
Discovering Methodologies for Integrated Product Design

Cirrus Shakeri, David C. Brown, and Mohammad N. Noori

Mechanical Engineering and Computer Science Departments

Worcester Polytechnic Institute, Worcester, MA 01609, USA

E-mails: cirrus@wpi.edu, dcb@wpi.edu, mnnoori@wpi.edu

URL:http://www.wpi.edu/~cirrus, http://www.wpi.edu/~dcb, http://me.wpi.edu/Documents/People/Faculty/mnnoori.html

Abstract

The current methodologies for multi-disciplinary product
design are based on compromising between different disci­
plines rather than integrating them. These methodologies do
not use a systematic and holistic approach to the problem of
multi-disciplinary design and thus are piecemeal rather than
comprehensive. This paper presents a new approach to pro­
ducing design methodologies for integration of the different
disciplines in the design process. A multi-agent system has
been developed that designs a 2-DOF robot arm by incorpo­
rating five proposed strategies for integration between disci­
plines. Design methodologies are extracted by tracking the
system and generalizing the traces that are produced. The
results show that the trace of the system provides invaluable
information on how to improve the design process.

Introduction
To be able to compete in today’s global market, compa­
nies need continuous improvements in the quality of their
products. At the same time they need to improve the per­
formance of their design and manufacturing processes in
order to reduce the cost and the time-to-market. While
there are many techniques and tools for synthesizing,
analyzing, simulating, and evaluating design products,
there are few similar techniques and tools for design pro­
cesses. This paper is primarily about the development of
techniques and tools for improving the process of product
design as opposed to optimization of the product.

One means to improve the performance of design pro­
cesses is to integrate multiple disciplines that are
involved in the process. To reduce the cost and the time-
to-market of products, system-oriented, holistic, and inte­
grated approaches to multi-disciplinary design are
needed [NSF 96]. Integration reduces the number of fail­
ures and backtracking by facilitating information sharing
and thus saving resources. Besides, integration provides
collaboration between different participants that, as a
result, enhances the quality of the design.

It is becoming harder, however, to develop methodolo­
gies for integration of multiple discipline in design. This
is because the number of specialists is increasing, while
the number of generalists, capable of doing system inte­
gration, is decreasing. At the same time, the knowledge

burden on the designer keeps increasing as more materi­
als and more options become available [NSF 96].

Recent advances in the areas of artificial intelligence,
multi-agent systems, and machine learning provide theo­
ries and techniques for developing methodologies and
tools for integration in multi-disciplinary design. These
theories and techniques enable engineering design
researchers to take advantage of the power of computers
to analyze and thus improve design processes.

In this paper we are presenting an approach for synthe­
sizing methodologies for integration of multiple disci­
plines based on a knowledge-based design paradigm. We
have implemented the proposed approach in a multi-
agent design system that simulates the design processes.

Multi-disciplinary Product Design
Multi-disciplinary design entails participation of different
disciplines in the design process. Examples of multi-dis­
ciplinary design are the design of aircraft, automobiles,
robots, and buildings. Multi-disciplinary designs are very
complex processes that consume a lot of time, money,
expertise, information and other resources. Complexity is
due to diversity of disciplines, where each possess a dif­
ferent point-of-view regarding the design problem. As a
result, different disciplines adopt different, and usually
contradictory, goals and constraints while they have to
share resources such as budget, time, expertise, and infor­
mation.

Multi-disciplinary product design is hard to integrate
because of the following factors:

• Departmentalization. Different disciplines conceptu­
alize and represent their knowledge differently from
the others. Boundaries are built around disciplines with
special internal languages and ontologies, with no
means for communicating with the outside world. As a
consequence, it becomes difficult for the participating
disciplines to communicate their points-of-view, let
alone collaborate with each other or resolve their con­
flicts.

• Built-in Goals. Different disciplines tend to accumu­
late knowledge independently. As a result, they tend to
have built-in goals that are often in conflict with global
goals of the design. Ignoring the conflicts between

local and global goals leaves the behavior of the system
to the dynamics that is determined by the structure of
the system itself [Forrester 75, p. 253].

