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Abstract 
 

While software defined radio is an extremely flexible technology that is 

fairly rarely used, as a single purpose radio is much cheaper, it provides 

an excellent means of learning RF and communications skills through the 

lens of digital electronics, and it would behoove a cal poly student 

interested in these areas to take on a project in software defined radio. 

This project aims to lower the barrier to entry for future students to 

undertake such a project. The use of an up-converter/down-converter is 

documented for future students to interface with. 
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I. Introduction 
 

At the time of writing, the predecessors to fourth-generation (4G) cellular 

networks are beginning to be deployed, and along with this deployment, 

there is a considerable amount of hype among gadget enthusiasts. It is a 

significant marketing advantage then to have your phone branded as 

being 4G compatible.  

There are, at the moment, a couple competing candidate standards out 

there. One candidate standard, 3GPP LTE Advanced1, has been endorsed 

by multiple carriers in the US and Europe2, and its predecessor, 3GPP LTE, 

has already been deployed, marketed as 4G. Another candidate, Mobile 

WiMAX 802.16m3, is under development by IEEE, and its predecessor, 

802.16e-2005 will be deployed by Sprint Nextel4, also marketed as 4G. 

Furthermore, UMB, an extension of the EV-DO standard was a candidate 

until late 2008. 

As a handset designer, which standard do you design your cellular radio 

for? If a standards war breaks out, you don't want to throw your lot in 

with Betamax. Furthermore, these standards are moving targets — you 

may release a month too soon to have incorporated an upgrade that 

doubles range. It would be a great asset to be able to upgrade the radios 

with a patch, much the way that software designers are able to push new 

features to a phone without ever having to bring it in for servicing. 

Software defined radio does just that, and this project is designed to open 

the door for future students to gain experience in the medium. By 

focusing on the 70cm amateur radio band, this project will allow students 

to have easy access to licensed spectrum with readily available 

equipment. 

  

                                       
1 Stefan Parkvall, Erik Dahlman, Anders Furuskär, Ylva Jading, Magnus Olsson, Stefan Wänstedt, 
Kambiz Zangi, "LTE-Advanced – Evolving LTE towards IMT-Advanced", VTC 2008 
<http://www.ericsson.com/res/thecompany/docs/journal_conference_papers/wireless_access/VTC08
F_jading.pdf> 
2 http://en.wikipedia.org/wiki/4G#LTE  
3 Draft IEEE 802.16m System Description Document, 2008-04-20 
<http://www.ieee802.org/16/tgm/docs/80216m-08_003r1.pdf> 
4 "Sprint announces seven new WiMAX markets, says 'Let AT&T and Verizon yak about maps and 3G 
coverage'". <http://www.engadget.com/2010/03/23/sprint-announces-seven-new-wimax-markets-
says-let-atandt-and-ver/> Engadget. 2010-03-23. Retrieved 2010-04-08. 
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II. Background 
 

Software Defined Radio 

Software defined radio (SDR), in its 

theoretically ideal form consists of a digital 

to analog converter (DAC) and/or an analog 

to digital converter (ADC) hooked up directly 

to antennas as in Figure 1. The software 

controlled DAC and ADC would in this case 

directly generate the waveforms to be 

transmitted and directly read the waveforms 

received. 

This design turns out to be impractical due 

to, among other things, limitations in ADC and DAC technology. These 

devices cannot operate fast enough and with enough precision to operate 

in the UHF band we are interested in. Instead, for this project we use the 

RFX400 daughterboard for the Universal Software Radio Peripheral 

(USRP), part of the GNU Radio Project. 

Heterodyne Up-/Down-Conversion 

The RFX400 has 

multiple DACs and 

ADCs operating at 

baseband and mixes 

the signals with a 

sinusoid at a center 

frequency. This is 

known as heterodyne 

up-conversion and 

down-conversion, and 

is shown in simplified 

form in Figure 2. The 

generalized form of a 

modulated RF 

waveform is shown in 

Equation 1. Note that 

both amplitude and 

phase information can be encoded in the amplitude of in-phase and 

Figure 1: Idealized SDR 

Figure 2: Heterodyne up-/down-converting SDR 
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quadrature waveforms. Heterodyne converters work by adding and 

removing the sine/cosine terms attached to the baseband signals I(t) and 

Q(t). 

                                                  

Equation 1: Generalized modulated waveform 

The up-converter on the transmit path is fairly straightforward. After 

passing through low-pass filters to remove aliasing from the DACs, the I 

and Q components are mixed with the cosine and sin components and 

then summed. Removing the cosine and sin components turns out to be 

less intuitive. The input is mixed with the cosine and sine components, 

and due to the double angle identities, the baseband signals appear 

summed with signals centered at twice the original center frequency. See 

Equation 2. These signals are sent through a low-pass filter to remove the 

double-frequency components and then through to the ADC. 

