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Abstract

In this paper, the memory capacity of incompletely connected associative memories is investigated. First, the capacity is derived
memories with fixed parameters. Optimization of the parameters yields a maximum capacity between 0.53 and 0.69 for hetero-associc
and half of it for autoassociation improving previously reported results. The maximum capacity grows with increasing connectivity of tt
memory and requires sparse input and output patterns. Further, parameters can be chosen in such a way that the information contel
pattern asymptotically approaches 1 with growing size of the memory.
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Nomenclature

A; = individual activity

C = capacity of the memory

| = stored information

I° = stored information per pattern

K = number of ones in the output pattern
L = number of ones in the input pattern
M = length of the input pattern

N = length of the output pattern

O = number of wrong ones

R = number of stored patterns

r* = constant for optimal number of patterns
W = weight matrix

X = input pattern

Y = output pattern

Z = connectivity of the network

®, = threshold function

1. Introduction

offered by associative memories. This kind of memory is
robust against input noise and has a practically constant retrie-
val time independent of the number of stored associations.
Associative memories have been intensively studied in the
past (Steinbuch, 1961; Kohonen, 1977; Palm, 1980; Palm
et al., 1993; Willshaw, 1971 for instance), resulting in an
established theory and many successful applications. Most
of the models are fully connected memories, which can be
applied immediately to actual digital implementations of asso-
ciative memories with currently available electronic memory
technology.

However, technological advances or paradigm shifts like
optical or analog associative memories may lead to partially
connected memories, as a result of physical and functional
properties of the materials and techniques used. Hence,
models for incompletely connected memories need to be
considered and investigated in more depth. Another reason
to study incompletely connected associative memories is
their relevance for biological neural networks. The parts
of the brain that exhibit functional properties of associative
memory are not at all fully connected. For example, the

Tasks like voice or face recognition, which are hard to neurons of some parts of the hippocampus are connected
realize with conventional computer systems, can benefit to not more than 5% of the neurons in their neighborhood
considerably from using content-based access techniques aéAmaral et al., 1990). Results from investigations concern-

ing incompletely connected memories may lead to a better
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are far from neurobiological reality.



One of the most important features of any memory is its which are confirmed through numerical optimization and
storage capacity, which is the quotient between the amount ofsimulations described in Section 5. Section 6 concentrates
information that can be maximally stored and the size of the on the information content per pattern, showing that a high
memory. Whereas conventional memory models achieve aninformation content can be achieved together with a high
optimal storage capacity, associative memories can not fully capacity by selecting appropriate parameter values. In
exploit their storage elements, because of the distributedSection 7, the results obtained are put into perspective,
representation of information, and their capacities depend and possibilities for future work are outlined.
on factors as their retrieval strategies for instance.

The present paper can be seen as an extension of (Palm,

1980) who studied completely connected associative 2 pescription of the model
memories. His work is based on a review article (Longuet-

Higgins et al., 1970) and a book Kohonen (1977). Palm  Thijs section contains a formal description of the associa-
discusses a simple binary model and reports a maximumtye memories on which the present study is based. The
capacity of In(2)~= 0.69 for the hetero-associative memory petero-associative case is described in detail; the auto-
and In(2)/2~ 0.34 for the auto-associative memory. associative memory discussed in the second part differs
Whereas an optimal reFrievaI strategy_exists for the_fully only slightly from the hetero-associative one. Our model
connected model, there is no such optimal method if the js similar to the one considered in (Palm, 1980). Whereas
memory is only incompletely connected. Several strategies pam’'s model is completely connected, ours contains an

have been studied and compared by Buckingham andqditional parameter describing the degree of connectivity
Willshaw (1993). Since the output of a memory depends petween the input and the output layer.

highly on its retrieval strategy, the memory capacity differs

for each strategy. Our study is based on one of the above2 1. Hetero-associative memory
methods, which has several advantages in order to achieve a
high capacity. A brief comparison with other retrieval
strategies is given in the Discussion.

