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INTRODUCTION 

In Earth science research, climatic conditions can have significant effects on dynamic processes. 
For example, the growth of forests is affected by temperature, rainfall and other climatic variables. 
However, these climate parameters are rarely measured at the forest stands whose growth is being 
investigated. The climate conditions are measured at nearby weather stations, though, and it is a 
common approach to use the weather station data to ‘predict’ the climate at the study site.  This situation 
is illustrated in the sketches below. Three weather station locations are shown in red, each with a 

known mean annual temperature T  and associated variance σ2, as determined from measurements made 
over some historical period.  The study site, shown in green, is where we would like to know the mean 
annual temperature, but no temperature measurements have ever been recorded there.  The 
straightforward objective is to find the best approximation possible to the study site temperature given 
the weather station data. 
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It is evident from the cross-section that a simple, distance-weighted average of the weather station data 
is inadequate to describe the temperature at the study site, since temperatures depend on elevation and 
other topographical features. One approach to remedy this situation might utilize the following strategy.  
If the dependence of temperature on elevation were known, for instance from a regression of weather 
station temperatures on weather station elevations, the effect of elevation could be accounted for by 
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performing the spatial interpolation at some base elevation.  A three-step interpolation procedure could 
be implemented as shown in the sketches below.  By modeling how temperature changes with elevation, 
the variability in temperature caused by elevation can be removed before the spatial interpolation is 
performed.  In the graph shown below, a simple linear regression is used to determine the empirical 
lapse rate. This lapse rate is used to translate the station temperatures to some ‘base level’ elevation, 
where spatial interpolation is performed.  The interpolated temperature at the base level is then re
translated to the study site elevation using the same empirical lapse rate. 
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With this procedure, the spatial interpolation is performed while taking elevation into account.  But 
while this is certainly an improvement over a simple distance-weighted average of station data, it does 
not account for other independent factors which also affect temperature.  Further, a natural question to 
ask would be whether or not distance weights are the optimal interpolation weights to use.  These 
concerns provide motivation to explore the generalization of the above three-step interpolation process. 

In conceptual terms, the above interpolation process seeks to account for temperature variability 
which is explainable by linear regression on elevation, and then spatially interpolate the residuals by a 
distance-weighted average. When viewed in this light, two improvements to the process are 
immediately apparent: 

(1) Use a more general regression procedure, and try to explain as much of the variability in 
temperature as possible using combinations of several independent factors which affect temperature. 

(2) Use optimal weights for the spatial interpolation of residuals. 
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This generalization is the method of Kriging.  The objective here is to use Kriging to produce a 
‘continuous’ map of rainfall over the land surface area of Puerto Rico.  The available dataset is given in 
the table below. 

Station 
Label Latitude 

(°N) 
Longitude 

(°W) 
Elevation 

(m) 
Aspect 

(degrees True) 

Center 
Direction 

(degrees True) 

Center 
Distance 

(km) 

Sea 
Distance 

(km) 