• Disciplinary Design in Big Chunks. Disciplinary
designs are processed in large segments that make inte­
gration very difficult because valuable information
(such as decisions that may lead to conflicts) is hidden
from the rest of participants. Also, considering failures
and the iterative nature of design, there is a large over­
head in repeating large, discipline-based segments.

• Counter-Intuitive Behavior. “It has become clear that
complex systems are counter-intuitive, that is they give
indications that suggest corrective action which will
often be ineffective or even adverse in its results” [For­
rester 69, p. 1]. Multi-disciplinary designs are an exam­
ple of complex systems with counter-intuitive behavior.
“Intuition fails to hold true when the constraints
become active; it is then that the real interaction among
design groups occurs” [Wujek 96, p. 370].

Integration in Product Design
Based on the above factors that make integration of mul­
tiple disciplines in product design a difficult problem, we
propose a solution based on the following strategies:

1.	 Small Design Methods. In order to integrate different
disciplines, the big chunks of design knowledge accu­
mulated in different disciplines should be broken into
pieces. In this work the design knowledge is repre­
sented in the form of design methods. A design method
is a body of orderly procedures for accomplishing vari­
ous design tasks (e.g., design synthesis, design selec­
tion, and design evaluation). Therefore breaking up the
design knowledge into pieces, in our approach, corre­
sponds to breaking design methods into smaller meth­
ods. Smaller design methods means that fewer
decisions are made in each method, shorter time is
spent in a method, and less information is produced as
a result of executing that method. Smaller design meth­
ods are simpler and consume less resources.

2.	 Opportunistic Contribution. An opportunistic prob­
lem solving strategy facilitates integration of the con­
tributions of different disciplines in the design process.
The opportunistic strategy for letting different disci­
plines contribute to the design is in contrast to a pre­
determined order of contribution that each method has
to make [Kroo 90]. An opportunistic approach allows
us to take advantage of the diversity of different disci­
plines. Every participant should get a fair chance to
contribute to the goals of the design process so that all
points-of-view are explored.

3.	 Cooperation. A cooperative strategy provides mecha­
nisms by which different participants adopt the same
goals. Implementation of the cooperative strategy in a
multi-disciplinary design process results in favoring the

common goals of the design over local goals. As a
result of such strategy different disciplines spend their
diverse resources in the same direction. The coopera­
tive strategy can be extended further such that different
disciplines become considerate of the other disciplines’
constraints when they propose their solutions.

4.	 Least Commitment. Least commitment means defer­
ring the decisions that constrain future choices for as
long as possible [Jackson 90, p. 252]. A least commit­
ment strategy reduces the number of conflicts, because
it avoids committing to decisions that are made based
on incomplete information. In the absence of a least
commitment strategy, decisions may be made as soon
as they can be, even if incomplete, arbitrary, or less
trusted information is used. As a consequence, there is
more chance for conflicts to occur in the future,
because such information may turn out to be invalid.

5.	 Concurrency. “It is well known that concurrent deci­
sion making is an important and very desirable compo­
nent of modern design methodology” [Badhrinath 96].
A concurrent strategy, in contrast to a sequential strat­
egy, carries out some of the problem-solving activities
in parallel to each other. Concurrent design is the main
theme of the well-established Concurrent Engineering
field. Concurrency in design gives freedom to all par­
ticipants to contribute to the current state of the design
in parallel. In a concurrent design process, design
knowledge is accumulated from all design participants
during the design process [Brown 93]. As a result, the
design process speeds up, because the participants in
the design do not have to wait in a line if they can make
a contribution.

Whatever the solution to the integration problem, it needs
to be represented in the form of a set of design methodol­
ogies. A design methodology is a scheme for organizing
reasoning steps and domain knowledge to construct a
solution. It provides both a conceptual framework for
organizing design knowledge and a strategy for applying
that knowledge [Sobolewski 96].

Knowledge Based Design Approach
A knowledge-based model of design is adopted in order
to implement the proposed strategies for integration, into
the design process. A knowledge-based design paradigm
applies highly specialized knowledge from expert sources
to the synthesis or refinement of a design or a design pro­
cess [Lander 97].

