. It would be a great asset to be able to upgrade the radios

with a patch, much the way that software designers are able to push new

features to a phone without ever having to bring it in for servicing.

Software defined radio does just that, and this project is designed to open

the door for future students to gain experience in the medium. By

focusing on the 70cm amateur radio band, this project will allow students

to have easy access to licensed spectrum with readily available

equipment.

1 Stefan Parkvall, Erik Dahlman, Anders Furuskär, Ylva Jading, Magnus Olsson, Stefan Wänstedt,
Kambiz Zangi, "LTE-Advanced – Evolving LTE towards IMT-Advanced", VTC 2008
<http://www.ericsson.com/res/thecompany/docs/journal_conference_papers/wireless_access/VTC08
F_jading.pdf>
2 http://en.wikipedia.org/wiki/4G#LTE
3 Draft IEEE 802.16m System Description Document, 2008-04-20
<http://www.ieee802.org/16/tgm/docs/80216m-08_003r1.pdf>
4 "Sprint announces seven new WiMAX markets, says 'Let AT&T and Verizon yak about maps and 3G
coverage'". <http://www.engadget.com/2010/03/23/sprint-announces-seven-new-wimax-markets-
says-let-atandt-and-ver/> Engadget. 2010-03-23. Retrieved 2010-04-08.

2

II. Background

Software Defined Radio

Software defined radio (SDR), in its

theoretically ideal form consists of a digital

to analog converter (DAC) and/or an analog

to digital converter (ADC) hooked up directly

to antennas as in Figure 1. The software

controlled DAC and ADC would in this case

directly generate the waveforms to be

transmitted and directly read the waveforms

received.

This design turns out to be impractical due

to, among other things, limitations in ADC and DAC technology. These

devices cannot operate fast enough and with enough precision to operate

in the UHF band we are interested in. Instead, for this project we use the

RFX400 daughterboard for the Universal Software Radio Peripheral

(USRP), part of the GNU Radio Project.

Heterodyne Up-/Down-Conversion

The RFX400 has

multiple DACs and

ADCs operating at

baseband and mixes

the signals with a

sinusoid at a center

frequency. This is

known as heterodyne

up-conversion and

down-conversion, and

is shown in simplified

form in Figure 2. The

generalized form of a

modulated RF

waveform is shown in

Equation 1. Note that

both amplitude and

phase information can be encoded in the amplitude of in-phase and

Figure 1: Idealized SDR

Figure 2: Heterodyne up-/down-converting SDR

3

quadrature waveforms. Heterodyne converters work by adding and

removing the sine/cosine terms attached to the baseband signals I(t) and

Q(t).

Equation 1: Generalized modulated waveform

The up-converter on the transmit path is fairly straightforward. After

passing through low-pass filters to remove aliasing from the DACs, the I

and Q components are mixed with the cosine and sin components and

then summed. Removing the cosine and sin components turns out to be

less intuitive. The input is mixed with the cosine and sine components,

and due to the double angle identities, the baseband signals appear

summed with signals centered at twice the original center frequency. See

Equation 2. These signals are sent through a low-pass filter to remove the

double-frequency components and then through to the ADC.

Equation 2: Heterodyne down-conversion

Fractional-N Synthesizer

The oscillator used to generate the mixed-in sine and cosine is a

fractional-N synthesizer: a device that counts zero crossings of a

reference clock and a voltage controlled oscillator (VCO) to maintain a

programmable constant ratio between the VCO and the reference

oscillator. See Figure 3.

4

On startup, the N- and R-latches are programmed with the desired clock

ratio and their respective counters begin to count up. As soon as a

counter reaches its latch value, it resets. the first counter to reset sets its

flip flop, turning on its current source in the charge pump. Once the

second counter resets, its flip flop is momentarily set, causing both flip

flops to reset, turning the charge pump off.

The charge pump is fed back to a shunt capacitor and the control voltage

of the VCO such that the charge pump provides negative feedback on the

VCO, pulling its frequency down should the N-counter overflow first, and

pulling its frequency up should the R-counter overflow first.

Figure 3: Simplified fractional-N synthesizer

5

III. Requirements

The purpose of this project is to open the way for other students to come

in and make their contribution to a larger SDR project. As such the

primary goal is to create quality, easily accessible documentation for

students to work from.

In order to understand the interface I am to perform a loopback test: the

transmit port will be connected to the receive port, the synthesizer will be

programmed, and voltage will be applied the transmit inputs. If all goes

well, the input signal will show up on the receive outputs.