Average 
Annual Rainfall 

(mm) 
s1 17.967 66.233 3.0 154.9 141.3 36.3 1.82 108.2 

s2 18.467 66.717 15.2 62.4 311.4 43.3 0.46 148 

s3 18.35 66.800 320.0 288.4 290 45.4 14.81 216.1 

s4 18.083 67.150 76.2 295 259.5 85.1 4.07 167.2 

s5 18.250 66.033 76.2 90 85.2 46.9 21.12 158 

s6 18.483 66.850 21.3 294.9 302.6 57.1 0.46 124.9 

s7 18.117 66.167 426.7 0 110.6 33.1 18.15 149.2 

s8 18.200 66.167 426.7 180 93.6 31.2 25.92 198.4 

s9 18.083 66.350 61.0 274.3 148 17.7 12.26 108 

s10 18.350 66.317 121.9 180 41.2 20.1 13.58 199.4 

s11 17.950 66.933 3.0 209 241.9 65.5 21.46 77.9 

s12 18.333 65.650 12.2 303.7 81.5 92.6 2.05 165.9 

s13 17.983 66.117 61.0 180 126.4 45.2 3.37 138.3 

s14 18.150 66.833 27.4 256.5 260.5 47.4 17.53 216.8 

s15 18.167 66.583 609.6 238.3 251.6 18.4 21.6 303.8 

s16 18.167 66.600 762.0 229.6 253.3 20.3 21.22 282.6 

s17 18.317 65.783 701.0 38.6 81.3 76.9 8.13 459.5 

s18 18.050 67.067 30.5 132.7 255.3 76.3 8.35 120.9 

s19 18.300 66.883 365.8 33.7 280.5 53.5 20.38 248.6 

s20 18.183 67.000 457.2 346 266.6 66.4 17.17 282 

s21 18.217 67.150 24.4 180 270 83.8 1.3 204.2 

s22 18.200 65.733 39.6 180 91.4 81.9 2.01 214.7 

s23 18.033 66.033 61.0 88.7 114.6 51 6.28 168.1 

s24 18.017 66.617 12.2 202.8 222.5 30.9 4.38 91.4 

s25 18.467 66.933 15.2 123.7 296.6 64.8 2.05 138.3 

s26 18.333 66.667 60.4 110.5 296.6 30.2 15.83 204.1 

s27 18.150 66.533 685.8 117.9 236.3 13.8 18.67 274.7 

s28 18.250 66.783 152.4 305 275.4 41.1 25.18 339.5 

s29 18.350 65.817 106.7 270 77.8 73.7 6.42 240.8 

s30 18.083 67.050 106.7 275.3 257.8 73.6 12.17 143.5 

s31 18.333 67.000 106.7 258.2 281.6 67.6 17.5 246.6 
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The data in the table were collected from various sources, and values in some of the columns 
were calculated in Idrisi. More data is on the way, but my contacts in Puerto Rico have been slow in 
getting it to me.  The map below (displayed in InfoMap) shows average annual rainfall in millimeters at 
the weather station locations listed in the above table. The base file ‘prtoric2.bdy’ and associated data 
file ‘rainfall.dta’ used to create the image below are provided on the disk accompanying this project. 

Kriging is performed in InfoMap, but the values at intermediate locations are only displayed on the 
screen and are not retrievable. The problem here might be one of location:  InfoMap base files only 
store location information for the sites where raw data is available.  At places where there are no data, 
InfoMap base files contain no location information.  So, in order to save the Kriged data values within 
InfoMap, a location must be specified at each place where an interpolated value is desired.  This could 

be done by modifying the base file, adding all the locations at intermediate points, but I will defer that to 
a later time, and work with images in Idrisi for now.  The end results will be easily imported into 
InfoMap, as the data format is nearly identical.  The InfoMap file will be required to obtain variogram 
model parameters for computation of the covariance matrix. 

KRIGING 
The overall objective is to estimate the unknown value of rainfall at intermediate locations based 

on empirical data at fixed locations.  Using the notation from class, let X(s) represent the rainfall at any 
single location, s, within the study area. The raw data can then be written in the form of ordered pairs 

{(s1, X1),(s2, X2), . . . ,(sn, Xn)} 

where each si, i = 1 . . n, represents the location of the ith weather station, and Xi, i = 1 . . n, is the 
average annual rainfall measured at that station.  Then, the familiar model for rainfall at any weather 
station location is given by 

X(si) = μ(si) + U(si) 

where μ(si) represents the best estimate of the rainfall found from regression on independent parameters 
at location si, and U(si) is the regression residual at si. Vector notation for i = 1, . . ,n is written here as 

X(s) = μ(s) + U(s) 

where the bold-type X(s) = {X(s1), X(s2), . . . , X(sn)}T indicates a column vector of dimension n. 

4
 



 

 
 

 

                      

  
 
 

 

REGRESSION ON INDEPENDENT PARAMETERS 
Now, call the independent parameters, such as elevation, aspect, etc., Y1(s), Y2(s), . . . , Yk(s). 