                  

                          

                                                                          

                                                                      

 

 
                                 

 

 
                                 

 

 
     

 

 
                             

 

 
     

 

 
                             

 

Equation 2: Heterodyne down-conversion 

Fractional-N Synthesizer 

The oscillator used to generate the mixed-in sine and cosine is a 

fractional-N synthesizer: a device that counts zero crossings of a 

reference clock and a voltage controlled oscillator (VCO) to maintain a 

programmable constant ratio between the VCO and the reference 

oscillator. See Figure 3. 



4 
 

On startup, the N- and R-latches are programmed with the desired clock 

ratio and their respective counters begin to count up. As soon as a 

counter reaches its latch value, it resets. the first counter to reset sets its 

flip flop, turning on its current source in the charge pump. Once the 

second counter resets, its flip flop is momentarily set, causing both flip 

flops to reset, turning the charge pump off. 

The charge pump is fed back to a shunt capacitor and the control voltage 

of the VCO such that the charge pump provides negative feedback on the 

VCO, pulling its frequency down should the N-counter overflow first, and 

pulling its frequency up should the R-counter overflow first. 

 

  

Figure 3: Simplified fractional-N synthesizer 
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III. Requirements 
 

The purpose of this project is to open the way for other students to come 

in and make their contribution to a larger SDR project. As such the 

primary goal is to create quality, easily accessible documentation for 

students to work from. 

In order to understand the interface I am to perform a loopback test: the 

transmit port will be connected to the receive port, the synthesizer will be 

programmed, and voltage will be applied the transmit inputs. If all goes 

well, the input signal will show up on the receive outputs. 

To summarize, the requirements for this project are: 

1. Investigate RFX400 daughterboard interface. 

2. Perform loopback test. 

3. Provide documentation for future projects wishing to use this 

board. 
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IV. Design 
 

SPI Interface to Fractional-N Synthesizer 

The synthesizer used on the RFX400 is controlled through three 24-bit 

registers accessible through a three-wire SPI bus. These registers are the 

N-counter register, the R-counter register, and the control register. These 

registers must be programmed in order on startup, and they have timing 

constraints. 

Programming the synthesizer was originally accomplished through a 

simple HDL design the Nexsys board. Events were sequenced through an 

up counter and the register contents were held in a 72-bit shift register. 

Making changes to the contents of the synthesizer registers was an 

arduous process of counting bits, recompiling, and reprogramming the 

board. 

At the start of spring quarter I came to possess an STK500, a 

development board for Atmel's AVR line of microcontrollers. I immediately 

used an ATMega8 Microcontroller to implement a synthesizer programmer 

that was much easier to use. I highly recommend using some form of 

processor (e.g. AVR, MicroBlaze, PicoBlaze, etc.) for synthesizer control to 

anyone looking to continue this project. 

Analog Interfacing to Board Transmit 

The inputs to the transmission modulator are differential lines balanced 

about .7V with a voltage swing of 0.6VPP. Since this is to be used on a 

testbench, we will be using a single-ended source. There are a number of 

ways to convert a single-ended source to a differential output with 

nonzero bias. 

The simplest method is to use a 1:1 

transformer, hooking the input up to a 

0.6VPP source connecting the center tap 

of the output to .7V, as in Figure 4. The 

advantage here is simplicity: a single 

component produces a differential output 

and biases the lines appropriately. The 

drawback here is that a transformer can 

only AC couple the input and output: it 

prevents holding a signal at any one level. 

Figure 4: Transformer circuit for 
RFX400 transmit 
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Another method of producing the proper output is to set a function 

generator to directly output the positive side of the differential line and 

use an op amp to invert that about Vbias for the negative side. This 

introduces more complexity, as it may require a negative power rail and 

uses a number of components, but the extra complexity is balanced by 

the ability to DC couple the line. Another drawback is that the op-amp 

may introduce some phase shifting on one line that isn't present on the 

other, distorting the output, but that would be passable for qualitative 

test purposes. 

Fully differential op-amps are designed to drive differential loads and 

provide a means to set their output bias, so they seem like an optimal 

means of driving our output5. Figure 5 is an example circuit for providing 

differential loads to the RFX400. I and Q should have a voltage swing of 

                                       
5 Fully Differential Amplifiers 

<http://www.ti.com/sc/docs/apps/msp/journal/aug2000/aug_08.pdf> 

Figure 5: Fully differential op-amp circuit for RFX400 transmit circuit 



8 
 

0.6 VPP and I_GND and Q_GND should be set to 1/2 the dynamic range of 

I and Q respectively. 

Differential op-amps are, however, an uncommon part, and not available 

as a DIP package. This being the case, I was unable to prototype the 

circuit on a breadboard. I provide a schematic because it will be useful to 

any future students wishing to go further with this project. 