To summarize, the requirements for this project are:

1. Investigate RFX400 daughterboard interface.

2. Perform loopback test.

3. Provide documentation for future projects wishing to use this

board.

6

IV. Design

SPI Interface to Fractional-N Synthesizer

The synthesizer used on the RFX400 is controlled through three 24-bit

registers accessible through a three-wire SPI bus. These registers are the

N-counter register, the R-counter register, and the control register. These

registers must be programmed in order on startup, and they have timing

constraints.

Programming the synthesizer was originally accomplished through a

simple HDL design the Nexsys board. Events were sequenced through an

up counter and the register contents were held in a 72-bit shift register.

Making changes to the contents of the synthesizer registers was an

arduous process of counting bits, recompiling, and reprogramming the

board.

At the start of spring quarter I came to possess an STK500, a

development board for Atmel's AVR line of microcontrollers. I immediately

used an ATMega8 Microcontroller to implement a synthesizer programmer

that was much easier to use. I highly recommend using some form of

processor (e.g. AVR, MicroBlaze, PicoBlaze, etc.) for synthesizer control to

anyone looking to continue this project.

Analog Interfacing to Board Transmit

The inputs to the transmission modulator are differential lines balanced

about .7V with a voltage swing of 0.6VPP. Since this is to be used on a

testbench, we will be using a single-ended source. There are a number of

ways to convert a single-ended source to a differential output with

nonzero bias.

The simplest method is to use a 1:1

transformer, hooking the input up to a

0.6VPP source connecting the center tap

of the output to .7V, as in Figure 4. The

advantage here is simplicity: a single

component produces a differential output

and biases the lines appropriately. The

drawback here is that a transformer can

only AC couple the input and output: it

prevents holding a signal at any one level.

Figure 4: Transformer circuit for
RFX400 transmit

7

Another method of producing the proper output is to set a function

generator to directly output the positive side of the differential line and

use an op amp to invert that about Vbias for the negative side. This

introduces more complexity, as it may require a negative power rail and

uses a number of components, but the extra complexity is balanced by

the ability to DC couple the line. Another drawback is that the op-amp

may introduce some phase shifting on one line that isn't present on the

other, distorting the output, but that would be passable for qualitative

test purposes.

Fully differential op-amps are designed to drive differential loads and

provide a means to set their output bias, so they seem like an optimal

means of driving our output5. Figure 5 is an example circuit for providing

differential loads to the RFX400. I and Q should have a voltage swing of

5 Fully Differential Amplifiers

<http://www.ti.com/sc/docs/apps/msp/journal/aug2000/aug_08.pdf>

Figure 5: Fully differential op-amp circuit for RFX400 transmit circuit

8

0.6 VPP and I_GND and Q_GND should be set to 1/2 the dynamic range of

I and Q respectively.

Differential op-amps are, however, an uncommon part, and not available

as a DIP package. This being the case, I was unable to prototype the

circuit on a breadboard. I provide a schematic because it will be useful to

any future students wishing to go further with this project.

The design I chose to implement for generating the output signal is one

that is tenable for a final design. Rather than using a fully differential

amplifier, two single-ended op-amps are configured as differential follower

circuits with Vbias replacing the ground input. I used some LM324 op-amps

I had lying around, as bandwidth is not a problem at this point. The

outputs of these are fed into voltage followers for hi-impedance output.

This circuit provides DC coupling, and due to both sides having nearly

identical circuitry, any phase delay is applied equally, ensuring that the

output differential voltage is correct. Figure 6 shows the circuit as

implemented.

Figure 6: Single-ended op-amp circuit for RFX400 transmit circuit

9

Analog Interfacing to Board Receive

Output from board receive is another pair of differential lines. Since our

output should be single-ended, it isn't necessary to use a fully differential

op-amp. Instead,

two differential

follower op-amp

circuits are used to

convert the I and Q

differential outputs

to ground-

referenced, single-

ended outputs. The

outputs of the

RFX400 requires at

least 2kΩ line

resistance, so

resistor values of

1.5kΩ were used to

provide

approximately 3kΩ

line resistance.

Again, bandwidth is

not a concern at

this point, so an LM324 was used to implement this circuit. See Figure 7.

The receive side of the RFX400 includes a gain setting — a pin whose

voltage can vary from 0.2V for maximum gain to 1.2V for minimum gain.

