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��������� A general theory of volumetric growth for compressible elastic materials is presented. The authors 
derive a complete set of governing equations in the present configuration for an elastic material undergo­
ing a continuous growth process. In particular, they obtain two constitutive restrictions from a work-energy 
principle. First, the authors show that a growing elastic material behaves as a Green-elastic material. Sec­
ond, they obtain an expression that relates the stress power due to growth to the rate of energy change due to 
growth. Then, the governing equations for a small increment of growth are derived from the more general 
theory. The equations for the incremental growth boundary-value problem provide an intuitive description 
of the quantities that describe growth and are used to implement the theory. The main features of the theory 
are illustrated with specific examples employing two strain energy functions that have been used to model 
biological materials. 
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Cartilaginous tissues, such as articular cartilage and the intervertebral disk, are composed 
primarily of three constituents: water, collagen, and proteoglycans. The latter two 
constituents form a collagen-proteoglycan solid matrix that also contains a low density of 
cartilage cells called chondrocytes. The results of numerous studies suggest that mechanical 
loading affects the biosynthetic activity of the chondrocytes and, consequently, the growth and 

of scoliotic spines, possibly due to different states of mechanical loading (Brickley-Parson 
In the intervertebral disk, the annular biochemistry differs in the concave and convex sides 
accompanied by premature growth arrest and lower limb length discrepancies (Ogden [2]). 
[1]). Another example is that injury to the growth plate cartilage of developing bones may be 
age in developing humans with dysplastic hips if the condition is left untreated (Pauwels 
remodeling of the solid matrix. For example, the onset of osteoarthritis is seen at an early 



and Glimcher [3]). Such studies suggest that abnormal mechanical loading conditions have 
an adverse effect on the growth and remodeling of cartilaginous tissues �� ����. In addition, 
�� ���� models of osteoarthritis (Sandy et al. [4]; Kiviranta et al. [5]), �� ���� models of joint 
immobilization (Kiviranta et al. [6]; Palmoski et al. [7]), and �� ����� experiments with tissue 
and cell cultures (Hall et al. [8]; Sah et al. [9]) provide experimental evidence that growth-
related parameters such as biochemical composition, mechanical properties, and cartilage 
thickness vary due to changes in the stress, strain, and water content. 

Models of the finite deformation and flow-dependent mechanical properties of both 
articular cartilage (Ateshian [10]) and the intervertebral disk (Klisch and Lotz [11]) have been 
developed using continuum mixture theory. The collagen-proteoglycan matrix is modeled as 
a compressible finitely elastic solid and the water as an inviscid fluid. However, no continuum 
mixture theory has been developed to model the observed changes of tissue during growth 
and remodeling. As a first step toward developing such a model, a theory of growth for 
compressible elastic materials is developed in this paper. 

Hsu [12] presented the first model of uniform volumetric stress-dependent growth of a 
linearly elastic material. Cowin and Hegedus [13] developed a bone remodeling theory using 
a mixture approach; implicit in this work is the assumption that the growth is isotropic and 
can be represented by the change of a scalar parameter (the volume fraction). Skalak and 
colleagues [14-16] made several important contributions in the area of growth mechanics; in 
particular, Skalak et al. [15] observed that growth can lead to the development of residual 
stresses in the tissue. A general theory of growth for soft tissues was introduced by Rodriguez 
et al. [17]. In that theory, growth is defined as the addition or removal of material that is 
mechanically identical to the original material. The kinematics of material deposition is 
described by a tensor, so anisotropic growth may be modeled. Taber and colleagues have used 
models based on that theory to study the stress-modulated growth of both the heart (Lin and 
Taber [18]) and the aorta (Taber and Eggers [19]; Taber [20]) using several growth laws. The 
theory, as presented in [17] and implemented in [18-20], defined the growth law relative to a 
fixed configuration of the material. Consequently, the compounding effect of the growth of 
new material was not accounted for during the growth process. The theory of [17] was further 
developed by Chen and Hoger [21]. Recently, Hoger [22] further extended the theory and 
presented an implementation in which the growth law is defined on the current configuration 
of the growing material; this implementation was used to model the growth of aortic tissue by 
Van Dyke and Hoger [23]. An underlying assumption appearing in [17-20, 22] was that the 
growing elastic material is incompressible. 

The primary aim of this paper is to develop a theory of growth for compressible elastic 
materials. The theory may be useful in describing the growth of tissue-engineered constructs 
and tissue explants obtained from the body under various loading conditions. The governing 
equations for the theory are developed as a function of position on the current configuration 
of a growing elastic material. In practice, experiments must be performed at different 
stages of the growth process to quantify the evolution of the tissue’s composition, geometry, 
and material behavior relative to a predetermined reference configuration. Therefore, we 
introduce a fixed reference configuration that can be identified with an experimentally 
characterized configuration of the material and can be used as a reference configuration for 
the growth boundary-value problem. 

