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Abstract

In this paper, the memory capacity of incompletely connected associative memories is investigated. First, the capacity is derived for
memories with fixed parameters. Optimization of the parameters yields a maximum capacity between 0.53 and 0.69 for hetero-association
and half of it for autoassociation improving previously reported results. The maximum capacity grows with increasing connectivity of the
memory and requires sparse input and output patterns. Further, parameters can be chosen in such a way that the information content per
pattern asymptotically approaches 1 with growing size of the memory.
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Nomenclature

Ai ¼ individual activity
C ¼ capacity of the memory
I ¼ stored information
I s ¼ stored information per pattern
K ¼ number of ones in the output pattern
L ¼ number of ones in the input pattern
M ¼ length of the input pattern
N ¼ length of the output pattern
O ¼ number of wrong ones
R ¼ number of stored patterns
r* ¼ constant for optimal number of patterns
W ¼ weight matrix
X ¼ input pattern
Y ¼ output pattern
Z ¼ connectivity of the network
Q i ¼ threshold function

1. Introduction

Tasks like voice or face recognition, which are hard to
realize with conventional computer systems, can benefit
considerably from using content-based access techniques as

offered by associative memories. This kind of memory is
robust against input noise and has a practically constant retrie-
val time independent of the number of stored associations.
Associative memories have been intensively studied in the
past (Steinbuch, 1961; Kohonen, 1977; Palm, 1980; Palm
et al., 1993; Willshaw, 1971 for instance), resulting in an
established theory and many successful applications. Most
of the models are fully connected memories, which can be
applied immediately to actual digital implementations of asso-
ciative memories with currently available electronic memory
technology.

However, technological advances or paradigm shifts like
optical or analog associative memories may lead to partially
connected memories, as a result of physical and functional
properties of the materials and techniques used. Hence,
models for incompletely connected memories need to be
considered and investigated in more depth. Another reason
to study incompletely connected associative memories is
their relevance for biological neural networks. The parts
of the brain that exhibit functional properties of associative
memory are not at all fully connected. For example, the
neurons of some parts of the hippocampus are connected
to not more than 5% of the neurons in their neighborhood
(Amaral et al., 1990). Results from investigations concern-
ing incompletely connected memories may lead to a better
understanding of the brain, even if the considered models
are far from neurobiological reality.
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One of the most important features of any memory is its
storage capacity, which is the quotient between the amount of
information that can be maximally stored and the size of the
memory. Whereas conventional memory models achieve an
optimal storage capacity, associative memories can not fully
exploit their storage elements, because of the distributed
representation of information, and their capacities depend
on factors as their retrieval strategies for instance.

The present paper can be seen as an extension of (Palm,
1980) who studied completely connected associative
memories. His work is based on a review article (Longuet-
Higgins et al., 1970) and a book Kohonen (1977). Palm
discusses a simple binary model and reports a maximum
capacity of ln(2)< 0.69 for the hetero-associative memory
and ln(2)/2< 0.34 for the auto-associative memory.

Whereas an optimal retrieval strategy exists for the fully
connected model, there is no such optimal method if the
memory is only incompletely connected. Several strategies
have been studied and compared by Buckingham and
Willshaw (1993). Since the output of a memory depends
highly on its retrieval strategy, the memory capacity differs
for each strategy. Our study is based on one of the above
methods, which has several advantages in order to achieve a
high capacity. A brief comparison with other retrieval
strategies is given in the Discussion.

In a more recent paper, Graham and Willshaw (1997)
study the capacities of incompletely connected memories
with respect to three different retrieval strategies (Bucking-
ham and Willshaw, 1993). However, the authors use different
definitions Palm (1980), for memory capacity and efficiency,
since they insist upon error-free retrieval of the output pat-
tern. In their case, capacity is defined as the maximum
number of stored associations. Their results are entirely
obtained through simulations on memories of considerable
size and are used to estimate the capacity of the hippocampus.