The idea is to simulate the design process by building a
knowledge-based design system. The system activates
design methods when they become applicable, uses small
design methods, facilitates information sharing, imple­
ments control techniques for promoting collaboration,
and gives more priority to design tasks that lead to fewer
possible conflicts.

The system conducts the design process autonomously.
By recording the steps that the system has taken during
the design process, some partial methodologies are con­
structed using an inductive learning technique. These
partially developed methodologies are then reinforced by
solving more design problems. Later these methodolo­
gies will be categorized based on different sets of design
requirements.

Figure 1 shows how the proposed approach works for
our test domain, the design of a robot arm. There are
three different disciplines (i.e., kinematics, structure, and
controls) involved in the design process. Design methods
in each discipline are broken up into small methods such
that each one of them has its own inputs, outputs, and
constraints.

A design project in Figure 1 is a design problem that
differs from other problems in its requirements and con­
straints. As a result, design methods that become applica­
ble during the design process might be different for
different projects. However, there will be some similar
patterns in activating design methods in different
projects.

The similar patterns in activating design methods are
extracted and related to the group of projects that later on
will be categorized under a certain type of design
projects. To reinforce and further develop the similar pat­
terns into general methodologies, the system solves more
examples by perturbing the design requirements within
the given range. During this process some of the partially
developed methodologies will be strengthened and con­
verge together while some will be weakened and dropped
from further development agenda. At the end there will
be a finite number of design methodologies for different
types of design problems.

To implement the proposed approach a knowledge-
based design tool based on a multi-agent architecture is

developed that simulates the design process. “Design can
be modeled as a cooperative multi-agent problem solving
task where different agents possess different knowledge
and evaluation criteria” [Sycara 90]. The multi-agent par­
adigm intuitively captures the concept of deep, modular
expertise that is at the heart of knowledge-based design
[Lander 97].

By implementing the opportunistic strategy in the
multi-agent design system, methods are dynamically
selected based on the individual agents’ view of the prob­
lem-solving situation and on shared information about
the capabilities of agents in the system [Lander 92].
Therefore, the design methodology emerges at run time.

Multi-agent Design System
An agent as a self-contained problem solving system
capable of autonomous, reactive, pro-active, social
behavior is a powerful abstraction tool for managing the
complexity of software systems [Wooldridge and Jen­
nings 95] [Wooldridge 97]. A multi-agent system is “a
system composed of multiple interacting agents, where
each agent is a coarse-grained computational system in
its own right” [Wooldridge and Jennings 98].

In this work we have used the notion of an agent as an
abstraction tool for conceptualizing, designing, and
implementing the knowledge-based design approach that
was proposed in the previous section.

System Architecture
The overall architecture of the developed multi-agent
design system is shown in Figure 2. There are three dif­
ferent layers in the system: Data, Control, and Flow.

The data layer contains the design requirements and
design constraints defined by the user at the beginning of
Use Knowledge Methodologies

K1

K 2

K
n Design Project 1

... C4

Kinematics Design Methods

S
1

S2

S
n

Design Project 2

Design Project m

K2 C8 K1 Si...

S4 Cn K5 Kj...

K2 C1 K1 Sk...

... Cn K5

S2 C1

S2 C1

S2

K2 S5 K1

K3 C2...

Design Methodology for Projects of Type 1

Design Methodology for Projects of Type 2

G
en

er
al

iz
in

g:
 I

nd
uc

tiv
e

L
ea

rn
in

g

FIGURE 1. Methodology Extraction from Traces

Structural Design Methods

U
se

 o
f

D
es

ig
n

M
et

ho
ds

C1

C
2

C
n

Control Design Methods

each design project. The data layer also contains the state
of the design process at any moment and the description
of the product as it evolves during the process. Database
agents update data and answer the queries of the other
agents. A coordinator agent manages the consistency of
the data between different database agents and synchro­
nizes the updates and queries.