Several of the variables that are introduced relative to this fixed reference configuration 
lack a clear physical interpretation. However, when interpreted in terms of the continuously 
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changing current configuration of a material during a growth process, these quantities have 
clear physical meanings. Thus, a secondary aim of this paper is to obtain the governing 
equations for a small increment of growth and to provide an intuitive description of the 
quantities that describe growth. In addition, the governing equations for the incremental 
problem can be easily used to implement the theory. The kinematics of growth for 
compressible elastic materials is outlined in Section 2. The balance laws and the formulation 
of a growth continuity equation are presented in Section 3. Constitutive restrictions are 
derived from a work-energy principle in Section 4. The governing equations for an increment 
of growth are obtained in Section 5. The boundary-value problem of spherically symmetric 
growth of a spherical shell in the absence of external loading is outlined in Section 6. The 
solutions of this problem for two different materials are presented and discussed in Section 7. 
Concluding remarks appear in Section 8. 
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In this section, we present the kinematics necessary to describe growth of compressible elastic 
materials. An important feature of the theory as proposed is that a complete set of governing 
equations is developed for the present configuration of an elastic material that is undergoing a 
continuous growth process. The structure of the theory is motivated by how it may be applied 
in practice. Consider a growing elastic body � that occupies the configuration ����� at time 
�� (Figure 1). This configuration represents a loaded configuration of the tissue that, when 
unloaded, occupies the configuration �����, in which the geometric and material properties 
have been experimentally characterized. Suppose that the material in the configuration ���� 
at time �, achieved after some period of growth, could also be characterized in its unloaded 
configuration �� ��� (Figure 1). In particular, experiments may be used to determine the 
changes in tissue mass, geometry, and mechanical properties due to the growth process. 
We will introduce an arbitrary, fixed reference configuration �� ��� that may represent one 
of these experimentally determined configurations. In practice, �� ��� may be chosen to 
coincide with either of the configurations ����� or ����� of Figure 1. 

Motivated by the above remarks, we consider a growing elastic body �, which occupies 

an arbitrary reference configuration �� ��� with residual stress field � (Figure 2). The body 
� occupies the loaded grown configuration ���� at a time �. A material particle of � occupies 
position K in �� ��� and position � in ����. It is assumed that the set of material points in 
�� ��� is dense in the set of all points in ����. The motion of � is defined by a sufficiently 
smooth, invertible mapping 

� � ���� �� � (2.1) 

with deformation gradient 

����� �� 
� � 

�� 
(2.2) 

that satisfies 



Fig. 1. Schematic of a growing elastic body � that occupies the configurations ����� and ���� at different 

times during a continuous growth process. The reference configuration ����� is obtained by unloading 

from �����, and the unloaded grown configuration �� ��� is obtained by unloading from ����. 

� � ���� � �� (2.3) 

Given any point of the growing elastic material that occupies the position � at time �, the  
mapping (2.1) may be inverted to obtain 

� � ��� ��� �� � (2.4) 

Thus, functions that are defined on the loaded grown configuration ���� may be redefined on 
the reference configuration �� ��� using (2.4). Also, any material point that is added during 
the growth process is associated with a unique material point in �� ��� through the inverse 
mapping (2.4). 

The deformation gradient 9 of the mapping from �� ��� to ���� is  assumed to obey the  
following decomposition (Figure 2): 

� � �� �� �� � (2.5) 

The tensor �� �� describes the total deformation due to growth, relative to �� ���, whereas 
the deformation gradient �� represents a superposed elastic deformation produced by applied 
loads. We assume that this decomposition is such that the amount and orientation of mass 
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Fig. 2. Schematic of the decomposition of the deformation gradient tensor F during growth of an elastic 

material. A deformation gradient ���� describes the growth relative to the arbitrary, fixed reference 

configuration ����� with residual stress �. An additional elastic deformation gradient due to applied 

loading (t) is represented by �� . 

deposition are described by �� and that the mass and internal energy density functions are 
independent of �� . In Section 5, the tensors �� and �� will be shown to have a clear 
physical interpretation in the context of a single increment of growth. 

As usual, the velocity � and the velocity gradient ? are defined as 

����� �� �� 
� � � � � � (2.6) 

and the corresponding rate of deformation tensor 7 and spin tensor  J is 

� � 
� 
� 

� 
� � �� 

� 
� � � 

� 
� 

� 
� � �� 

� 
� (2.7) 

respectively. The material time derivative of 9 is 

�� � ��� (2.8) 

The standard definitions (2.6-2.8) will now be used with (2.5) to derive several important 
kinematic relations that are needed in Section 4. With (2.5) and (2.8), the velocity gradient 
may be expressed as  

� � �
�� 

� �� � ���� 

� �� �� � ���� 

���� 

� �� �� �� � ���� 

���� 

���� 

�� � (2.9) 



With the definitions 

�� � ��� ���� 

� �� � ��� ���� 

� �� � ��� ���� 

� (2.10) 

(2.9) becomes� 

� � �� � �� �� ���� 

� �� �� �� ���� 

���� 

� (2.11) 

The symmetric and skew parts of ��� � �� � �� � are defined as in (2.7) and are denoted as 
��� � �� � �� � and ��� � �� � �� �, respectively. Using (2.3), (2.8), (2.10)�, and the standard 
result that, for any nonsingular tensor 4, 