In the present paper, we investigate the capacity of
incompletely connected associative memories as defined
in (Palm, 1980). We show that maximum capacities
between 0.53 and 0.69 can be achieved depending on the
level of connectivity. Further, we show that for a growing
size of the memory, asymptotically all the information con-
tained in the patterns can be stored. A similar result is pre-
sented in (Palm, 1981), which is an extension of the original
result on completely connected memories (Palm, 1980).
However, a different retrieval strategy from ours is used
in this model, and thus the two studies are complementary
to each other. Other discussions of partially connected
neural associative memories can be found in (Frolov and
Muravev, 1993, Hogan and Diederich, 1995 and Vogel and
Boos, 1994).

In the next section, the model used as basis for our inves-
tigations is described. In Section 3, the capacity of an
incompletely connected memory with fixed parameters is
derived, both for the hetero-associative and the auto-
associative case. In Section 4, the maximum capacities are
obtained analytically by optimization of the parameters

which are confirmed through numerical optimization and
simulations described in Section 5. Section 6 concentrates
on the information content per pattern, showing that a high
information content can be achieved together with a high
capacity by selecting appropriate parameter values. In
Section 7, the results obtained are put into perspective,
and possibilities for future work are outlined.

2. Description of the model

This section contains a formal description of the associa-
tive memories on which the present study is based. The
hetero-associative case is described in detail; the auto-
associative memory discussed in the second part differs
only slightly from the hetero-associative one. Our model
is similar to the one considered in (Palm, 1980). Whereas
Palm’s model is completely connected, ours contains an
additional parameter describing the degree of connectivity
between the input and the output layer.

2.1. Hetero-associative memory

The purpose of a hetero-associative memory is to store
pairs of input and output patterns; such a pair of input and
output patterns is also referred to as association. The input
patternsXs, s ¼ 1…R and the output patternsYs are binary
vectors of finite dimension, i.e.Xse{0,1} M and Yse{0,1} N.
EachXs (resp.Ys) contains exactlyL (resp.K) ones, and a
total number ofR associations is stored in the memory. The
input layer is connected with the output layer byZMN
equally distributed connections, whereZ describes the
degree of connectivity; for a fully connected memory,
Z ¼ 1. The binary weights of the existing connections
wije{0,1} are determined by a Hebbian learning rule:

wij ¼ max
s¼ 1…R

(Ys
i # Xs

j )

whereX # Y is the outer product of the two vectors. The
memory can be interpreted as a partially filled matrixW of
dimensionM 3 N with elementswij e{0,1} representing the
weights of existing connections. For missing connections,
there is no entry in the corresponding position of the matrix.
For some of our considerations, it is essential to distinguish
between existing connections with a weight of 0, and miss-
ing connections.

For completely connected memories, there is an optimal
retrieval strategy; for incompletely connected models no
such optimal retrieval strategy exists (Buckingham and
Willshaw, 1993). Several retrieval methods are studied
and compared in the above paper; our approach is based
on an activity-based thresholding strategy defined therein.

To retrieve the response to an input patternX the
weighted sumsYi9 o jwijXj are calculated, where the sums
are only over the existing weightswij. This means that
input values corresponding to missing connections are not



considered for retrieval. The final response is obtained by
comparingY9 with the thresholds given by the input activ-
ities. The individual activityAi for an output unitYi is
defined byAi ¼ o jXj where the sum is again only over
the existing connections. The output of the memory is
then given by

Yi ¼
1 if Yi9$Ai
0 else

n
An output unit is set to one if each existing connection to a
one in the input has weight one. Therefore, if a learned input
patternXs is applied to the memory, the answer contains all
the K ones of its answerYs but may containO additional
spurious ones.

2.2. Auto-associative memory

The purpose of an auto-associative memory is the storage
and retrieval of individual patterns, where the pattern
applied to be retrieved may be incomplete or distorted by
noise. In this case, input and output vectors are identical,
which implies N ¼ M and K ¼ L. The connections are
symmetrical, i.e.wij ¼ wji if both connections exist.

3. Storage capacity of the associative memory

The capacity of an associative memory is defined as the
ratio of the information stored in the memory and its total
size:

C¼
I

ZMN

The size is given by the connectivity, the dimension of the
input vector, and the dimension of the output vector; in
conventional memory terms, it is the number of bits avail-
able for information storage. The total information stored in
the memoryI is the sum of the individual informationsI s

stored per output pattern,I ¼ osI
s. They are defined in terms

of Shannon’s information theory and diverge for hetero-
associative and for auto-associative memories.