In a more recent paper, Graham and Willshaw (1997)
study the capacities of incompletely connected memories patternsx®, s = 1...R and the output pattern€ are binary
with respec_t to three different retrieval strategies (Bu.ckmg- vectors of finite dimension, i.8<%{0,1}™ and Y’{0,1} ™
ham and Willshaw, 1993). However, the authors use different EachX® (resp.Y?) contains exactly (resp.K) ones, and a
d§f|n|t|ons Ealm (1980), for memory c_apacny and efficiency, total number oR associations is stored in the memory. The
since they insist upon error-free retrieval of the output pat- input layer is connected with the output layer BN
tern. In their case, capacity is defined as the maximum equally distributed connections, whei® describes the

number of stored associations. Their results are entirelydegree of connectivity; for a fully connected memory
obtained through simulations on memories of considerableZ — 1. The binary we,ights of the existing connectioné

size and are used to estimate thg capa}city ofthe hippocgmpuswije{oll} are determined by a Hebbian learning rule:
In the present paper, we investigate the capacity of
incompletely connected associative memories as definedw; = max (Y§ ® X?)
. . . s=1...R
in (Palm, 1980). We show that maximum capacities
between 0.53 and 0.69 can be achieved depending on theavhereX &) Y is the outer product of the two vectors. The
level of connectivity. Further, we show that for a growing memory can be interpreted as a partially filled mathixof
size of the memory, asymptotically all the information con- dimensionM X N with elementsw;; ¢{0,1} representing the
tained in the patterns can be stored. A similar result is pre- weights of existing connections. For missing connections,
sented in (Palm, 1981), which is an extension of the original there is no entry in the corresponding position of the matrix.
result on completely connected memories (Palm, 1980). For some of our considerations, it is essential to distinguish
However, a different retrieval strategy from ours is used between existing connections with a weight of 0, and miss-
in this model, and thus the two studies are complementary ing connections.
to each other. Other discussions of partially connected For completely connected memories, there is an optimal
neural associative memories can be found in (Frolov and retrieval strategy; for incompletely connected models no
Muravev, 1993, Hogan and Diederich, 1995 and Vogel and such optimal retrieval strategy exists (Buckingham and
Boos, 1994). Willshaw, 1993). Several retrieval methods are studied
In the next section, the model used as basis for our inves-and compared in the above paper; our approach is based
tigations is described. In Section 3, the capacity of an on an activity-based thresholding strategy defined therein.
incompletely connected memory with fixed parameters is To retrieve the response to an input patteXnthe
derived, both for the hetero-associative and the auto- weighted sumsy{ X;w;X; are calculated, where the sums
associative case. In Section 4, the maximum capacities areare only over the existing weights;. This means that
obtained analytically by optimization of the parameters input values corresponding to missing connections are not

The purpose of a hetero-associative memory is to store
pairs of input and output patterns; such a pair of input and
output patterns is also referred to as association. The input



considered for retrieval. The final response is obtained by patternY® and the information needed to determine this
comparingY’ with the thresholds given by the input activ- pattern given the response of the memoryto

ities. The individual activityA; for an output unitY; is N 04K

defined byA; = X;X; where the sum is again only over |S=|d< ) —Id( >
the existing connections. The output of the memory is K

then given by

K

where Id§) is the logarithm base 2 ok and O the
Y, = {é iefleé’EA number of spurious ones in the output. The second term in
this equation is also referred to as correction information. A
An output unit is set to one if each existing connection to a lower bound for the expectation valueld$ given by (Palm,
one in the input has weight one. Therefore, if a learned input 1980):
patternX®is applied to the memory, the answer contains all K_1
the K ones of its answe¥® but may contairO additional E(l)=R Z Id
spurious ones. i=0

N—i

K+(N—K)?—i @)

where? is the probability of a spurious one, or an output
unit being one instead of zero. The number of spurious ones

L i in the output isO = (N — K)?. The determination of the
The purpose of an auto-associative memory is the storage

d eval of individual h H probability 7 is one of the crucial points in our calculations
an i retrle\ga of individual patterns, \?’ ere the pattern gince it is the main unknown factor in the above equation.
applied to be retrieved may be incomplete or distorted by g1, 5 spurious one only occurs if all existing connections

noise. In this case, input and output vectors are identical, o een the zero in the output and the ones in the input have

which im_plie;N =M an_d K= L. The _connec_tions aré  \veight one. The probability of a connection having weight
symmetrical, i.ew; = wj if both connections exist. zero is given by

2.2. Auto-associative memory

R-1
P =0= (1- ) =~ "W @

3. Storage capacity of the associative memory MN

where the approximation is tight for large numbers of sparse
patterns. Unfortunately, the occurrences of ones in the same
row or column are not independent since in the model dis-
cussed here there is a fixed number of ones.