. 
��� � � ����  �� ��� � �� � (2.12) 

we obtain 

.. 
��� ��� 

� � � �� � �� � �� (2.13)
� ��� �� 

Let the effective elastic deformation 9* and the effective right Cauchy Green deformation 6* 
be defined as 

�� � ��� 

�� � �� �� � ��� (2.14) 

Clearly, 6* is properly invariant under superposed rigid-body motions. With (2.10)��� and 
(2.14), the material time derivative of 6* becomes 

�� � � ��� 

��� 

��� 

�� �� � ���� 

��� 

�� �� �� � ��� 

��� 

�� �� �� � (2.15) 
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In this section, the procedure outlined by Atkin and Craine [24] for obtaining the balance 
laws for a single constituent in a reacting mixture will be closely followed. However, some 
interaction terms included in [24] are not necessary here as we are interested in obtaining the 
balance laws for a single constituent (i.e., the growing elastic material). In addition to the 
balance laws, a growth continuity equation will be defined. An important assumption in our 
development is that the material deposited during growth has the same mechanical properties 
as the original material. This assumption has two implications. First, the mass density, linear 
momentum, angular momentum, internal energy, and kinetic energy of the deposited material 
are the same as that of the original material at a point. Second, the mechanical response 
functions of the deposited material are the same as those of the original material. 

We recall that the set of original material points in the reference configuration is dense 
in the set of all points in the grown configuration. A common approach used in formulating 



� 
�� 

� � � 

� �� � 

� � � � 

� ��� 

� � � � 

� ��� 

� �
� 

the balance laws for a continuum involves the definition of a material region of the body that 
always contains the same material particles. Since a material region is more difficult to define 
for a growing material that may be adding or losing material points, it is more straightforward 
to formulate the balance laws using a region fixed in space. Thus, we consider an arbitrary 
region � fixed in �� and bounded by a closed surface �� with unit outward normal a. It  
is emphasized that the balance laws are posed for the loaded grown configuration ���� at 
time �. 
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The integral form of the balance of mass is 

��� � �� � ��� � ���� � (3.1) 

where the mass density of the deposited material is the same as that of the existing material 
at a point. The quantity �� is the mass addition due to growth and has units of (mass/volume­
time). Thus, the mass growth function � represents the amount of mass deposited per unit 
time per unit current mass. By using (3.1) and following standard procedures [25], we derive 
the local continuity equation:� 

�� � ����� � ��� (3.2) 

Recalling (2.13)�, (3.2) may be integrated to yield the material form of the continuity 
equation: 

�� � �� ��� ��� � (3.3) 

In [22], only incompressible materials were considered, so the term on the right-hand side of 
(3.2) was represented by the volume growth function ( �� ) with units of (mass/volume-time). 
Thus, (3.3) could be derived using �� � ��; the result is 

�� � �� ��� �� � (3.4) 

We prefer to use the mass growth function � and (3.3) because the mass density function � 
does not appear in the integrand as it does in (3.4). 

The mass growth function � is not a standard variable in the balance of mass equation, and 
it requires the introduction of an additional equation. Thus, a growth continuity equation is 
formulated by assuming that the density of the material only depends on the effective elastic 
deformation tensor �� �� . Accordingly, we assume 

�� � � ��� (3.5) 

where � � � ���  �� ��� �� . The result (3.5) was obtained in [21] for a growing compressible 
elastic material. Together, (2.5), (3.3), and (3.5) produce the growth continuity equation 
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� ��� 

� 
�� 

� � � � � 

� 
�� 

� � 

� �� 

� � 

� �� 

� 

� 

��� �� � ���  ��� (3.6) 

or, equivalently, 

. 
��� �� 

� �� (3.7)
��� �� 
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The integral form of the balance of linear momentum is 

���� � � �� � �� �� � ���� � ��� � ����� � (3.8) 
� �� � �� � 

where U is the external body force and � is the traction vector. The last integral represents 
the linear momentum increase due to mass deposition, where the linear momentum of the 
deposited material is the same as that of the existing material at a point. With the continuity 
equation (3.2), we obtain the local form of (3.8):� 

div� � �� � � ��� (3.9) 

where G is the Cauchy stress tensor. Note that the last integral on the right-hand side of (3.8) 
does not appear in the local form (3.9), due to the mass growth function that appears on the 
right-hand side of the continuity equation (3.2). 
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The integral form of the balance of angular momentum referred to an arbitrary fixed position 
vector �� is 

� �� � ��� � ��� � � �� � ��� � � �� � �� �� 

� �� � ��� � ���� � �� � ��� � ��� 

� �� �� � ��� � ��� � (3.10) 

The last integral represents the angular momentum increase due to mass deposition, where 
the angular momentum of the deposited material is the same as that of the existing material 
at a point.� With (3.2) and (3.9), we obtain the local form of (3.10): 



� �� 

� � � � � � 
� 
� 

� � 

� � �� � (3.11) 

Note that, as before, the last integral on the right-hand side of (3.10) does not contribute an 
extra term in the local form (3.11). 
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There are various ways to derive the general constitutive restriction for Green-elastic 
materials. Here we follow the approach where the time rate of change of mechanical energy 
is assumed to equal the total mechanical power (e.g., see Beatty [26]). In this approach, one 
assumes a priori the existence of a strain energy density (or internal energy density) function 
�. � The work-energy principle for the growth of an elastic material can be stated as follows: 

The time rate of change of internal and kinetic energy is equal to the work done by body 
forces and surface tractions, the rate of change of internal and kinetic energy due to mass 
deposition, and the growth energy supplied. 