The control layer contains the design knowledge as
well as the knowledge for how to use the design knowl­
edge. In Figure 2 each Designer_m_n agent is responsible
for carrying a specific design method in discipline m (k
for kinematics, s for structural, and c for control design of
a robot arm).

The rest of the agents in the control layer are responsi­
ble for coordination and carry out generic design tasks
such as evaluation of the partial designs. They discover
and provide the dependency between designers, and pro­
vide an agenda for various design tasks such as back­
tracking.

The flow layer of the system contains a mechanism for
communication among agents based on sending and
receiving messages. This mechanism consists of a regis­
try and a message passing protocol. Each message has its
own thread for processing that not only provides concur­
rency between agents but also it allows each agent to han­
dle multiple messages simultaneously.

Structure of an Agent
An agent is composed of some generic components for
accomplishing common tasks (e.g., communication) and
some specialized components for achieving its specific
goals. The following are generic components of each
agent:

1.	 Message composer: composes a message that may be
sent to one or more agents. Message composer receives
the name of the receiver agent(s), a performative, and
the message content.

2.	 Message sender: sends the composed messages to
other agents,

3.	 Message receiver: receives the messages from other
agents,

4. Message processor: processes received messages,
5.	 Observable: sends notifications about internal events

to other interested components of the same agent,
6.	 Logger: records various internal events of an agent in

different log files. The logger is also responsible for
cleaning up when the agent is no longer needed.

Posing Design Goals
Coordinator agents are responsible for posing abstract
goals, decomposing them into sub-goals, and following
up the other agents to achieve those sub-goals. Coordina­
tor agents decide what the other agents should accom­
plish in order to eliminate any need for negotiation
between different agents in the system. There are three
coordinator agents in the system shown in Figure 2: Coor­
dinator, DesignersCoordinator, and DatabaseCoordinator.

The Coordinator agent has the most abstract goal in the
design process, that is to achieve a design that satisfies
the design requirements and constraints. Figure 3 shows
how Coordinator conducts the design process in a loop until
it finds either a satisfactory design or it fails to find a
design that satisfies the requirements and constraints.

.

Designer k_1

Designer k_2

F
LO

W

.

Coordinator

Methodology Discoverer

Design
Requirements

Design
Product

Database Coordinator

Design
Constraints

Tracer

Design
State

Designer c_1Dependency
Provider

Agenda
Provider

Evaluator

C

FIGURE 2. The Architecture of the Multi-agent Design System

Communication
Facilitator

Designers
Coordinator

.

ONTROL

DAT A

Exception
Handler

Designer Agents
Each designer agent may have multiple approaches for
carrying out its design method. The available space does
not allow us to describe each design approach in detail.
As an example we briefly describe the design approaches
of Designer_k_1, the designer that decides about the loca­
tion of the base of the robot.

Designer_k_1 has four different approaches. The first
approach sets the base of the robot halfway outside of the
longer side of the rectangle that circumscribes the work­
space. This approach generates wide sweep angles for the
robot in order to cover the workspace. The second
approach is similar to the first approach except that it sets
the base halfway outside of the shorter side of the work­
space. This approach produces longer link lengths but
smaller sweep angles for covering the workspace. The
third approach finds the location of the base of the robot
so that the sum of the link lengths is minimized. And
finally, the fourth approach sets the base in a location that
minimizes the area of the robot’s accessible region.

Ten designer agents participate in generating the partial
designs. Designer_k_1 to Designer_k_4 are responsible for
generating kinematic parameters. Designer_s_1 to
Designer_s_5 generate structural specifications of the robot
arm. Finally, Designer_c_1 produces the control parameters
of the robot.

Combining Design Approaches
The set of approaches in each designer agent are priori­
tized based on their desirability. Desirability of an
approach is decided by the experts in the domain and is
based on the cost of the approach in the design process as
well as its effect on the cost and quality of the product.
Designer agents participate in the design process as soon
as all of their input parameters become available.