_ e For sparse input patterns and a large number of stored

ZMN patterns, however, this dependence is very weak. Since the

The size is given by the connectivity, the dimension of the Mmaximum capacity is reached for these parameters, the
input vector, and the dimension of the output vector; in independence of the occurrences is assumed a posteriors
conventional memory terms, it is the number of bits avail- throughout this paper. For a more detailed discussion see
able for information storage. The total information stored in (Palm, 1980).

The capacity of an associative memory is defined as the
ratio of the information stored in the memory and its total
size:

the memoryl is the sum of the individual informationis The probability? can therefore be approximated by
stored per output patterh= =4 °. They are defined in terms . RLK |
of Shannon’s information theory and diverge for hetero- ? = (1—Z Pr(w; =0))" =~ (1—Ze™ "MN) 3)

associative and for auto-associative memories.
Since the actual contents of the memory are not known in
general, the calculations are based on expected values. Th

expected value of the capac(C) is given by either does not exist or has We@ght one. .
0 This concludes the calculation of the capacity of the

E(C)= —~ hetero-associative memory. Eq. (3) gives an approximation
ZMN for the probability of spurious ones which is used to deter-

We first study the capacity of hetero-association and then mine a lower bound for the expected value of the stored

extend the calculations to the auto-associative case. In bothinformation in Eq. (2). This in turn determines the expecta-

cases, we consider memories with fixed parameters. Thetion value of the memory capacity in Eq. (1).

calculations are partly inspired by those for the completely

connected model (Palm, 1980). 3.2. Auto-associative memory

since the input contains a fixed numblerof ones, and
él — Z) Priw; = 0)) equals the probability that a connection

3.1. Hetero-associative memory The capacity calculations for auto-associative memories
depend on the determination of the stored information

In the case of hetero-associatidijs defined as the dif-  which is again the sum of the individual informations
ference between the information contained in the output stored per pattern. The correction information per pattern,



however, must be defined differently since the input pattern whered = (P + K/N)/? is the ratio between the total number
is identical to the output pattern and may be different from of ones and the number of spurious ones in the output.
the pattern used for retrieval. Substitution of the probability by Eq. (3) yields
The correction information is determined incrementally,
increasing the number of genuine ones and decreasing theE 1
X . (h=RK|ld—————————Idd
number of spurious ones at each step. To retrieve a pattern, a _RiK
. . : (1—2Ze” "MN)L
single one of the output pattern is determined at each step,
starting with a vector containing only zeros. A step consists
of the application of the actual pattern to the memory and _ gy Id 1 _ @
the determination of an additional genuine one. The sum of (1- Ze—R%)L L
the information of these determinations equals the correc-
tion information. Hence the information stored in the Writing R=r}i¥ for the number of stored patterns, the

memory is given by expectation value of the total capacity is given by:
[ r 1 ldd
E(D=R E Idi 4 1 =
h= K+E(O) - i ) E(C)EZ(Idl—Ze‘r L) ©

where EOi) is the expectation value of the number of spur-
ious ones in théth step. Note that the input pattern applied
in stepi contains exactly ones. Similar to the hetero-asso-

As the arguments of both logarithms are larger than 1, the
first term increases the capacity and the second decreases
the capacity. Whereas the first term depends only on the

ciation case connectivity Z, the second one depends among others on
E(O) = (N —K)(1—Z Pr(w; ZO))i the parameteL. Its influence can be limited by increasing
. the number of ones in the input, as the ratiocan be
K2\ R4\ supposed to be bounded. However, sihce M is required
=(N-K) (1 Z(l— W) > ®) in order to avoid overloading of the memory, better results

are only achieved for large memories which allow large

In order to calculate the memory capacity for the auto-asso- values forL. This is especially important for memories of
ciative case, we determined the correction information per low connectivity since the first term approaches 0 in this
pattern in a different way; the rest of the calculations are ¢ase.