Thus, we write the integral form of the work-energy principle as 

� � � � � � 
� � � 

� � � � � � �� � � � � � � � �� � �� �� 
�� � � 

� �� � ��� � � � ��� � �� � � � � � �� � ���� � (4.1) 
� �� � � 

The third integral on the right-hand side of (4.1) is the rate of change of energy due to 
mass deposition, where we have assumed that the internal and kinetic energy of the material 
deposited is the same as that of the existing material at that point. This agrees with our basic 
assumption that the material deposited is mechanically equivalent to the existing material. In 
the last integrand on the right-hand side of (4.1), the term ß is the rate of growth energy (per 
unit current mass) that is required in addition to that needed to create material with the same 
internal and kinetic energy as the existing material. Using the balance equations derived in 
Section 3, we obtain the local form of (4.1):� 

� �� � �ß � � � �� (4.2) 

Recall that G is symmetric, so with (2.10), (4.2) may be expressed as 

�� ��� �� ���� 

��� �� �� ���� 

���� 

� �� � �ß � � � � �� (4.3) 

To derive constitutive restrictions from (4.3), it is assumed that the internal energy is a 
function of the effective elastic deformation and the residual stress, that is, 



� � 

� � 

��� 

� � 

��� 

� � 

�� � 

��� 

� � � � � 
� � �� �� �� �� � ���� 

� 
� (4.4) 

To satisfy invariance under superposed rigid-body motions, (4.4) must be expressible as 

� � �� ���� 
� 

� (4.5) 

We emphasize that because the material is elastic, the Cauchy stress is rate independent. By 
introducing (2.15) and (4.5) into (4.3), using the chain rule and noting that the residual stress 
field in the configuration �� ��� is fixed, we obtain 

��� 
��� 

��� 

���� �� � � � �� 

��� 
��� 

� ����� 

�� �� � ��� 

����� � �� 

��� 

��� 

���� � ����� � �� � �ß � �� (4.6) 

The final constitutive assumption is that both �� � and ß are independent of the time 
rate of change of the superposed elastic deformation gradient tensor, . � Returning to the 
decomposition � � �� , note that, at any particular point, the elastic deformation gradient 
due to loading �� may be chosen independently from the growth tensor �� and the elastic 
accommodation tensor �� (although �� and �� are not independent of each other). 
Following standard arguments (e.g., see [24]), we obtain� 

� � ���� ��� 
��� 

� (4.7) 

Using (4.7), it is trivial to show that the terms in the second set of brackets in (4.6) cancel, 
leaving 

� � �� �� �� ���� 

���� 

� �ß � �� (4.8) 

Thus, we have explicitly derived the constitutive restriction (4.7), which states that a growing 
elastic material behaves as a Green-elastic material, an idea that was assumed in earlier works 
[17, 22]. In addition, we have derived the new equation (4.8), which states that the stress 
power due to growth is balanced by the rate of change of the extra growth energy. 

In summary, the governing equations for growth of a compressible elastic material 
are the balance of mass (3.2), growth continuity (3.6), balance of linear momentum (3.9), 
balance of angular momentum (3.11), and decomposition equations (2.5). These represent 
17 scalar equations for the 32 scalar unknowns obtained from ���� ������ and ��� Thus, 
two additional equations are required; one is supplied by the constitutive restriction for 
the stress (4.7) and provides 6 scalar equations, and a second is required for �� � and 



�

gives 9 scalar equations.� The assumption of the existence of an internal energy function 
requires the additional constitutive equation (4.5), while the reduced work-energy balance 
(4.8) determines the additional unknown ß. 

The necessity of including the growth energy supply ß in the present theory is illustrated 
by a simple example. Consider a uniform, isotropic growth of a homogeneous material 
without residual stress for which the components of �� � are positive. Furthermore, suppose 
there exists external loading such that the stress in the material is spherical and compressive. 
Due to the results obtained for the corresponding boundary-value problem [22], no residual 
stress develops in the material, and the tensor �� � �� For this example, it may be easily 
seen that the stress power due to growth is negative (i.e., � � �� �� ���� 

� �). Thus, (4.8) 
reveals that a positive growth energy ß, in addition to the energy of the mass deposited, must 
be supplied for this growth to be possible. 
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Growth is a continuous process involving the addition or removal of material points; 
consequently, the most physically relevant tensorial description of mass deposition is defined 
in the present configuration of a growing material. Thus, an incremental approach is used 
to implement the theory; the incremental approach was presented by [22] for incompressible 
elastic materials. In the incremental approach, the reference configuration �� ��� is chosen 
to coincide with that obtained by unloading from the configuration ����� at time �� 

(Figure 3), and the governing equations correspond to the static boundary-value problem for 
an increment of growth from �� ��� to the unloaded grown configuration �� ���� Thus, the 
only external loads that are considered are those corresponding to the configuration ����� 
and that may be used to determine the growth law relative to the reference configuration 
�� ���� 