The design I chose to implement for generating the output signal is one 

that is tenable for a final design. Rather than using a fully differential 

amplifier, two single-ended op-amps are configured as differential follower 

circuits with Vbias replacing the ground input. I used some LM324 op-amps 

I had lying around, as bandwidth is not a problem at this point. The 

outputs of these are fed into voltage followers for hi-impedance output. 

This circuit provides DC coupling, and due to both sides having nearly 

identical circuitry, any phase delay is applied equally, ensuring that the 

output differential voltage is correct. Figure 6 shows the circuit as 

implemented. 

 

Figure 6: Single-ended op-amp circuit for RFX400 transmit circuit 



9 
 

Analog Interfacing to Board Receive 

Output from board receive is another pair of differential lines. Since our 

output should be single-ended, it isn't necessary to use a fully differential 

op-amp. Instead, 

two differential 

follower op-amp 

circuits are used to 

convert the I and Q 

differential outputs 

to ground-

referenced, single-

ended outputs. The 

outputs of the 

RFX400 requires at 

least 2kΩ line 

resistance, so 

resistor values of 

1.5kΩ were used to 

provide 

approximately 3kΩ 

line resistance. 

Again, bandwidth is 

not a concern at 

this point, so an LM324 was used to implement this circuit. See Figure 7. 

The receive side of the RFX400 includes a gain setting — a pin whose 

voltage can vary from 0.2V for maximum gain to 1.2V for minimum gain. 

Current draw from this pin should be negligible, so a voltage divider may 

be used to set the voltage on this pin. Using a 1kΩ potentiometer for a 1V 

swing gives a current of 1mA through the voltage divider. 200Ω to ground 

gives us a 0.2V offset and 4.8KΩ to the +6V rail creates a total of 6kΩ 

from 6V to ground and gives us our 1mA voltage divider current. Having 

only 5% tolerance resistors, 220Ω and 4.7kΩ resistors were used instead. 

Voltage Rails for Op-Amps 

Since non-ideal (i.e. real) op-amps cannot output rail-to-rail, the voltage 

supplies for the op-amps used in these circuits will need to reach beyond 

the 0V and +6V rails used elsewhere in the circuit. With a 12V input, the 

0V and +6V rails can be generated by offsetting by 3V each, turning the 

negative and positive input rails into -3V and +9V respectively. 

Figure 7: Differential follower circuit for RFX400 receiver 

circuit 
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This was accomplished by first generating a 3V reference with respect to 

the negative rail using a 3.3V regulator, a voltage divider, and a voltage 

follower. This is fed into a voltage follower with a PNP bipolar transistor 

for greater current capacity. The output of this is our 0V rail. The 3V 

reference is also fed into a differential follower which subtracts the 3V 

from the 12V input to give the reference for our +6V rail. The +6V 

reference is fed into a voltage follower with a NPN bipolar transistor for 

greater current capacity, giving us our +6V rail. 
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V. Construction 
 

The circuits described in the previous section were constructed on a 

breadboard, power was routed from the voltage regulation circuit to the 

biasing circuitry and the SPI lines from the synthesizer programmer were 

brought onboard. 

The RFX400 daughterboard connects with its motherboard via a pair of 

64-pin PCI mezzanine connectors (PMC). In order to connect the RFX400 

to the test setup, I bought mating PMC risers and soldered wire-wrap wire 

to the pins, providing power, ground, logic, and analog breakouts. The 

SPI lines, Tx and Rx differential pairs, and gain pin were soldered to 

breadboard patch wire and connected to their appropriate inputs. the 

remaining logic pins were pulled high or low through resistors to power 

and ground. Power and ground were attached to the +6V and 0V rails 

respectively.  
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VI. Testing 
 

When first tested, the RFX400's frequency synthesizer would not lock. 

Using the "muxout" pin of the synthesizer, I scoped the N-counter and R-

counter overflow signals and found that the N-counter was overflowing at 

a much greater frequency than the R-counter. Misinterpreting these 

results, I attempted to cause the synthesizer to lock at lower frequencies. 

This did not work, it turned out that the VCO in the synthesizer was at as 

low a frequency as it could manage. 

The diagram in Figure 3 is greatly simplified and does not show all the 

features available to be controlled through the SPI interface. One of these 

features is a pair of optional devide-by-2 stages on the output of the VCO, 

one leading to the output, the other leading to the R-counter. The 

documentation for the RFX400 states that it uses one of these, and 

seemed to imply it was the one leading to the R-counter. It wasn't. 

Eventually I got through to the designer of the board, and he pointed me 

to the code that he had written to program the frequency synthesizer and 

let me know that it was the output divide-by-2 stage that was enabled; I 

would have to lock the synthesizer at twice my desired frequency. 