Note that these are also column vectors.  Then, the regression component μ(s) is found by determining 
the (least-squares) regression coefficients β in 

X(s) = μ(s) + U(s) 
= Y(s)β + U(s) 

where Y(s) is the n by k+1 matrix [1, Y1(s), Y2(s), . . . , Yk(s)], and β is a k+1 by 1 column vector of 
regression coefficients. This is a general linear model, and the aim is that the regression explains all of 
the regular variability in the data X(s). If this is attained, then the residuals U(s) will display no pattern, 
i.e., U(s) will be covariant stationary, with covariance structure cov[U(s)] = σ2I. This property of 
residuals is required for Kriging. However, in the general case, there is no guarantee that the residuals 
will be covariant stationary. So, the general linear model X(s) = Y(s)β + U(s) must first be transformed 
into a classical model X*(s) = Y*(s)β$ + U*(s) through the transformation  

(Y,X) → L-1(Y,X) 

where the matrix L-1 is the inverse of the lower triangular Cholesky factor of the residuals covariance 
matrix: 

L LT= cov(U) 

Then, the subsequent regression on the transformed variables (Y*,X*) yields cov[U*(s)] = σ2I. The 
coefficients β$  are then used as estimators of the classical linear regression coefficients in  

X(s) = Y(s) β$  + U1(s) 

where the subscript on U1(s) denotes a first iteration. Since U1(s) may still not be covariant stationary, 
further iterations of this process can be carried out, until the covariance structure of Uj(s) is sufficiently 
close to σ2I form.  The ‘Universal Kriging Transform Program’ listed at the end of this paper was 
written to carry out this transformation.  For this project, the regression was performed in JmpIn, and the 
results of the general linear model are shown below: 
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Response: Rainfall Parameter Estimates 
RSquare 0.583508 Term Estimate Std Error t Ratio Prob>|t| 
RSquare Adj 0.553758 Elevation 0.2401363 0.042049 5.71 <.0001 
Root Mean Square Error 54.56738 Latitude 159.76765 66.47986 2.40 0.0231 
Mean of Response 198.0516 Intercept -2756.746 1210.156 -2.28 0.0306 
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From this model, the residuals at each location were re-calculated in InfoMap and displayed above.  The 
following variogram was then calculated from the residuals: 

For this Spherical variogram model calculated in 

InfoMap, the following parameters were obtained: 


Nugget: 1322 

Range: 309.5 

Sill: 3456 


With the above variogram parameters, the first iteration residuals U1(s) were calculated using the 
Universal Kriging Transform Program, and the results are plotted below: 
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The spatial distribution of the first iteration residuals is shown below, along with the corresponding 
variogram, calculated in InfoMap. 

For the Spherical variogram model of the first 
iteration residuals, the following parameters were 
obtained: 

Nugget: 1322 

Range: 309.5 

Sill: 3456 


Examination of the residuals shows that the first iteration produced changes the residual values at all 
station locations, as shown in the following table: 

Station Label First Residual Second 
Residual 

Station Label First Residual Second 
Residual 

s1 -6.32009 -10.597 s17 121.4461 131.1056 
s2 -49.3336 -34.2563 s18 -13.4846 -14.5344 
s3 -35.7343 -25.0126 s19 -6.24415 2.568651 
s4 16.56889 16.82176 s20 23.90021 28.23723 
s5 -19.3123 -12.5974 s21 44.59908 50.00787 
s6 -76.4547 -60.7549 s22 54.16506 58.9246 
s7 -91.031 -89.265 s23 29.10734 27.41692 
s8 -55.0917 -50.114 s24 -33.3177 -35.6548 
s9 -38.981 -38.7367 s25 -59.0336 -43.9563 
s10 -4.8633 5.746818 s26 17.32113 27.23879 
s11 -33.904 -38.8388 s27 -33.0226 -29.8337 
s12 -9.3043 0.586197 s28 143.8893 150.6471 
s13 7.295722 3.670563 s29 40.18677 50.78833 
s14 67.1831 70.00103 s30 -14.4553 -14.1852 
s15 11.65972 15.46349 s31 48.70282 58.64657 
s16 -46.137 -42.2474 

The iterations on the residuals should be repeated until the variogram displays covariant stationary 
properties, i.e., until the variogram flattens out.  For the purposes of this project, I will stop at one 
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iteration, and use the variogram parameters listed above to compute the covariance matrix used in 
Kriging below. 