Since the actual contents of the memory are not known in
general, the calculations are based on expected values. The
expected value of the capacityE(C) is given by

E(C) ¼
E(I )
ZMN

We first study the capacity of hetero-association and then
extend the calculations to the auto-associative case. In both
cases, we consider memories with fixed parameters. The
calculations are partly inspired by those for the completely
connected model (Palm, 1980).

3.1. Hetero-associative memory

In the case of hetero-association,I s is defined as the dif-
ference between the information contained in the output

patternYs and the information needed to determine this
pattern given the response of the memory toXs:

I s ¼ ld
N

K

 !
¹ ld

Oþ K

K

 !
where ld(x) is the logarithm base 2 ofx and O the
number of spurious ones in the output. The second term in
this equation is also referred to as correction information. A
lower bound for the expectation value ofI is given by (Palm,
1980):

E(I ) $ R
∑K ¹ 1

i ¼ 0
ld

N ¹ i
K þ (N ¹ K)P ¹ i

(1)

whereP is the probability of a spurious one, or an output
unit being one instead of zero. The number of spurious ones
in the output isO ¼ (N ¹ K)P. The determination of the
probabilityP is one of the crucial points in our calculations
since it is the main unknown factor in the above equation.
Such a spurious one only occurs if all existing connections
between the zero in the output and the ones in the input have
weight one. The probability of a connection having weight
zero is given by

Pr(wij ¼ 0) ¼ 1¹
LK
MN

� �R¹ 1

< e¹ R LK
MN (2)

where the approximation is tight for large numbers of sparse
patterns. Unfortunately, the occurrences of ones in the same
row or column are not independent since in the model dis-
cussed here there is a fixed number of ones.

For sparse input patterns and a large number of stored
patterns, however, this dependence is very weak. Since the
maximum capacity is reached for these parameters, the
independence of the occurrences is assumed a posteriors
throughout this paper. For a more detailed discussion see
(Palm, 1980).

The probabilityP can therefore be approximated by

P < (1¹ Z Pr(wij ¼ 0))L < (1¹ Ze¹ R LK
MN)L (3)

since the input contains a fixed numberL of ones, and
(1 ¹ Z) Pr(wij ¼ 0)) equals the probability that a connection
either does not exist or has weight one.

This concludes the calculation of the capacity of the
hetero-associative memory. Eq. (3) gives an approximation
for the probability of spurious ones which is used to deter-
mine a lower bound for the expected value of the stored
information in Eq. (2). This in turn determines the expecta-
tion value of the memory capacity in Eq. (1).

3.2. Auto-associative memory

The capacity calculations for auto-associative memories
depend on the determination of the stored information
which is again the sum of the individual informations
stored per pattern. The correction information per pattern,



however, must be defined differently since the input pattern
is identical to the output pattern and may be different from
the pattern used for retrieval.

The correction information is determined incrementally,
increasing the number of genuine ones and decreasing the
number of spurious ones at each step. To retrieve a pattern, a
single one of the output pattern is determined at each step,
starting with a vector containing only zeros. A step consists
of the application of the actual pattern to the memory and
the determination of an additional genuine one. The sum of
the information of these determinations equals the correc-
tion information. Hence the information stored in the
memory is given by1

E(I ) $ R
∑K ¹ 1

i ¼ 0
ld

N ¹ i
K þ E(Oi) ¹ i

(4)

where E(Oi) is the expectation value of the number of spur-
ious ones in theith step. Note that the input pattern applied
in stepi contains exactlyi ones. Similar to the hetero-asso-
ciation case

E(Oi) < (N ¹ K)(1¹ Z Pr(wij ¼ 0))i

¼ (N ¹ K) 1¹ Z 1¹
K2

N2

� �R¹ 1
 !i

ð5Þ

In order to calculate the memory capacity for the auto-asso-
ciative case, we determined the correction information per
pattern in a different way; the rest of the calculations are
identical to the hetero-associative case.