In particular, consider an increment of growth with no applied loads such that the 
deformation gradient tensor of the mapping from �� ��� to �� ��� obeys the decomposition 

� � �� �� (5.1) 

In (5.1), : is the incremental growth tensor that describes the amount and orientation of mass 
deposition, and �� is the elastic accommodation tensor that ensures compatibility of �� ���� 
Comparison of (5.1) with (2.5) evaluated at �� � � suggests that 

�� ��� �� � �� ��� �� � �� ��� �� � � ��� �� (5.2) 

in the growth boundary-value problem for one increment. Note that an arbitrary, orthogonal 
tensor D may appear in each of (5.2) such that �� � � �� �� ��� ; here we take � � �� 
The physics of the actual growth process suggest that a constitutive equation is needed 
for the tensorial description of mass deposition as a function of position �� in the loaded 
configuration ������ This constitutive equation is termed the ������ ��� and will be denoted 
by � For example, we may assume that growth depends on the stress in �����; then  �. 
� ���� ����� � �. Using the mapping from ����� to �� ���, the growth law may be rewritten 



� � � �

Fig. 3. An increment of growth from the configuration ����� at time �� to the configuration ����� at 

time �. The configuration ����� corresponds to the loaded configuration ����� with stress ��� at time 

��. The deformation gradient of the mapping from ����� to �� ��� is decomposed as ���, where  � is 

the incremental growth tensor and �� is the elastic accommodation tensor. 

as a function of position K in the unloaded configuration �� ���. Thus, the time rate of change 
of the incremental growth tensor, �� , is given by  

� ��� ����� � � � (5.3) 

Since the growth law (5.3) is specified in �� ���, comparison with (2.10)� evaluated at 
�� � � and (5.2)� reveals that 

�� ��� ��� � �� � ��� ��� � �� ��� ��� (5.4) 

in the growth boundary-value problem for one increment. Using a Taylor series expansion 
about time ��, to first order 

� ��� �� � � � ��� ����� ��� ��� � (5.5) 



��� 

With the observations (5.2) and (5.4) and recalling (2.13)�, the growth continuity equation 
(3.7) evaluated in �� ��� may be written in terms of the incremental growth tensor as 

. 
� ��� ��� � ���� ��� ��� � �� ��� ��� � �� (5.6) 

When the time increment is sufficiently small, the mass growth function � may be considered 
as a constant, and (5.6)� becomes, to first order, 

���� ��� �� � � � ��� ��� � ��� ��� � (5.7) 

In addition to (5.1), (5.5), and (5.7), the governing equations for incremental growth of 
a compressible elastic material are the balance of mass 

�� � � ��� (5.8) 

equilibrium 

div� � �� (5.9) 

balance of angular momentum 

� � �� � (5.10) 

and stress constitutive equations 

� � ���� ��� 
��� 

� (5.11) 

where � � � ����� . In addition, the constitutive restriction (4.8) evaluated in �� ��� reduces 
to 

� � �� � �ß � �� (5.12) 

which reveals that the growth energy supply �ß is balanced by the stress power due to growth 
when evaluated in the present configuration of a growth process. 

To formulate a boundary-value problem that includes a superposed elastic deformation, 
the traction � � �� may be prescribed on a subset of the boundary ��� � ��, and  the  
motion � may be prescribed on a subset of the boundary ��� � ��, where  �� is the 
boundary of the body � in the loaded, grown configuration. 
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In this section, several examples are presented to illustrate the main features of the theory. In 
particular, we study growth of a spherical shell using two strain energy functions that have 
been used to describe biological materials. 



� � �� 

� � 
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We consider the growth of a spherical shell from an unloaded initial configuration that is 
stress free to a deformed spherical shell in an unloaded final configuration. The inner and 
outer radii of the spherical shell in the initial configuration are equal to 1 and 2, respectively. 
Since an incremental solution technique is used, the problem is posed in this section as 
an incremental growth from an unloaded reference configuration with residual stress to an 
unloaded grown configuration. To retain spherical symmetry, both the growth and the elastic 
accommodation tensors must be spherically symmetric and, consequently, depend only on 
the radial coordinate. Thus, for an increment of growth, the overall motion of the body is 

� � �� ��� � �  � �� �  � �� (6.1) 

where ��� � � � � and ������� are the spherical coordinates in the grown and reference 
configurations, respectively. The basis vectors in the reference configuration are 
��� � ��� ���. The inner and outer boundaries of the shell in the reference configuration are 
denoted � � �� and � � �� , respectively. The traction boundary condition � � � at the 
inner and outer boundaries results in the nontrivial equations 

��� ��� ��� � �� � �� � �� 

��� ��� ���� �� � �� � �� (6.2) 

where ��� is the normal stress component in the radial direction. 
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The incremental approach described in Section 5 is used to solve the growth boundary-value 
problem. We consider isotropic growth and two special cases of anisotropic growth: radial 
and circumferential. Isotropic, radial, and circumferential growth tensors are represented as 
in [22] by 

�iso � 

�rad � � �� � �� � �� � �� � �� � ��� 

�cir � �� � �� � ��
� �� � �� � ��

� �� � ��� (6.3) 

respectively. An isotropic growth tensor may be visualized as an infinitesimal sphere of 
material growing into a larger or smaller sphere, while an anisotropic growth tensor may 
be visualized as an infinitesimal sphere of material growing into an ellipsoid. In particular, 
the radial growth tensor �rad represents mass deposition only in the radial direction, while 



� � 

� � 
� 

the circumferential growth tensor �cir represents mass deposition only in the circumferential 
direction. For each boundary-value problem, a total mass increase of �� of the current mass 
is specified in each of 50 increments, resulting in a total mass increase of �����. To explore 
the effects of nonhomogeneous growth, two cases are considered. 