identical to the hetero-associative case. Ignoring therefore the term ¢ in Eqg. (6), an approxi-
mation of the capacity is given by

. . - . r 1
4. Maximum capacity of associative memories E(C) = Z(ld 1—Zef)
The optimization is done in order to obtain maximal capa- which depends only on the connectivifzand the above
cities for all levels of connectivity. First, the capacity is introduced parametet
maximized for hetero-association and the calculations are First, let us consider the case of vanishing connectivity,
presented in detail. In a second step, the optimization isi.e.Z — 0. For fixedr, the storage capacity is given by
extended to auto-association. o
I|m E(C) (de I'Hospita)
4.1. Hetero-associative memory
re”" reaches its maximum far= 1, which implies

The optimization is based on the equations derived in the

previous section, i.e. Egs. (1)—(3). Starting from Eg. (2), a I|m E(C)= i ~ 0.5307 @)
simpler lower bound for the expectation value of the stored =
information E() is derived. SinceA — i)/(B — i) = A/B for for the maximum capacity of vanishing connectivity.
A =B, andN = K + (N — K)2, we obtain Next, fixing Ze]0,1], a numerical optimization of the
parameter shows a maximum capacity between 0.5307
N 1 and 0.69, where the maximum capacity increases with
E(l) = RKldm = RKIdiK growing connectivity (Fig. 1). The optimal number of pat-
P+ N terns for the maximum capacity is given By = r*(Z)MN/
LK wherer*(2) is a decreasing function betweget{0.0) =
—RK(ld % —ldd) 1 andr*(1.0) = 0.7. Note that the only condition imposed on

the parameterk andL is that they are considerably smaller
thanN andM. Therefore, the maximum capacity should be
! see (Palm, 1980) for the derivation of the formula feasible for a large range of values fidrandL, supposed



c 5. Numerical optimization and simulations

0.68

0.66 In order to verify the values for the maximum capacity
0.64 derived above, numerical optimizations and simulations
8':§ have been performed. Both are restricted to hetero-
0'58 associative memories, since the calculations for the auto-
0’56 associative memories are based on similar approximations.
0.54

02 0.4 0.6 0.8 1.0 5.1. Numerical optimization

Fig. 1. Maximum capacity of the incompletely connected heteroassociative The opt|m|zat|9ns were done over a.W'de rang?_Of the
memory as a function of the connectivill It is achieved for sparse input ~ free parameters in order to ensure maximal capacities. For

and output patterns and an appropriate number of stored associations. Theeach set of fixed parameters, the expectation value of the
maximum capacities as well as the optimal parameters were derived memory capacity was computed using Egs. (1)—(3). The
analytically. fixed parameters were the connectivilyand the size of
the memory, i.eM andN. The remaining free parameters
that the number of stored associations is close enough to the!Sed for the optimization were the number of stored patterns
optimal valueR* = r*(Z)MN/LK. R and the number of ones in the input and output patterns
Numerical optimization and simulations show that, even andK. Th'e optimizations were done for two sizes of the
for low connectivity, the maximum capacities obtained memory, i.eN =M = 100 andN = M = 1000. _
from the above approximations can be achieved for appro-  For both cases, the maximal capacities were determined

firm exactly the theoretical predictions of the previous sec-
4.2. Auto-associative memory tion. The maximal capacities yield values between 0.53 and

0.69 and increase with growing connectivity.

The maximum capacity for auto-associative memories is _ _
calculated for an arbitrary degree of connectivity. The opti- 2-2. Simulations
mization is based on Eqs. (4) and (5) describing the capacity

of a memory with fixed parameters (see earlier). The method ~ Since the formulas used in the numerical optimization are
is similar to the optimization of hetero-associative mem- Not absolutely exact and approximate a lower bound instead

ories and is therefore only outlined. of the capacity, simulations were performed to further con-
The lower bound for the expectation value of the stored firm our theoretical results. _
information in Eq. (5) can be further approximated by Again, the computations were restricted to the hetero-