Once I implemented the changes that resulted from talking with the 

board's designer, I got the board to lock, but did not have enough time to 

get any further. 
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VII. Conclusions and Recommendations 
 

At the time of this draft, the loopback test has not been successfully 

completed, but the greatest hurdle, controlling the frequency synthesizer, 

has been overcome. What remains is testing of the analog biasing 

circuitry I have proposed, designing the ADC/DAC circuitry, and 

interfacing all the digital outputs with the Nexsys board through the 

Hirose FX2 connector. 

Despite my frustrations, I believe that the RFX400 is an excellent route to 

a custom SDR project at Cal Poly. This board effectively blackboxes the 

portions of a radio that are the most difficult for digital engineers that are 

interested in radio applications such as myself. 

Meanwhile, the work on the project remains ongoing and I would be more 

than willing to be of assistance to anybody who wishes to pick up where I 

leave off. That's right, you there, reading the microfiche, can contact me 

(If I'm still alive at the time!) at edward.casey.adams@gmail.com and I 

will be glad to help. 
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IX. Appendices 
 

A. ATMega8 Frequency Synthesizer Code Listing 
#include <inttypes.h> 

#include <avr/io.h> 

#include <avr/interrupt.h> 

 

char R_reg[3] = { 0x34, 0x0A, 0x02 }; 

char C_reg[3] = { 0x0F, 0xC9, 0x84 }; 

char N_reg[3] = { 0x4F, 0xAE, 0x02 }; 

 

void init(void) 

{ 

    DDRD  = 0xFC; 

    PORTD = 0x03; 

     

    DDRB  = 0xFF; 

    SPCR  = _BV(SPE) | _BV(MSTR); 

    SPSR  = _BV(SPI2X); 

    PORTB = _BV(PB1); 

} 

 

int main(void) 

{ 

    uint8_t i; 

    //volatile uint16_t j; 

     

    init(); 

    while(1) 

    { 

        while ((PIND&0x01) == 0) 

        { 

            ; 

        } 

         

        while ((PIND&0x01) != 0) 

        { 

            ; 

        } 

         

        PORTB = PINB & ~_BV(PB1); 

        for (i = 0; i < 3; i++) 

        { 

            SPDR = R_reg[i]; 

            while(!(SPSR & _BV(SPIF))) 

            { 

                ; 
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            } 

        } 

        PORTB = PINB | _BV(PB1); 

         

        PORTB = PINB & ~_BV(PB1); 

        for (i = 0; i < 3; i++) 

        { 

            SPDR = C_reg[i]; 

            while(!(SPSR & _BV(SPIF))) 

            { 

                ; 

            } 

        } 

        PORTB = PINB | _BV(PB1); 

         

        while ((PIND&0x02) == 0) 

        { 

            ; 

        } 

         

        while ((PIND&0x02) != 0) 

        { 

            ; 

        } 

         

        //wait >10ms 

        //for (j = 0; j < 400000; j++) 

        //{ 

        //    ; 

        //} 

         

        PORTB = PINB & ~_BV(PB1); 

        for (i = 0; i < 3; i++) 

        { 

            SPDR = N_reg[i]; 

            while(!(SPSR & _BV(SPIF))) 

            { 

                ; 

            } 

        } 

        PORTB = PINB | _BV(PB1); 

         

    } 

    return 0; 

} 
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B. Nexsys Frequency Synthesizer Code Listing 
`timescale 1ns / 1ps 

 

module vco(clk, sck, sda, sen); 

parameter word_len = 24; 

 

parameter R_latch =       

24'b00__01__0_1__00__00_0000_1010_0000_01; 

parameter C_latch = 

24'b01__00__000__000__00__0_0_0_1__001__0__00__00; 

parameter N_latch =       

24'b1_0_0__0_1111_1010_1110__0__0_0000__10; 

 

parameter data_x = {R_latch, C_latch, N_latch}; 

 

input  clk; 

output sck; 

output sda; 

output sen; 

 

reg    sck; 

wire   sda; 

reg    sen; 

reg    [31:0] counter; 

reg    [3*word_len-1:0] data; 

 

assign sda = data[3*word_len-1]; 

 

initial 

begin 

 data = data_x; 

 counter = 0; 

 sck = 0; 

 sen = 0; 

end 

 

always @(posedge clk) 

begin 

  

 if (counter < 32'hFFFFFFFF) 

 begin 

  counter = counter + 1; 

 end 

  

 if (sck) 

 begin 

  sck = 1'b0; 

  data = data << 1; 
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 end 

 else if ( (counter == 49) || (counter == 99) || (counter 

== 1000149) ) 

 begin 

  sen = 1'b1; 

 end 

 else if (sen) 

 begin 

  sen = 1'b0; 

 end 

 else if (counter < 99) 

 begin 

  sck = 1'b1; 

 end 

 else if ( (counter >= 1000100) && (counter < 1000148) ) 

   sck = 1'b1; 

  

end 

 

endmodule 