Inputs to a designer agent become available either by
the user as design requirements or by other designers as
their outputs. Designer agents use their first approach to
generate a design unless there is a failure (i.e., constraint
violation). When a failure occurs, designers re-design
A Partial
Design

Combine

Partial

Designs

The Design or
Re-Design

Results

Design

Check Constraints

Re-Design

ANew
State

initialize

design

constraint
checking

failed local backtrack­
ing possible

design with
next approach

create new
design state

build new back­
tracking session

any backtracking
session active

yes

succeeded

store successful
design state

no

store rejected
design state

new backtracking
session needed

yes

no
design

completed

no

design
succeeded

no

yes

any backtracking
agenda applicable

yes

no

yesretrieve next
backtracking

agenda

design
failed

FIGURE 3. The Flow of Design Process

based on a backtracking agenda that is dictated by Design­
ersCoordinator agent. The DesignersCoordinator agent prepares
and enforces the re-designing agenda so that all possible
combinations of design approaches are considered. In
either case (no failure or failure), design approaches are
combined together in a sequence that starts a path from
the designers at the root of the dependency tree to those
in the leaves.

The number of possible paths is the product of the
number of design approaches in all designers. Different
paths are explored using a depth-first search algorithm.
The system fails to produce a design if there is not any
path (i.e., no combination of design approaches) that sat­
isfies all the design constraints.

Design Constraints
Design constraints define the criteria for acceptance or
rejection of the partial designs that are generated by

designer agents. Different types of constraints that are
applicable to numeric or symbolic values can be defined
in the system. A constraint is violated if its parameter’s
value is not a member of a pre-defined set. Design con­
straints may have been extracted from the design domain
in order to satisfy physical constraints or to impose
boundaries on some features of the product (e.g., cost,
weight, etc.) that control the goodness of the design prod­
uct.

Implementation
A computer program called RD (Robot Designer) based
on the multi-agent paradigm has been implemented for
parametric design of a two degrees of freedom (2-DOF)
planar robot arm. The program has been implemented in
Java and runs on an Intel-based version of the Solaris
operating system. The run time depends on how deep the

DESIGN REQUIREMENTS Designer_k_3: depth: 2, # of approaches: 1,
{ Parameter: operational_plane, Value: horizontal, current approach: 0 (default),
 Owner: Agent: DesignRequirements, ID: 2 # of design cases: 673,
 Parameter: workspace, Value: # of suppliers: 3 (DesignRequirements,Designer_k_1,Designer_k_2,)

 [1.0, 1.1, 1.0939, 1.05, 1.05, 1.0939, 1.3, 1.4,], # of consumers: 1 (Designer_k_4,)
 [0.15, 0.15, 0.1061, 0.15, 0.3, 0.5561, 0.6, 0.6,], Designer_k_4: depth: 3, # of approaches: 1,

 Owner: Agent: DesignRequirements, ID: 2 current approach: 0 (default),
 Parameter: workload, Value: 1.0, # of design cases: 672,

 Owner: Agent: DesignRequirements, ID: 2 # of suppliers: 2 (Designer_k_2, Designer_k_3,) ,

 Parameter: settling_time, Value: 3.0, # of consumers: 0

 Owner: Agent: DesignRequirements, ID: 2 Designer_s_1: depth: 2, # of approaches: 6,

 Parameter: maximum_overshoot, Value: 50.0, current approach: 5 (thickness_dimention_ratio_.2),

 Owner: Agent: DesignRequirements, ID: 2 # of design cases: 673,
} # of suppliers: 5 (Designer_k_2, Designer_s_4,
DESIGN CONSTRAINTS Designer_s_2, DesignRequirements, Designer_s_3,) ,
{ constraint a < link1_length < b of type numeric_7: # of consumers: 2 (Designer_s_5, Designer_c_1,)

 0.01 < link1_length (0.10036738222533641) < 0.105 Designer_s_2: depth: 0, # of approaches: 15,

 constraint a < structural_safety_factor < b of type numeric_7: current approach: 7 (steel_stainless_AISI_302_cold_rolled),

 1.0 < structural_safety_factor (1.3) < 1.6 # of design cases: 40,
 constraint a < link1_cross_section_dimension < b of type numeric_7: # of suppliers: 0,