associative case and the two memory sikes M = 100
1 1 K-1 resp.N = M = 1000. The numbers of ones in the patterns
EN)= RK-DK-2d| ——|-R > Idd, were fixed aK = L = 3 respK = L = 4. For the number of
1-ze "n2 i=0 stored patterns, the estimations of the previous se&fosr
r*(2)[(MN)/(LK)] were used. Several associative memories
whered,; is the ratio between the total number of ones and were built for each of 20 different levels of connectivity,

the number of spurious ones in the output at $tefnally, ranging fromZ = 0.05 toZ = 1.00. A further condition was
with R:rE—z we obtain that any two input patterns were different, ¥8,j: X; # ;.
This condition was neglected in the above calculations (the
E(C) = le 1 3 iKilldd- patterns were supposed to be independent), but this is of no
T 2Z71-Ze " zK2 A& great importance iR < M" is guaranteed. This is the case

for L = 3 andN = M since the number of patterns we are

Considering that only half of the symmetrical matrix is interested in iR = NM.
necessary the result is the same as in the case of hetero- Fig. 2 shows the results of the simulations of the hetero-
association and the same optimization yields values associative memories. The capacities of the memories of size
between 0.26 and 0.34 for the maximum capacity. N = M = 100 are not yet optimal (a) whereas the capacities

The maximum capacities for incompletely connected achieved by the networks of sikk= M = 1000 match almost
memories derived in this section are close to the capacity perfectly the theoretically derived values (b).
of fully connected memories, making their usage equally  Note that no optimization of the parameters was done
interesting to the usage of fully connected models. Although besides the theoretical optimization 0f(Z). The results
optimization does not account for low retrieval error, show clearly that the values theoretically derived in the
theoretical considerations show that this can be achievedprevious section can be achieved by memories of realistic
asymptotically for large memories (cf. Section 6). sizes.
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Fig. 2. Maximum capacity of the hetero-associative memory as a function of the conneZtiving continuous curves represent the analytically predicted

values (cf. Fig. 1), whereas discrete points are capacities obtained from simulations. The values shown in (a) resp. (b) were obtained from membties of sizes

= N =100 respM = N = 1000.

6. Information content per pattern

The above optimizations of the capacity do not take into

input ones than high connectivity to achieve an accurate
result. The reason is that a minimum level of activity must
be present in order to avoid too many spurious ones. With

consideration the accuracy of the retrieved output patterns.the value forL given in Eq. (8), the activity is almost

Nevertheless, information content is one of the crucial cri-
teria for the quality of a memory and should be achieved
besides high capacity by any useful memory.

The information contenP for an individual patterr® is

independent of the connectivii

This condition onL is not necessarily fulfilled by the
above determination of maximum capacity. In particular,
the numberL of ones in the simulations of the previous

defined as the ratio between the stored information of the section does not depend on the level of connectivity but is

pattern itself and the information contained in the output
patternl® = I, where

N
Id =~ KIdN
K

in the case of sparsity. The information cont@ntan also
be defined for the entire memory as the mean of the infor-
mation contents of the individual patterns. The expectation
value of the information content is given by:

E(ly) _ E(y _ E()
EP)= 7"~ KidN = RKidN
The last equality holds becauR&IdN is the total informa-
tion of the output patterns. Thus, the conditiBIdN =
E(l) guarantees that roughly all information of the patterns
is stored, i.elP = 1. In the case of maximum capacity,
the total information stored in the memory is given
by E() = —RKL(d(1 — Ze™"@) — Idd/L) (see above)
which provides the following condition fdt:

IdN + ldd 1 ,
= = |dN
—ld(1—Ze~ ") 1
1-Ze @
where the factor precedingNdincreases with decreasing
connectivity. Low connectivity requires a larger number of

(8)
Id

kept constantl{ = 3 for N =M = 100 andL = 4 for N =

M = 1000). In this case, the information contéhtiepends
linearly on the level of connectivity, implying that P
asymptotically vanishes iZ approaches 0. This comes
from the fact that less and less output units are connected
to ones in the input with the implication that these output
units are set to one.