SPATIAL INTERPOLATION OF RESIDUALS BY KRIGING 

The Kriging estimate for unknown rainfall at any location s ∉{ 1 , , ss K } is found by firstn 

applying the regression model, and then spatially interpolating the residuals: 
X(s) = μ(s) + U(s) 

$ = Y(s)β$  + U (s) 

where the β$  regression coefficients are determined from the final iteration of the regression model 
(which also yields Uj(s)), and where U$ (s) is estimated by the following expression: 

n 
$ s U s  )U s  = ( )  ⋅ (( ) 	  ∑λ i ( j i ) 

i=1 

That is, the estimated residual at the unknown location s is a weighted average of the residuals at the 
known locations. The optimal weights λ*(s) are determined from the covariance matrix of residuals, by 

λ*(s) = C-1c(s) 

where C = cov[Uj(s)], and c(s) = (σ1s, . . . , σns), the covariance between the unknown location and the 
station locations, which are set to zero if the station location is outside the Kriging bandwidth. 

The Kriged residual map U$ (s) is shown on the following InfoMap output. 

Obviously, there is still some structure to these residuals, and a few more iterations in the regression 
model are warranted.  Unfortunately, the program which accomplishes the spatial interpolation is not 
finished yet, so the term project ends with this map. 
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SPATIAL INTERPOLATION OF RESIDUALS BY KRIGING 

In the first part of this paper, a regression model was formulated which, through several 
iterations produced residuals which are covariant stationary. The remaining task is to interpolate the 
residuals to form a continuous map of temperature values.  The following passage reviews the general 

procedure. The Kriging estimate for unknown rainfall at any location s ∉{s1 , , s } is found by firstK n 

applying the regression model, and then spatially interpolating the residuals: 

X(s) = μ(s) + U(s) 
$ = Y(s)β$  + U (s) 

where the β$  regression coefficients are determined from the final (jth) iteration of the regression model 
(which also yields Uj(s)), and where U$ (s) is estimated by the following expression: 

$ ( ) = ∑
n 

λ i ( )s ⋅ (U j (si ))U s  
i=1 

That is, the estimated residual at the unknown location s is a weighted average of the residuals at 
the known locations. The optimal weights λ*(s) are determined from the covariance matrix of residuals, 
by 

λ*(s) = C-1c(s) 

where C = cov[Uj(s)], and c(s) = (σ1s, . . . , σns), the covariance between the unknown location 
and the station locations. Since the covariance matrix is symmetric and positive definite, a Cholesky 
factorization is possible which allows the following simplification: 

λ*(s) = C-1c(s) 

= (LLT)-1 c(s) 

= [(LT)-1 L-1] c(s) 

= [(L-1)T L-1] c(s) 

= (L-1)T [L-1 c(s)] 

In executing the method, the value of σis is set to zero if the ith station location lies at a distance 
which is greater than the Kriging bandwidth.  The result is that the ith station then has no bearing on the 
interpolated value. An implementation of this method is given in the program code listed at the end of 
this paper, the Universal Kriging Transform Program.  This program uses the method described above to 
interpolate from point data to every pixel in an image.  A test data set is provided below to illustrate the 
functioning of the program. 
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To illustrate the method with a simple dataset, consider the following 10 by 10 matrix of values 
which represent the elevation in meters of some 10 km by 10 km patch of land: 

0 0 8 20 30 60 50 45 30 20 
0 2 16 30 60 70 60 50 40 30 
1 18 28 50 60 75 70 60 50 40 
3 25 40 60 80 85 80 70 60 50 
5 30 55 70 93 100 90 80 70 60 
6 25 60 75 91 90 80 70 60 50 
7 24 60 75 85 80 70 60 50 40 
8 23 50 60 80 70 60 50 40 30 
9 22 40 50 60 60 50 40 30 20 