Current draw from this pin should be negligible, so a voltage divider may

be used to set the voltage on this pin. Using a 1kΩ potentiometer for a 1V

swing gives a current of 1mA through the voltage divider. 200Ω to ground

gives us a 0.2V offset and 4.8KΩ to the +6V rail creates a total of 6kΩ

from 6V to ground and gives us our 1mA voltage divider current. Having

only 5% tolerance resistors, 220Ω and 4.7kΩ resistors were used instead.

Voltage Rails for Op-Amps

Since non-ideal (i.e. real) op-amps cannot output rail-to-rail, the voltage

supplies for the op-amps used in these circuits will need to reach beyond

the 0V and +6V rails used elsewhere in the circuit. With a 12V input, the

0V and +6V rails can be generated by offsetting by 3V each, turning the

negative and positive input rails into -3V and +9V respectively.

Figure 7: Differential follower circuit for RFX400 receiver

circuit

10

This was accomplished by first generating a 3V reference with respect to

the negative rail using a 3.3V regulator, a voltage divider, and a voltage

follower. This is fed into a voltage follower with a PNP bipolar transistor

for greater current capacity. The output of this is our 0V rail. The 3V

reference is also fed into a differential follower which subtracts the 3V

from the 12V input to give the reference for our +6V rail. The +6V

reference is fed into a voltage follower with a NPN bipolar transistor for

greater current capacity, giving us our +6V rail.

11

V. Construction

The circuits described in the previous section were constructed on a

breadboard, power was routed from the voltage regulation circuit to the

biasing circuitry and the SPI lines from the synthesizer programmer were

brought onboard.

The RFX400 daughterboard connects with its motherboard via a pair of

64-pin PCI mezzanine connectors (PMC). In order to connect the RFX400

to the test setup, I bought mating PMC risers and soldered wire-wrap wire

to the pins, providing power, ground, logic, and analog breakouts. The

SPI lines, Tx and Rx differential pairs, and gain pin were soldered to

breadboard patch wire and connected to their appropriate inputs. the

remaining logic pins were pulled high or low through resistors to power

and ground. Power and ground were attached to the +6V and 0V rails

respectively.

12

VI. Testing

When first tested, the RFX400's frequency synthesizer would not lock.

Using the "muxout" pin of the synthesizer, I scoped the N-counter and R-

counter overflow signals and found that the N-counter was overflowing at

a much greater frequency than the R-counter. Misinterpreting these

results, I attempted to cause the synthesizer to lock at lower frequencies.

This did not work, it turned out that the VCO in the synthesizer was at as

low a frequency as it could manage.

The diagram in Figure 3 is greatly simplified and does not show all the

features available to be controlled through the SPI interface. One of these

features is a pair of optional devide-by-2 stages on the output of the VCO,

one leading to the output, the other leading to the R-counter. The

documentation for the RFX400 states that it uses one of these, and

seemed to imply it was the one leading to the R-counter. It wasn't.

Eventually I got through to the designer of the board, and he pointed me

to the code that he had written to program the frequency synthesizer and

let me know that it was the output divide-by-2 stage that was enabled; I

would have to lock the synthesizer at twice my desired frequency.

Once I implemented the changes that resulted from talking with the

board's designer, I got the board to lock, but did not have enough time to

get any further.

13

VII. Conclusions and Recommendations

At the time of this draft, the loopback test has not been successfully

completed, but the greatest hurdle, controlling the frequency synthesizer,

has been overcome. What remains is testing of the analog biasing

circuitry I have proposed, designing the ADC/DAC circuitry, and

interfacing all the digital outputs with the Nexsys board through the

Hirose FX2 connector.

Despite my frustrations, I believe that the RFX400 is an excellent route to

a custom SDR project at Cal Poly. This board effectively blackboxes the

portions of a radio that are the most difficult for digital engineers that are

interested in radio applications such as myself.

Meanwhile, the work on the project remains ongoing and I would be more

than willing to be of assistance to anybody who wishes to pick up where I

leave off. That's right, you there, reading the microfiche, can contact me

(If I'm still alive at the time!) at edward.casey.adams@gmail.com and I

will be glad to help.

14

VIII. Bibliography
Parkvall, S.; Dahlman, E.; Furuskar, A.; Jading, Y.; Olsson, M.; Wanstedt,

S.; Zangi, K.; , "LTE-Advanced - Evolving LTE towards IMT-

Advanced," Vehicular Technology Conference, 2008. VTC 2008-Fall.