4. Maximum capacity of associative memories

The optimization is done in order to obtain maximal capa-
cities for all levels of connectivity. First, the capacity is
maximized for hetero-association and the calculations are
presented in detail. In a second step, the optimization is
extended to auto-association.

4.1. Hetero-associative memory

The optimization is based on the equations derived in the
previous section, i.e. Eqs. (1)–(3). Starting from Eq. (2), a
simpler lower bound for the expectation value of the stored
information E(I) is derived. Since (A ¹ i)/(B ¹ i) $ A/B for
A $ B, andN $ K þ (N ¹ K)P, we obtain

E(I ) $ RKld
N

K þ (N ¹ K) ¹ P
$ RKld

1

P þ
K
N

¼ RK(ld
1
P

¹ ldd)

whered¼ (P þ K/N)/P is the ratio between the total number
of ones and the number of spurious ones in the output.
Substitution of the probabilityP by Eq. (3) yields

E(I ) $ RK ld
1

(1¹ Ze¹ R LK
MN)L

¹ ldd

 !

¼ RKL ld
1

(1¹ Ze¹ R LK
MN)L

¹
ldd
L

 !

Writing R¼ r MN
LK for the number of stored patterns, the

expectation value of the total capacity is given by:

E(C) $
r
Z

ld
1

1¹ Ze¹ r ¹
ldd
L

� �
(6)

As the arguments of both logarithms are larger than 1, the
first term increases the capacity and the second decreases
the capacity. Whereas the first term depends only on the
connectivity Z, the second one depends among others on
the parameterL. Its influence can be limited by increasing
the number of ones in the input, as the ratiod can be
supposed to be bounded. However, sinceL , M is required
in order to avoid overloading of the memory, better results
are only achieved for large memories which allow large
values forL. This is especially important for memories of
low connectivity since the first term approaches 0 in this
case.

Ignoring therefore the term ldd/L in Eq. (6), an approxi-
mation of the capacity is given by

E(C) <
r
Z

ld
1

1¹ Ze¹ r

� �
which depends only on the connectivityZ and the above
introduced parameterr.

First, let us consider the case of vanishing connectivity,
i.e. Z → 0. For fixedr, the storage capacity is given by

lim
Z→0

E(C)
re¹ r

ln2
(de l9Hospital)

re¹r reaches its maximum forr ¼ 1, which implies

lim
Z→0

E(C) ¼
1

eln2
< 0:5307 (7)

for the maximum capacity of vanishing connectivity.
Next, fixing Ze ]0,1], a numerical optimization of the

parameterr shows a maximum capacity between 0.5307
and 0.69, where the maximum capacity increases with
growing connectivity (Fig. 1). The optimal number of pat-
terns for the maximum capacity is given byR* ¼ r*(Z)MN/
LK wherer*(Z) is a decreasing function betweenr*(0.0) <
1 andr*(1.0) < 0.7. Note that the only condition imposed on
the parametersK andL is that they are considerably smaller
thanN andM. Therefore, the maximum capacity should be
feasible for a large range of values forK andL, supposed1 see (Palm, 1980) for the derivation of the formula



that the number of stored associations is close enough to the
optimal valueR* ¼ r*(Z)MN/LK.

Numerical optimization and simulations show that, even
for low connectivity, the maximum capacities obtained
from the above approximations can be achieved for appro-
priate choices of parameters (see next section).

4.2. Auto-associative memory

The maximum capacity for auto-associative memories is
calculated for an arbitrary degree of connectivity. The opti-
mization is based on Eqs. (4) and (5) describing the capacity
of a memory with fixed parameters (see earlier). The method
is similar to the optimization of hetero-associative mem-
ories and is therefore only outlined.

The lower bound for the expectation value of the stored
information in Eq. (5) can be further approximated by

E(I ) $
1
2
R(K ¹ 1)(K ¹ 2)ld

1

1¹ Ze¹ RK2

N2

0@ 1A¹ R
∑K ¹ 1

i ¼ 0
lddi

wheredi is the ratio between the total number of ones and
the number of spurious ones in the output at stepi. Finally,
with R¼ r N 2

K 2 we obtain

E(C) $
r

2Z
ld

1
1¹ Ze¹ r ¹

1
ZK2

∑K ¹ 1

i ¼ 0
lddi

Considering that only half of the symmetrical matrix is
necessary the result is the same as in the case of hetero-
association and the same optimization yields values
between 0.26 and 0.34 for the maximum capacity.