10 20 30 40 45 50 40 30 20 10 

Suppose that the average annual temperature, in degrees centigrade, is known at some of these locations, 
as shown in the following ‘matrix map’: 

32 19 29 

15 13 
21  

10  
14  

26 11 16 

15  

The resultant data set is shown below, along with the following second order least-squares regression of 
temperature on elevation: 

Temp = 32.91 - 0.474(Elev) + .00249(Elev2) 

Elev Temp X Y Residual 
0 32 0.5 9.5 3.514373 Modeling of these residuals in InfoMap gives the 
20 29 9.5 9.5 4.964742 following spherical variogram model parameters: 
23 26 1.5 2.5 2.632298 
25 21 1.5 6.5 -1.922670 nugget: 5.1 
30 16 9.5 2.5 -5.810070 range: 7.37 
40 15 40 15 -4.584890 sill: 11.5 
45 19 45 19 0.527704 
50 15 50 15 -2.359700 
60 14 60 14 -1.134520 
70 13 70 13 0.090665 
80 11 80 11 0.315850 
100 10 100 10 3.766219 
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Proceeding as if the regression residuals were covariant stationary, the Universal Kriging Interpolation 
Program, listed at the end of this paper, gives the following interpolated values, when a Kriging 
bandwidth of 5 is chosen: 

30.8 30.4 24.3 22.1 19.6 13.1 16.0 18.0 23.1 29.0 
30.8 29.5 23.4 18.7 11.8 11.7 14.0 17.1 20.1 23.3 
30.3 22.9 19.4 13.6 12.1 11.2 12.5 14.9 17.2 20.3 
28.4 20.7 16.4 12.0 9.8 10.4 11.2 13.3 14.8 16.9 
29.5 19.9 13.6 11.2 9.7 9.8 10.7 11.4 12.6 14.2 
30.1 22.7 13.5 11.5 10.4 10.5 10.8 11.6 13.2 15.6 
30.1 23.6 14.0 11.8 10.8 10.9 11.7 12.7 14.9 17.6 
30.0 24.4 16.4 14.2 11.6 11.9 12.9 14.5 17.1 20.4 
29.8 25.0 20.7 16.4 13.9 13.2 13.8 17.1 20.0 23.7 
29.4 25.7 22.1 18.8 17.0 15.5 17.4 20.0 23.6 27.5 

Applying this method to the Puerto Rico map, the US Geological Survey 1° Digital Elevation Model 
(DEM) is used as a basemap.  This model consists of a digital image where the numerical value of each 
pixel represents the elevation at the corresponding location on the surface.  The 1° DEM yields a 
resolution of about 30 meters, i.e., the size of each pixel in the image is about 30 meters on a side.  In 
order to convert the DEM to fit into InfoMap, the pixel resolution was degraded to about 200 meters on 
a side, and the resulting image has the following characteristics: 

Each pixel value in the DEM stores the average elevation 
of the corresponding place in Puerto Rico 

 750 columns

 279 
rows 

So, generating a Kriged map of Puerto Rico Rainfall is no different than the sample dataset shown 
above, only the Puerto Rico image is somewhat bigger.  The regression for Puerto Rico Rainfall was 
based on both elevation and latitude, as previously given.  The (x,y) locations for the pixels are given by 
their latitude and longitude, and converted to the corresponding column and row numbers in the image, 
adjusted for location within the pixel to the nearest tenth pixel. 
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X Y Residual X Y Residual 