 0.0010 < link1_cross_section_dimension (0.0044426216545476955) < 0.1 # of consumers: 3 (Designer_s_1, Designer_s_5, Designer_c_1,)
 constraint a < link2_cross_section_dimension < b of type numeric_7: Designer_s_3: depth: 0, # of approaches: 5,

 0.0010 < link2_cross_section_dimension (0.0038776329914356573) < 0.1 current approach: 2 (safety_factor_1.3),
 constraint a < theta2_min < b of type numeric_7: # of design cases: 40, # of suppliers: 0,

 -0.0010 < theta2_min (0.0) < 0.1 # of consumers: 1 (Designer_s_1,)

 constraint a < proportional_gain1 < b of type numeric_7: Designer_s_4: depth: 0, # of approaches: 2,

 0.1 < proportional_gain1 (0.14988805368956284) < 10.0 current approach: 0 (hollow_round),

 constraint a < derivative_gain1 < b of type numeric_7: # of design cases: 40,

 0.1 < derivative_gain1 (0.18224504291419413) < 2.0 # of suppliers: 0, # of consumers: 3 (Designer_s_1, Designer_s_5,
 constraint a < proportional_gain2 < b of type numeric_7: Designer_c_1,)

 0.01 < proportional_gain2 (0.06628060700867518) < 10.0 Designer_s_5: depth: 3, # of approaches: 1,

 constraint a < derivative_gain2 < b of type numeric_7: current approach: 0 (default),

 1.0E-4 < derivative_gain2 (0.0805888913181342) < 0.0010 # of design cases: 672,
} # of suppliers: 5 (Designer_k_2, Designer_s_4, Designer_s_2,
DESIGNER TRACES DesignRequirements, Designer_s_1,) ,
{ Designer_k_1: depth: 0, # of approaches: 2, # of consumers: 0
 current approach: 1 (minimize_link_lengths_summation), Designer_c_1: depth: 3, # of approaches: 1,

 # of design cases: 40, current approach: 0 (default),

 # of suppliers: 1 (DesignRequirements,) , # of design cases: 672,

 # of consumers: 2 (Designer_k_2, Designer_k_3,) # of suppliers: 5 (Designer_k_2, Designer_s_4, Designer_s_2,

 Designer_k_2: depth: 1, # of approaches: 3, DesignRequirements, Designer_s_1,) ,

 current approach: 2 (link_lengths_ratio_2.0), # of consumers: 0

of design cases: 231, }

 # of suppliers: 2 (DesignRequirements, Designer_k_1,) ,

 # of consumers: 5 (Designer_k_3, Designer_s_1,

 Designer_k_4, Designer_s_5, Designer_c_1,)

FIGURE 4. Trace of the System

solution is in the design space and varies from a few min­
utes to several hours.

The object classes in RD can be categorized into two
types: agent and non-agent classes. Agent classes are
those that inherit from a superclass, naturally called
Agent, that contains the generic components of an agent.
While for each specific agent class there is only one
instance, the system might create as many non-agent
class instances as necessary. Some of the non-agent
classes are: Message, DesignParameter, BacktrackingSession,
Event, Constraints, DesignCase and many more.

Traces of the System
RD produces many output files including detailed logs of
sent, received, processed and ignored messages, as well
as reports about specific tasks in each agent. It also pro­
duces a trace file that for each design project contains
design requirements and constraints as entered by the
user followed by the status of each designer agent at the
time of tracing.

Figure 4 shows a partial trace of the system for an
example project. The trace shows that the last constraint
(on derivative_gain2) is not yet satisfied. The system stops
when it either finds a set of parameters that satisfies all

the constraints or exhausts all the possible combination of
approaches.

In the DESIGNER TRACES block of Figure 4 the first row
shows the name, the depth of the designer in a depen­
dency tree, and the total number of design approaches.
The second row shows what design method was used by
the designer at the time of recording the trace. The num­
ber of design cases that the designer agent has done so far
is given in the third row. Design cases differ in the design
approach that is used or in the values of the input parame­
ters. Finally, the fourth and the fifth rows show what
designers provided the inputs and what designers used
the outputs of this designer.