The maximum capacities for incompletely connected
memories derived in this section are close to the capacity
of fully connected memories, making their usage equally
interesting to the usage of fully connected models. Although
optimization does not account for low retrieval error,
theoretical considerations show that this can be achieved
asymptotically for large memories (cf. Section 6).

5. Numerical optimization and simulations

In order to verify the values for the maximum capacity
derived above, numerical optimizations and simulations
have been performed. Both are restricted to hetero-
associative memories, since the calculations for the auto-
associative memories are based on similar approximations.

5.1. Numerical optimization

The optimizations were done over a wide range of the
free parameters in order to ensure maximal capacities. For
each set of fixed parameters, the expectation value of the
memory capacity was computed using Eqs. (1)–(3). The
fixed parameters were the connectivityZ and the size of
the memory, i.e.M andN. The remaining free parameters
used for the optimization were the number of stored patterns
R and the number of ones in the input and output patternsL
and K. The optimizations were done for two sizes of the
memory, i.e.N ¼ M ¼ 100 andN ¼ M ¼ 1000.

For both cases, the maximal capacities were determined
for any level of connectivity and the obtained results con-
firm exactly the theoretical predictions of the previous sec-
tion. The maximal capacities yield values between 0.53 and
0.69 and increase with growing connectivity.

5.2. Simulations

Since the formulas used in the numerical optimization are
not absolutely exact and approximate a lower bound instead
of the capacity, simulations were performed to further con-
firm our theoretical results.

Again, the computations were restricted to the hetero-
associative case and the two memory sizesN ¼ M ¼ 100
resp.N ¼ M ¼ 1000. The numbers of ones in the patterns
were fixed atK ¼ L ¼ 3 resp.K ¼ L ¼ 4. For the number of
stored patterns, the estimations of the previous sectionR* ¼

r*(Z)[(MN)/(LK)] were used. Several associative memories
were built for each of 20 different levels of connectivity,
ranging fromZ ¼ 0.05 toZ ¼ 1.00. A further condition was
that any two input patterns were different, i.e.;i,j: Xi Þ Yi.
This condition was neglected in the above calculations (the
patterns were supposed to be independent), but this is of no
great importance ifR ! ML is guaranteed. This is the case
for L $ 3 andN < M since the number of patterns we are
interested in isR < NM.

Fig. 2 shows the results of the simulations of the hetero-
associative memories. The capacities of the memories of size
N ¼ M ¼ 100 are not yet optimal (a) whereas the capacities
achieved by the networks of sizeN¼ M ¼ 1000 match almost
perfectly the theoretically derived values (b).

Note that no optimization of the parameters was done
besides the theoretical optimization ofr*(Z). The results
show clearly that the values theoretically derived in the
previous section can be achieved by memories of realistic
sizes.

Fig. 1. Maximum capacity of the incompletely connected heteroassociative
memory as a function of the connectivityZ. It is achieved for sparse input
and output patterns and an appropriate number of stored associations. The
maximum capacities as well as the optimal parameters were derived
analytically.



6. Information content per pattern

The above optimizations of the capacity do not take into
consideration the accuracy of the retrieved output patterns.
Nevertheless, information content is one of the crucial cri-
teria for the quality of a memory and should be achieved
besides high capacity by any useful memory.