21.8 461.4 -10.597 185.3 661.0 131.1056 

255.4 247.0 -34.2563 60.7 91.7 -14.5344 

200.9 210.0 -25.0126 177.5 173.0 2.568651 

76.3 54.7 16.82176 123.0 121.3 28.23723 

154.2 550.1 -12.5974 138.6 54.7 50.00787 

263.2 187.8 -60.7549 130.8 683.2 58.9246 

91.9 491.0 -89.265 53.0 550.1 27.41692 

130.8 491.0 -50.114 45.2 291.3 -35.6548 

76.3 409.6 -38.7367 255.4 150.8 -43.9563 

200.9 424.4 5.746818 193.1 269.1 27.23879 

14.0 150.8 -38.8388 107.5 328.3 -29.8337 

193.1 720.2 0.586197 154.2 217.4 150.6471 

29.6 513.1 3.670563 200.9 646.2 50.78833 

107.5 195.2 70.00103 76.3 99.1 -14.1852 

115.2 306.1 15.46349 193.1 121.3 58.64657 

115.2 298.7 -42.2474 

Using the regression on elevation and latitude, and the residuals shown in the table above, the Universal 
Kriging Interpolation Program was used to produce the Kriged Map of Puerto Rico shown below.  The 
output is shown as an Idrisi image.  In the image, green values are highest rainfall, grading through red 
to the lowest values of dark blue. Not that the interpolation accurately captures the rain forest areas of 
the island, and correctly displays very dry areas along the south coast. 

12
 



                         

  

                                              

            
   

                                                  

                                                 

           

                                           
 

                           

                 
                              

                            

                             

 

                                         
                 

        
          

    
       

 

 

 

 

 
 

 

 

 

 

 
 
 
  

 

 program krige
c********************************************************************** 
c* Universal Kriging Interpolation Program * 
c********************************************************************** 
c This program is designed to create an image file which displays c 
c a continuous map of interpolated values calculated from point data c
c by the method of Kriging. 

implicit none
double precision C(50,50),sigma(50),u(50,3),sill,nugget,range
double precision euclid,x1,x2,y1,y2,sphere,store(50,50),bndwdt
double precision sum,dist,weight(50),regres,elev,y,w1(50)
integer i,j,k,n,p,nrows,ncols,flag 

c Function Statements c 
euclid(x1,y1,x2,y2)=sqrt((x1-x2)**2+(y1-y2)**2)
sphere(x1,nugget,sill,range)=
* 	 nugget+(sill-nugget)*
* 	 (((3.0d0*x1)/(2.0d0*range))-((x1**3)/(2.0d0*(range**3))))
regres(x1)=32.9142d0-.47408d0*x1+.00249d0*(x1**2) 

c Open Data Files c 
open(10,file='u.dat')
open(11,file='basemap.img')
open(12,file='krigemap.img') 

c Data Input Block c 
print*,'********************************************************'
print*,'* Universal Kriging Interpolation Program *' 
print*,'********************************************************'
print* 

c User Input: Image Size c 
print*,'How many rows of pixels are there in the final image? ' 
read*,nrows
print*,'How many columns of pixels are there in the final image?'
read*,ncols
print* 

c User Input: Variogram model parameters c 
print*,'This program will calculate the covariance matrix from ' 
print*,'spherical variogram model parameters. ' 
print*,'Input value of the sill: ' 
read*,sill
print*,'Input value of the nugget: ' 
read*,nugget
print*,'Input value of the range: ' 
read*,range
print* 

c User Input: Kriging Bandwidth
print*,'When Kriging is performed, only point data within the ' 
print*,'Kriging bandwidth will be considered while interpolation'
print*,'is performed. ' 
print*,'Input value of the Kriging bandwidth: ' 
read*,bndwdt

print* 

c File Input: Read in the point data in (x,y,u(x,y)) format c 
print*,'The program reads the point data from a file ' 
print*,'called "u.dat", with data in the form (x,y,u(x,y)) ' 
print*,'The program also reads the base map from a file ' 

13




               
                  

                    

  

   

   

         

                                          

     
  

  

                                        

     
  

                             

                             

                                            

 

 

 

 

 

 

 
 

 

 print*,'called "basemap.img", in column format. ' 
print*,'Are "u.dat" and "basemap.img" ready? ' 
print*,' 1<enter>=continue 2<enter>=exit ' 
read*,flag

print*

if(flag.ne.1)then


print*,'Create data files and rerun. Program Terminates. ' 
stop


endif 

i=1 


5 	 read(10,*,end=6,err=999) (u(i,j),j=1,3)
i=i+1 
goto 5

6 	 n=i-1 
if(n.gt.50)then


print*,'n= ',n,' > 50, too big for this program.'