6.2.1. Case 1: Uniform Growth 

Here the mass growth function � is uniform through the thickness of the shell. We specify 
� � ���� for each increment and, from (5.7) and (6.3) and � � �� � �, the growth stretches 
for isotropic, radial, and circumferential growth are calculated as 

� � ���
� �� �  �� � 

� � � �  �� 

� � ��� 
� � �� �  �� � (6.4) 

respectively. 

6.2.2. Case 2: Nonuniform Growth 

Here the mass growth function ���� is a linear function of the radial position in the reference 
configuration, from � � �  at the inner radius �� to � � ���� at the outer radius �� . In  
particular, ���� is calculated to achieve a total mass increase of �� of the current mass in 
each increment. Once ���� is specified, the growth stretches are calculated as in (6.4) as a 
function of radial position. 
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Two constitutive equations with exponential strain energy functions were chosen that exhibit 
the strong tension-compression asymmetry observed for cartilaginous tissues. In these 
tissues, the tensile response is attributed to the presence of collagen fibers that offer little 
resistance in compression but allow the material to support high tensile forces. These tissues 
typically have a tangent modulus in uniaxial tension experiments that is one to two orders 
of magnitude higher than the compressive stiffness. The present study uses two strain 
energy functions obtained by neglecting the anisotropic terms from the following models: 
the transversely isotropic model proposed for articular cartilage by Almeida and Spilker [27] 
(referred to as the AS model) and the orthotropic model proposed for the annulus fibrosus 
of the intervertebral disk by Wagner et al. [28] and Klisch and Lotz [29] (referred to as the 
WKL model). Upon neglecting the anisotropic terms, the AS strain energy function becomes 

�� 
� 

� 
� 

� � ��� � ��� �� ��� � �� � �� ��� � �� � �� ��� � �� � (6.5) 



where ��� ��� and �� are the invariants of the right Cauchy-Green strain tensor, 
and ���� ��� ��� ���ß� are material constants equal to ������ ������������� ������ ����. 
Similarly, the WKL strain energy function becomes 

� � ��� � �� ���� ��� ��� � ��� � ��� ��� ��� � ��� � ��� ��� ��� � ���� � (6.6) 

where ���� ��� ��� ��� are material constants equal to ��������� ����� �����������. For  
the deformations corresponding to the boundary-value problems studied in this paper, it 
may be shown that the AS material is more than an order of magnitude ‘‘stiffer’’ than the 
WKL material. Also, the WKL material behaves in a nearly incompressible fashion, with an 
infinitesimal Poisson’s ratio of 0.48. 
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For each material, a total of six problems were solved. Both uniform and linear mass growth 
functions were specified with isotropic, radial, and circumferential growth tensors. In all 
examples, the mass increase of �� in each increment and the overall mass increase of 
����� were the same. A finite element program for growth elasticity developed by [23] 
was used to solve the equilibrium equations for the growth boundary-value problem with 
zero external loads. The output values that are calculated are the Cauchy stress components, 
the displacements of the material points, and the normalized density function in the final 
configuration. 
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The mechanical response to growth for the two materials is different in a number of ways. The 
shapes of the residual stress curves for both materials are qualitatively similar for all growth 
cases; the residual stress plots for linear circumferential growth are shown in Figure 4. Figure 
4 reveals that the stress gradients near the inner radius are greater for the WKL material than 
the AS material, which will be further discussed below. Another difference between the two 
materials is that the shapes of the radial displacement curves are qualitatively different; for 
example, for linear circumferential growth, the radial displacement for the AS material was 
monotonically increasing through most of the shell thickness, while for the WKL material, it 
was not (Figure 5). Since the response of the WKL material is very similar to that reported for 
incompressible materials studied earlier [22], only the AS material response is shown below 
to explore the effects related to nonuniform and anisotropic growth. 

The mechanical response to growth varies depending on whether uniform (i.e., 
homogeneous) or linear (i.e., nonhomogeneous) growth functions are specified. The stress 
plots for uniform versus linear growth for the AS material are shown for radial growth (Figure 
6) and circumferential growth (Figure 7). For radial growth, the uniform case results in higher 
peak stresses, higher circumferential stresses, and higher stress gradients near the inner radius. 



Table 1. Percent volume change for the AS and the WKL materials for all growth cases. 