The information contentP for an individual patternI s is
defined as the ratio between the stored information of the
pattern itself and the information contained in the output
patternĪ s ¼ Ī, where

Ī ¼ ld
N

K

 !
< KldN

in the case of sparsity. The information contentP can also
be defined for the entire memory as the mean of the infor-
mation contents of the individual patterns. The expectation
value of the information content is given by:

E(P) ¼
E(Is)

Ī
<

E(Is)
KldN

¼
E(I )

RKldN

The last equality holds becauseRKldN is the total informa-
tion of the output patterns. Thus, the conditionRKldN ¼

E(I) guarantees that roughly all information of the patterns
is stored, i.e.P > 1. In the case of maximum capacity,
the total information stored in the memory is given
by E(I) ¼ ¹RKL(ld(1 ¹ Ze¹r*(Z)) ¹ ldd/L) (see above)
which provides the following condition forL:

L ¼
ldN þ ldd

¹ ld(1¹ Ze¹ rp(Z))
<

1

ld
1

1¹ Ze¹ rp(Z)

ldN (8)

where the factor preceding ldN increases with decreasing
connectivity. Low connectivity requires a larger number of

input ones than high connectivity to achieve an accurate
result. The reason is that a minimum level of activity must
be present in order to avoid too many spurious ones. With
the value forL given in Eq. (8), the activity is almost
independent of the connectivityZ.

This condition onL is not necessarily fulfilled by the
above determination of maximum capacity. In particular,
the numberL of ones in the simulations of the previous
section does not depend on the level of connectivity but is
kept constant (L ¼ 3 for N ¼ M ¼ 100 andL ¼ 4 for N ¼

M ¼ 1000). In this case, the information contentP depends
linearly on the level of connectivityZ, implying that P
asymptotically vanishes ifZ approaches 0. This comes
from the fact that less and less output units are connected
to ones in the input with the implication that these output
units are set to one.

Recall that high capacity demands sparse input patterns,
i.e.L p M. If the input and output dimensions are roughly of
the same order of magnitude, which is mostly the case, it also
impliesL p N. Thus, in order to obtain a high information
content and an optimal capacity, it is necessary that the value
of L given in Eq. (8) verifies this sparsity condition. For high
connectivity the factor preceding ldN is small enough thatL
p M is verified even for relatively small memories. For
decreasing connectivity this factor becomes more important
andL ! M is only given for memories of large sizes. How-
ever, if the connectivityZ is fixed, the factor remains con-
stant and the sparsity condition is asymptotically verified for
memories of growing sizes, since

L
N

<
1

ld
1

1¹ Ze¹ rp(Z)

ldN
N

→N→`
0 for Z e ]0,1] fixed

The dependency of the capacity and the information content
on the number of ones in the input pattern is illustrated in

Fig. 2. Maximum capacity of the hetero-associative memory as a function of the connectivityZ. The continuous curves represent the analytically predicted
values (cf. Fig. 1), whereas discrete points are capacities obtained from simulations. The values shown in (a) resp. (b) were obtained from memories of sizesM
¼ N ¼ 100 resp.M ¼ N ¼ 1000.



Fig. 3(a). The connectivity is fixed atZ ¼ 0.5 and the
number of patterns is optimized to obtain maximum capa-
city. The increasing function represents the information
content per pattern, confirming that a high activity is neces-
sary for an accurate result. The capacity decreases with the
number of input ones since the network is of relatively small
size (N ¼ M ¼ 1000) leading to a fast overloading of the
memory for increasing values ofL.

Fig. 3(b) shows the capacity and the information content
for an increasing number of patternsR with connectivity
fixed at Z ¼ 0.5. The capacity increases first with the
number of patterns before it begins to decrease when too
many ones in the matrix are stored. The information content
is a steadily decreasing function as expected.

In conclusion, both maximum capacity and optimal
information content are feasible at the same time for any
degree of connectivity. Numerical evaluations for very large
memories of the Eqs. (1)–(3) describing the capacity and the
information content confirm the analytical result, i.e.P < 1
and Ce [0.53,0.69], depending on the connectivityZ (data
not shown).

7. Discussion

The core aspect of this paper is the study of memory
capacities and information content for incompletely con-
nected associative memories. Theoretical investigations
show that the maximum capacities range from 0.53 to
0.69, depending on the connectivity of the network. These
capacities can be obtained for sparse input and output
patterns and appropriate numbers of stored associations.
Additionally, for large memories more restricted choices of
parameters guarantee a high information storage per pattern
which asymptotically approaches 1. These theoretical con-
siderations have been confirmed by numerical simulations.