print*,'Program Terminates.'

stop


endif 

c Create Covariance Matrix from Variogram Model Parameters c 

c Compute distance matrix c 
do 15 i=2,n

do 10 j=1,i-1
store(i,j)=euclid(u(i,1),u(i,2),u(j,1),u(j,2))
store(j,i)=store(i,j)

10 continue 
15 continue 

do 20 i=1,n
store(i,i)=0.0d0

20 continue 

c Compute Covariance Matrix c 
do 35 i=1,n

do 30 j=1,i
if( (store(i,j).gt.0.0d0).and.(store(i,j).le.range) ) then

C(i,j)=sill-sphere(store(i,j),nugget,sill,range)
elseif(store(i,j).gt.range) then
C(i,j)=0.0d0

else 
C(i,j)=sill


endif 

if(i.ne.j) C(j,i)=C(i,j)


30 continue 
35 continue 

c Compute Inverse of Covariance Matrix c 
call choldc(C,n) 

c Begin Loop to build Interpolated Map c 
do 85 i=nrows,1,-1

x1=dble(float(i))-0.5d0
do 80 j=1,ncols

y1=dble(float(j))-0.5d0 

c Build Variance Vector 	 c 
do 40 k=1,n

dist=euclid(x1,y1,u(k,1),u(k,2))
if( (dist.gt.0.0d0).and.(dist.le.range) ) then

sigma(k)=sill-sphere(dist,nugget,sill,range)
elseif(dist.gt.range) then
sigma(k)=0.0d0 
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 else 
sigma(k)=sill

endif 
if(dist.gt.bndwdt) sigma(k)=0.0d0

40 continue 

c Build Optimal Weights Vector 	 c 
do 55 p=1,n


sum=0.0d0 

do 50 k=1,p


sum=sum+C(p,k)*sigma(k)
50 continue 

w1(p)=sum
55 continue 

do 65 p=1,n

sum=0.0d0 

do 60 k=p,n


sum=sum+C(p,k)*w1(k)
60 continue 

weight(p)=sum
65 continue 

c Finally, compute the interpolated value by Generalized Kriging c 
read(11,*) elev 

sum=0.0 
do 70 k=1,n

sum=sum+weight(k)*u(k,3)
70 continue 

y=regres(elev)+sum 

write(12,*) y 

80 continue 
85 continue 

stop
999 	 print*,'Error reading "u.dat". Program terminates. ' 

stop
end 

 subroutine choldc(a,n) 
c performs cholesky decomposition of n by n matrix a, then computes c 
c the inverse of the lower triangular part, and stores the complete c 
c lower triangular matrix back in a. 

 implicit none 

double precision a(50,50),p(50),sum


 integer n,i,j,k 


c Subroutine to decompose a symmetric positive definite matrix c 
c was taken from Numerical Recipes. This subroutine also inverts c 
c the matrix. c 

do 30 i=1,n
  do 20 j=i,n 


sum=a(i,j)

   do 10 k=i-1,1,-1 


sum=sum-a(i,k)*a(j,k)
10 continue 
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    if(i.eq.j) then 
     if(sum.le.0.0d0) then 

print*
      print*,'Covariance Matrix not Positive' 
      print*,'Definite. Program stops.' 

stop
endif 
p(i)=sqrt(sum)

else 
a(j,i)=sum/p(i)

endif 
20 continue 
30 continue 

c This loop computes the inverse of the L matrix c 
do 50 i=1,n


a(i,i)=1.0d0/p(i)

  do 45 j=i+1,n 


sum=0.0d0 
   do 40 k=i,j-1 

sum=sum-a(j,k)*a(k,i)
40 continue 

a(j,i)=sum/p(j)
45 continue 
50 continue 

c For this program, store the rest of the inverse back in a c 
do 65 i=1,n-1

do 60 j=i+1,n
a(i,j)=a(j,i)

60 continue 
65 continue 

return 

end 
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