Uniform Nonuniform 
Material Isotropic Radial Circumferential Isotropic Radial Circumferential 
AS ����  ����  ����  ����  ����  ���� 
WKL ����  ����  ����  ����  ����  ���� 

NOTE: The total mass increase is 64.9%, which equals the value of the percent volume change for uniform 

isotropic growth. 

Table 2. Normalized total strain energy for the AS and the WKL materials for all growth 
cases. 

Uniform Nonuniform 
Material Isotropic Radial Circumferential Isotropic Radial Circumferential 
AS ��� ���� ��� ���� ���� ����� 
WKL ��� ���� ��� ���� ���� ����� 

NOTE: The AS (WKL) values are normalized by the total strain energy calculated for the AS (WKL) material 

in uniform circumferential growth. The strain energy is zero for uniform isotropic growth. 

In contrast, for circumferential growth, the linear case results in higher peak stresses and 
higher stress gradients near the inner radius. In addition, uniform radial growth results in more 
overall compression than uniform circumferential growth, whereas linear circumferential 
growth results in more overall compression than linear radial growth (Table 1). Finally, 
uniform isotropic growth is a compatible deformation that leads to no elastic accommodation 
so that no residual stresses are developed, whereas linear isotropic growth results in residual 
stresses (Figure 8). 

The mechanical response to growth varies depending on the anisotropy, or direction, of 
the growth tensor (i.e., uniform, radial, or circumferential). As mentioned above, uniform 
isotropic growth results in zero residual stresses. Although the radial and circumferential 
stresses for the uniform anisotropic cases are similar in shape, the stresses for the uniform 
radial case are opposite in sign to those for the uniform circumferential case (Figures 6 and 
7). This latter phenomenon is also observed for the linear radial and circumferential growth 
cases. In addition, the radial displacement and normalized density curves are substantially 
different due to growth orientation for both the uniform cases (Figure 9) and the linear cases 
(Figure 10). The overall compression for linear circumferential growth was substantially 
greater than the other cases (Table 1). 

The AS material behaves differently in a number of ways from both the WKL material 
and the incompressible material reported in [22]. For uniform radial and circumferential 
growth, the radial displacement curve for the AS material is nearly linear and monotonically 
increasing through the shell thickness (Figure 9). In contrast, for radial and circumferential 
growth of the WKL and the incompressible materials, the radial displacements first decrease 
and then increase through the shell thickness (e.g., see Figure 5). In addition, the stress 
gradients near the inner radius are less for the AS material than for the WKL and 
incompressible materials for all growth cases (e.g., see Figure 4). Also, the density reaches 
higher maximum and minimum values near the inner and outer radii for the AS material due 
to its greater compressibility (e.g., see Figure 5). 



Fig. 4. Residual stress plots for linear circumferential growth for the WKL (left) and the AS (right) materials. 

The shapes of both the radial (���) and circumferential (���) stress curves are similar for the two materials. 

The stress magnitudes for the AS material are an order of magnitude higher than those for the WKL 

material. 

Fig. 5. Radial displacement and normalized density plots for linear circumferential growth for the WKL and 

the AS materials. The radial displacement for the AS material is monotonically increasing with increasing 

radius through nearly the whole thickness. The normalized density plots reveal that the AS material is 

more compressible than the WKL material. 



Fig. 6. Stress plots for uniform radial (left) and linear radial (right) growth for the AS material. The 

uniform case results in higher peak radial stresses, higher circumferential stresses near the inner radius, 

and higher stress gradients near the inner radius. 

Fig. 7. Stress plots for uniform circumferential (left) and linear circumferential (right) growth for the AS 

material. The linear case results in higher peak stresses and higher stress gradients near the inner radius. 



Fig. 8. Stress plot for linear isotropic growth for the AS material (uniform isotropic growth results in 

zero stresses). 

Fig. 9. Radial displacement and normalized density plots for uniform isotropic (ISO), radial (RAD), and 

circumferential (CIR) growth for the AS material. 



Fig. 10. Radial displacement and normalized density plots for linear isotropic (ISO), radial (RAD), and 

circumferential (CIR) growth for the AS material. 

Fig. 11. Normalized strain energy per unit volume plotted versus radial position for the linear circum­

ferential growth for the AS and WKL materials. The strain energy per unit volume was normalized by the 

material constants �� appearing in the strain energy functions (7.1–7.2) for the two materials. The strain 

energy gradient is lower for the AS material. 



To further explore the results that the more compressible AS material achieves lower 
stress gradients and more linear and monotonic displacement curves than the nearly 
incompressible WKL material, we considered the stability of an elastic material to 
perturbations of the boundary conditions in an equilibrium state. Then, it is trivial to show 
from standard theories on infinitesimal stability (e.g., see [25]) that a stable equilibrium 
state for a grown elastic material with a convex strain energy function with zero surface 
tractions and zero body forces is accompanied by a local minima in the total strain energy.�� 

Thus, we calculated the strain energy per unit volume from (6.5) to (6.6), normalized by the 
material constants �� for the linear circumferential growth case for both materials (Figure 
11). It is evident that the gradient in strain energy per unit volume is greatly decreased 
in the AS material. In addition, for all growth cases, we integrated the strain energy in 
the grown configuration for the AS and WKL materials to calculate the total strain energy 
and normalized these values by that achieved in the uniform circumferential case for each 
material. The results presented in Table 2 show that for each nontrivial growth case, the 
normalized strain energy was lower for the AS material than for the nearly incompressible 
WKL material. 