Our results have been obtained for one particular model
of binary associative memory with one particular out of
several possible retrieval strategies. It should be asked if
other models resp. other retrieval strategies are likely to
have similar properties regarding their capacities and infor-
mation contents.

In general, associative memories are not restricted to
binary or discrete models and might also rely on patterns
and weights of continuous values. But it is more difficult, if
not impossible, for these models to quantify the information
contained in the memory, a pattern or the information neces-
sary to correct an erroneous answer and the problem of their
capacities might thus be hard to define.

But even the restriction to binary models yields several
alternatives. For instance, the patterns can be coded through
and the weights may assume one of the values61 instead
of zero or one. Models may be based on other learning
rules to determine the weights of the connection and on
different retrieval strategies as mentioned above. Further-
more, the kind of incomplete connectivity may also differ. A

connection may not be missing but existing and perma-
nently be one or zero.

However, some general remarks concerning their
capacities may apply to most of the binary models of incom-
pletely connected associative memories, at least to those
whose patterns and weights have values zero or one.

First of all, one important characteristic is whether the
number of ones in the patterns is fixed. If this is not the case,
some patterns may contain a high number of ones and any
hebbian learning will lead to a fast overloading of the
memory, decreasing its capacity.

Another reason to fix the number of ones in the output
pattern is that less correction information might be neces-
sary to obtain the correct answer. Under the further con-
dition that only spurious ones or spurious zeros occur, and
not both of them at the same time, the number of erroneous
output units can be calculated without any further informa-
tion. If both types of errors occur, an additional spurious one
and an additional spurious zero will not change the number
of zeros and ones in the output. This latter case was studied
in (Palm, 1981), who investigated a model with adaptive

Fig. 3. (a) Maximum capacity (decreasing curve) and information content
per pattern of the hetero-associative memory as functions of the numberL
of ones in the input patterns. The fixed parameters areN ¼ M ¼ 1000,K ¼

10 andZ ¼ 0.5 whereas the number of stored patterns is optimized. The
information content increases with the number of ones since an increased
activity improves the correctness of the answer. The capacity is a decreas-
ing function since a large value ofL leads to overloading the memory.
(b) Capacity and information content per pattern (decreasing curve) as
functions of the number of stored patternsR. The fixed parameters are
N ¼ M ¼ 1000, Z ¼ 0.5, K ¼ 10 and L ¼ 30. For smallR, the
memory is able to store the entire information of the associations. Thus,
the information content remains close to 1 and the capacity increases
linearly with R. As soon as overloading occurs, the information content
starts to decrease and the capacity reaches its maximum shortly after-
wards. The calculations are based on Eqs. (1)–(3).



threshold, leading to spurious ones and zeros. Palm estab-
lished a lower bound of 0.05 for the capacity of a hetero-
associative memory. This bound is considerably lower than
those presented in this paper, illustrating that it is more
difficult to detect spurious zeros and spurious ones at the
same time.

The possibility that only spurious zeros and no spurious
ones occur is not a very realistic problem since in most
models the overloading of the memory leads inevitably to
spurious ones in the answer. If only spurious ones occur and
the patterns are sparse, i.e. they contain only a few
ones, then the correction information can be greatly
reduced as in our model. This stems from the fact that
the number of spurious units is kwown and that, under
the condition of sparse output patterns, it costs less to
determine a unit among a few others than among a large
set of units.

The above considerations concern fully connected as well
as incompletely connected models. In the latter case,
additional erroneous output units may occur through
missing connections. Again, additional spurious ones
reduce the capacity less than spurious zeros do, for the
same reason that a mixture of both types of errors implicates
that the number of errors can not be determined any more
without further information.

Further work investigates the memory capacity for other
retrieval strategies, modified learning rules or different
architectures of incompletely connected associative
memories. In collaboration with other researchers, impli-
cations for manufacturing large associative memories with
possible imperfections are being explored. This aspect can
be relevant for yield improvements of high capacity
memory chips, where the likelihood of imperfections
increases substantially with the size of the chip. Mutual
benefits are also expected from a collaboration with neuro-
scientists, comparing the properties of our abstract model

with biological neural networks that exhibit behavior simi-
lar to associative memories.
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