Discussion
The trace files that are produced by RD can be used to
generate a tree that reveals the dependency between
designer agents and thus between design decisions. Fig­
ure 5 shows such a dependency tree that was generated
based on the trace file of Figure 4.

Distribution of disciplinary designers throughout the
process is evident from Figure 5 that is the sign of inte­
gration among disciplines. The integration of multiple
disciplines has been facilitated by the flow of information
Designer_k_4

Designer_k_1

Designer_k_2

Designer_k_3

6 7 8 9 10 115

22 23 24 25 26 27

14 15 16 17 18 19 2120

12 13

Designer_s_2 Designer_s_3 Designer_s_4

Designer_s_1

Designer_s_5 Designer_c_1

32 41 Design Requirements

StructuralKinematic
DesignerDesigner

Design Parameters:

1

3

5

7

8

9

10

11

12

14

16

18

19

21

20

22

23

25

27

2

4

6

workload workspace

settling_time maximum_overshoot

base_location material_name

material_mass_density

material_yield_stress

material_elasticity_modulus

structural_safety_factor

link_cross_sectional_shape

13

15

17

link2_lengthlink1_length

theta1_maxtheta1_min

theta2_maxtheta2_min

link1_cross_section_dimension

link2_cross_section_dimension

link1_cross_section_thickness

link2_cross_section_thickness

accessible_region_area

24

26

proportional_gain1 tip_deflection

derivative_gain1 proportional_gain2

Control derivative_gain2

Designer

FIGURE 5. Dependency between Designers

between small designer agents and by letting them con­
tribute to the design as soon as they have enough infor­
mation.

At least three important characteristics of the design
process can be extracted from the dependency tree of Fig­
ure 5: 1) ordering of design decisions, 2) concurrency
among some of the decisions, and 3) distribution of disci­
plinary decisions throughout the design process.

Every trace that the system produces at the end of the
design process is an instance of a design methodology.
Due to the depth-first search algorithm the trace of the
system implicitly contains the failures that had led to
backtracking. As a result, the generalized traces have the
advantage of avoiding the failures and starting from a
point that has a much better chance for fast convergence.

The trace of the system reveals the most dependent and
the most independent designers, indicating which deci­
sions are more costly to change. For instance, by looking
at the results in Figure 5 we realize that Designer_c_1 is the
most dependent designer and thus most vulnerable to
changes. Designer_s_2 to Designer_s_4, on the other hand,
are the most independent designers, because in the
absence of any user’s requirements they use their domain
knowledge to generate a design. For instance, Designer_s_2
chooses a material from the set of options that it has. It
selects another material if a re-design is needed.

By studying the amount of time and the information
(i.e., sent and received messages) that a designer agent
needs in order to make a design decision the bottlenecks
and costly tasks can be found. This information is stored
in each designer agent’s log files. For instance, some­
times Designer_k_1 takes considerably longer periods of
time to make its design decision (i.e., the location of the
base of the robot). Investigating Designer_k_1 reveals that
in those cases it uses one of its iterative approaches,
hence taking longer time. As another example, Figure 5
shows that Designer_k_2 (that decides about the length of
the links of the robot) acts as a bottleneck, because no
other designer can participate in the process concurrently.

Conclusion
Simulation of design processes based on a multi-agent
paradigm is a new area of research that has a high poten­
tial for practical as well as theoretical impact on the
design of products. The results show that invaluable
information about the design process can be discovered
by simulating the design process. This information can be
used to improve design processes as it is done by human.

Enriching the design methodologies so that they con­
tain more knowledge on how to conduct the design pro­
cess is an extension to the current work. Specializing the
methodologies in other aspects such as Design For X
(e.g., manufacturability, assembly, etc.) is another area to
which the proposed approach can be applied.

References
Badhrinath, K. and Jagannatha Rao, J. R. 1996. Modeling
for Concurrent Design Using Game Theory Formula­
tions. Concurrent Engineering: Research and Applica­
tions, 4(4):389-399.