To more accurately address the effect of material compressibility on the total strain energy 
in the grown configuration, it is useful to consider the growth of a spherical shell of a 
harmonic elastic material for which the compressibility may be changed while holding the 
shear modulus constant. We studied uniform radial and uniform circumferential growth for 
the harmonic material with infinitesimal Poisson’s ratios of 0.25 and 0.49, the latter of which 
corresponds to a nearly incompressible material. As compared to the nearly incompressible 
harmonic material, the total strain energy in the grown configuration using a Poisson’s ratio 
of 0.25 was ����� and ����� lower for the uniform radial and uniform circumferential 
growth cases, respectively. Therefore, in these examples, the harmonic material with greater 
compressibility experienced much lower strain energy states in the grown configuration than 
the nearly incompressible material. Thus, the differences observed for the displacement 
and stress profiles for the compressible materials studied in this paper may be coupled and 
possibly related to achieving a local minima in total strain energy in the grown configuration. 
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We have presented a general theory of volumetric growth for compressible elastic materials. 
In particular, a complete set of governing equations was derived in the present configuration of 
an elastic material undergoing a continuous growth process.To fully develop the kinematics of 
growth in the present configuration, we introduced an arbitrary fixed reference configuration 
and a superposed elastic deformation. Two constitutive restrictions were derived from a work-
energy principle. First, we showed that a growing elastic material behaves as a Green-elastic 
material, an idea that was assumed in earlier works. Second, we obtained an expression 
that relates the stress power due to growth to the rate of change of energy due to growth. 
The governing equations for the incremental growth boundary-value problem were obtained 
from the more general theory, and the main features of the theory were illustrated with specific 
examples. 
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1.	 Although the tensors appearing in various equations in this paper are usually defined on different domains, 

it is clear from (2.1), (2.4), and the comments following (2.4) that they may be defined on the same domain. 

For example, using (2.4), all quantities appearing in (2.11) may be defined as functions of position K in 

the configuration �� ��� and time �. 

2.	 The balance of mass (3.2) takes the same form as equation (2.13) in [24] with �� replaced by �� and 

equation (10) in [13] with � replaced by �� (quantities in italics in the endnotes refer to those appearing 

in the noted equations of [24] and [13]). 

3.	 In the balance of linear momentum (3.8), we have neglected the diffusive force arising from interaction 

with other constituents represented by �� in equation (2.16) of [24] and by � in equation (13) of [13]. 

Also, we assume that the momentum supply due to growth can be modeled by the velocity v as in the last 

integral of (3.8) as opposed to the more general formulation in which v is replaced by the vector �� in 

[24]. This assumption is in agreement with equation (13) of [13]. Thus, the local form (3.9) agrees with 

equation (2.20) of [24] with �� � � and �� � � and agrees with equation (16) of [13] with � � �. 

4.	 In the balance of angular momentum (3.10), we have assumed �� � �� � � � � in equation (2.26) 

of [24]. Also, we have neglected to include the angular momentum supply due to interaction with other 

constituents represented by �� 
in [24]; as a result, our Cauchy stress tensor is symmetric, whereas that 

in [24] is not. A balance of angular momentum is not explicitly derived in [13]. 

5.	 A more primitive approach is to assume that the work done by surface tractions and body forces for an 

elastic material vanishes for any closed, homogeneous, and smooth cycle through strain space (e.g., see 

Truesdell and Noll [30]). In this approach, one may then prove the existence of a scalar function, which 

is related to the stress tensor by the familiar constitutive restriction of Green elasticity. It is clear that this 

approach is not extendable to growth elasticity. 

6.	 This equation corresponds to the constituent balance of energy (equation (2.33)), presented by [24] with 

�� � �� � � � �� � � � �� �������� ��� , neglecting the heating terms and replacing the energy 

increase due to interactions with other constituents with ß. Furthermore, the balance of energy (equation 

(17)) in [13] reduces to (4.2) by neglecting the heating terms and setting �� equal to �ß. 

7.	 This assumption is a limitation of the theory in the present paper as it excludes the possibility of a depen­

dence on strain rate; see Cowin [31] for a detailed discussion of this point. 

�� ���� 
�� ���� 

8.	 Since �� � may be chosen independently from �� , the relations �� � � , �� � � , and  

the assumption that �� � does not depend on �� � reveal that �� may be chosen independently from both 

�� and �� (although, again, it is clear that �� and �� are not independent of each other). Since the 

terms in the first set of brackets in (4.6) do not depend on �� , (4.7) follows. 

9.	 The constitutive equation for �� � is related to, but not the same as, the standard growth law defined on 

a current configuration. 

10. To be more precise, let �� � � ��� � �� be the total strain energy of the body � when �� 

corresponds to a stable equilibrium state. Consider an infinitesimal change in the displacement bound­

ary condition on ��, corresponding to an effective elastic deformation ��� � �� with � �
� 

� ���� � �� . Then we say that �� achieves a local minima if �� � � � 
�. 
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