IEEE 68th , vol., no., pp.1-5, 21-24 Sept. 2008

doi: 10.1109/VETECF.2008.313

URL: http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=4

657145&isnumber=4656832

June, L.; , "Sprint Announces Seven New WiMAX Markets, Says 'Let AT&T

and Verizon Yak about Maps and 3G Coverage'" Engadget, 23 Mar.

2010, Web, 11 June 2010

URL: http://www.engadget.com/2010/03/23/sprint-announces-

seven-new-wimax-markets-says-let-atandt-and-ver/

Karki, J; , "Fully Differential Amplifiers." Analog Applications

Journal (2000): 38-41, High-Performance Analog - Analog

Application Journal - Texas Instruments, Texas Instruments, Aug.

2000, Web, 11 June 2010

URL: http://focus.ti.com/general/docs/gencontent.tsp?contentId=2

9569

15

IX. Appendices

A. ATMega8 Frequency Synthesizer Code Listing
#include <inttypes.h>

#include <avr/io.h>

#include <avr/interrupt.h>

char R_reg[3] = { 0x34, 0x0A, 0x02 };

char C_reg[3] = { 0x0F, 0xC9, 0x84 };

char N_reg[3] = { 0x4F, 0xAE, 0x02 };

void init(void)

{

 DDRD = 0xFC;

 PORTD = 0x03;

 DDRB = 0xFF;

 SPCR = _BV(SPE) | _BV(MSTR);

 SPSR = _BV(SPI2X);

 PORTB = _BV(PB1);

}

int main(void)

{

 uint8_t i;

 //volatile uint16_t j;

 init();

 while(1)

 {

 while ((PIND&0x01) == 0)

 {

 ;

 }

 while ((PIND&0x01) != 0)

 {

 ;

 }

 PORTB = PINB & ~_BV(PB1);

 for (i = 0; i < 3; i++)

 {

 SPDR = R_reg[i];

 while(!(SPSR & _BV(SPIF)))

 {

 ;

16

 }

 }

 PORTB = PINB | _BV(PB1);

 PORTB = PINB & ~_BV(PB1);

 for (i = 0; i < 3; i++)

 {

 SPDR = C_reg[i];

 while(!(SPSR & _BV(SPIF)))

 {

 ;

 }

 }

 PORTB = PINB | _BV(PB1);

 while ((PIND&0x02) == 0)

 {

 ;

 }

 while ((PIND&0x02) != 0)

 {

 ;

 }

 //wait >10ms

 //for (j = 0; j < 400000; j++)

 //{

 // ;

 //}

 PORTB = PINB & ~_BV(PB1);

 for (i = 0; i < 3; i++)

 {

 SPDR = N_reg[i];

 while(!(SPSR & _BV(SPIF)))

 {

 ;

 }

 }

 PORTB = PINB | _BV(PB1);

 }

 return 0;

}

17

B. Nexsys Frequency Synthesizer Code Listing
`timescale 1ns / 1ps

module vco(clk, sck, sda, sen);

parameter word_len = 24;

parameter R_latch =

24'b00__01__0_1__00__00_0000_1010_0000_01;

parameter C_latch =

24'b01__00__000__000__00__0_0_0_1__001__0__00__00;

parameter N_latch =

24'b1_0_0__0_1111_1010_1110__0__0_0000__10;

parameter data_x = {R_latch, C_latch, N_latch};

input clk;

output sck;

output sda;

output sen;

reg sck;

wire sda;

reg sen;

reg [31:0] counter;

reg [3*word_len-1:0] data;

assign sda = data[3*word_len-1];

initial

begin

 data = data_x;

 counter = 0;

 sck = 0;

 sen = 0;

end

always @(posedge clk)

begin

 if (counter < 32'hFFFFFFFF)

 begin

 counter = counter + 1;

 end

 if (sck)

 begin

 sck = 1'b0;

 data = data << 1;

18

 end

 else if ((counter == 49) || (counter == 99) || (counter

== 1000149))

 begin

 sen = 1'b1;

 end

 else if (sen)

 begin

 sen = 1'b0;

 end

 else if (counter < 99)

 begin

 sck = 1'b1;

 end

 else if ((counter >= 1000100) && (counter < 1000148))

 sck = 1'b1;

end

endmodule