Brown, D. C. and Douglas, R. 1993. Concurrent Accu­
mulation of knowledge: A View of CE. The Handbook of
Concurrent Design and Manufacturing, (Eds.) Parsaei,
H. R., and Sullivan, W. G.: Chapman & Hall: 402-412.

Forrester, J. W. 1969. Urban Dynamics: MIT Press.

Jackson, P. 1990. Introduction to Expert Systems: Addi­
son-Wesley.

Kroo, I., and Takai, M. 1990. Aircraft Design Optimiza­
tion Using a Quasi-Procedural Method and Expert Sys­
tem. Multidisciplinary Design and Optimization
Symposium, Nov. 1990.

Lander, S. E., and Lesser, V. R. 1992. Customizing Dis­
tributed Search Among Agents with Heterogeneous
Knowledge. In Proceedings of 5th International Sympo­
sium on AI Applications in Manufacturing and Robotics,
Cancun, Mex., Dec. 1992.

Lander, S. E. 1997. Issues in Multi-agent Design Sys­
tems. IEEE Expert: Intelligent Systems and their Applica­
tions 12(2): 18-26.

NSF 1996. Research Opportunities in Engineering
Design. NSF Strategic Planning Workshop Final Report,
April 1996.

Sobolewski, M. 1996. Multiagent Knowledge-Based
Environment for Concurrent Engineering Applications.
Concurrent Engineering: Research and Applications
4(1): 89-97.

Sycara, K. 1990. Cooperative Negotiation in Concurrent
Engineering Design. Cooperative Engineering Design:
Springer Verlag.

Wooldridge, M., and Jennings, N. R. 1995. Intelligent
agents: Theory and practice. The Knowledge Engineering
Review, 10(2):115-152.

Wooldridge, M. 1997. Agent-based software engineering.
IEEE Transactions on Software Engineering, 144(1): 26­
37.

Wooldridge, M., and Jennings, N. R. 1998. Pitfalls of
Agent-Oriented Development. In Proceedings of the Sec­
ond International Conference on Autonomous Agents,
385-390. Minneapolis/St. Paul, MN. USA, May 9-13,
1998.

Wujek, B. A., Renaud, J. E., Batill, S. M., and Brockman,
J. B. 1996. Concurrent Subspace Optimization Using
Design Variable Sharing in a Distributed Computing
Environment. Concurrent Engineering: Research and
Applications 4(4): 361-377.

	Discovering Methodologies for Integrated Product Design
	Cirrus Shakeri, David C. Brown, and Mohammad N. Noori
	Mechanical Engineering and Computer Science Departments Worcester Polytechnic Institute, Worceste...
	Abstract
	Introduction
	Multi-disciplinary Product Design
	Integration in Product Design
	1. Small Design Methods. In order to integrate different disciplines, the big chunks of design kn...
	2. Opportunistic Contribution. An opportunistic problem solving strategy facilitates integration ...
	3. Cooperation. A cooperative strategy provides mechanisms by which different participants adopt ...
	4. Least Commitment. Least commitment means deferring the decisions that constrain future choices...
	5. Concurrency. “It is well known that concurrent decision making is an important and very desira...

	Knowledge Based Design Approach
	Multi-agent Design System
	System Architecture
	Structure of an Agent
	1. Message composer: composes a message that may be sent to one or more agents. Message composer ...
	2. Message sender: sends the composed messages to other agents,
	3. Message receiver: receives the messages from other agents,
	4. Message processor: processes received messages,
	5. Observable: sends notifications about internal events to other interested components of the sa...
	6. Logger: records various internal events of an agent in different log files. The logger is also...

	Posing Design Goals
	Designer Agents
	Combining Design Approaches
	Design Constraints
	Implementation
	Traces of the System

	Discussion
	Conclusion
	References
	FIGURE 1. Methodology Extraction from Traces
	FIGURE 2. The Architecture of the Multi-agent Design System
	FIGURE 5. Dependency between Designers
	FIGURE 4. Trace of the System
	FIGURE 3. The Flow of Design Process