Recall that high capacity demands sparse input patterns,
i.e.L < M. If the input and output dimensions are roughly of
the same order of magnitude, which is mostly the case, it also
impliesL < N. Thus, in order to obtain a high information
content and an optimal capacity, it is necessary that the value
of L given in Eq. (8) verifies this sparsity condition. For high
connectivity the factor precedingNds small enough thdt
< M is verified even for relatively small memories. For
decreasing connectivity this factor becomes more important
andL < M is only given for memories of large sizes. How-
ever, if the connectivity is fixed, the factor remains con-
stant and the sparsity condition is asymptotically verified for
memories of growing sizes, since

L_ 11 '%NN:”O for Z ¢ ]0,1] fixed

N
The dependency of the capacity and the information content
on the number of ones in the input pattern is illustrated in

Id



Fig. 3(a). The connectivity is fixed & = 0.5 and the (a)
number of patterns is optimized to obtain maximum capa-
city. The increasing function represents the information
content per pattern, confirming that a high activity is neces-
sary for an accurate result. The capacity decreases with the
number of input ones since the network is of relatively small
size N\ = M = 1000) leading to a fast overloading of the
memory for increasing values af
Fig. 3(b) shows the capacity and the information content
for an increasing number of patterRswith connectivity

O O O O O O O o
. . . .
N W & U1l 60 9 ©O WO

70 20 40 1, 60 80 100

fixed at Z = 0.5. The capacity increases first with the (b) 14—
number of patterns before it begins to decrease when too
many ones in the matrix are stored. The information content 0.8
is a steadily decreasing function as expected. 0.6
In conclusion, both maximum capacity and optimal
information content are feasible at the same time for any 0.4
degree of connectivity. Numerical evaluations for very large 0.2
memories of the Eqgs. (1)—(3) describing the capacity and the
information content confirm the analytical result, Fe= 1 05 10,000 20,000
and Ce[0.53,0.69], depending on the connectivify(data R
not shown). Fig. 3. () Maximum capacity (decreasing curve) and information content

per pattern of the hetero-associative memory as functions of the number
of ones in the input patterns. The fixed parameterdNateM = 1000,K =
10 andZ = 0.5 whereas the number of stored patterns is optimized. The
information content increases with the number of ones since an increased
activity improves the correctness of the answer. The capacity is a decreas-
The core aspect of this paper is the study of memory ing function since a large value df leads to overloading the memory.
capacities and information content for incompletely con- Eb) C_aPaCit]}/ :nd i”f%fmatifon COfgem per pTa:eT (%ECfeaSing curve) as
nected associative memories. Theoretical investigations ’\‘IJ”S'CI’\;‘SZO 1%(‘)30’”;168.; ;tof . Opa;tned"?f: %O'.Xiorpzz‘;f;‘?rtsh:re
show that the maximum capacities range from 0.53 to memory is able to store the entire information of the associations. Thus,
0.69, depending on the connectivity of the network. These the information content remains close to 1 and the capacity increases
capacities can be obtained for sparse input and outputlinearly with R. As soon as overloading occurs, the information content
patterns and appropriate numbers of stored associationsstarts to decrease e_and the capacity reaches its maximum shortly after-
Additionally, for large memories more restricted choices of Wards: The calculations are based on Egs. (1)—(3).
parameters guarantee a high information storage per pattern
which asymptotically approaches 1. These theoretical con-
siderations have been confirmed by numerical simulations. connection may not be missing but existing and perma-
Our results have been obtained for one particular model nently be one or zero.
of binary associative memory with one particular out of = However, some general remarks concerning their
several possible retrieval strategies. It should be asked if capacities may apply to most of the binary models of incom-
other models resp. other retrieval strategies are likely to pletely connected associative memories, at least to those
have similar properties regarding their capacities and infor- whose patterns and weights have values zero or one.
mation contents. First of all, one important characteristic is whether the
In general, associative memories are not restricted to number of ones in the patterns is fixed. If this is not the case,
binary or discrete models and might also rely on patterns some patterns may contain a high number of ones and any
and weights of continuous values. But it is more difficult, if hebbian learning will lead to a fast overloading of the
not impossible, for these models to quantify the information memory, decreasing its capacity.
contained in the memory, a pattern or the information neces- Another reason to fix the number of ones in the output
sary to correct an erroneous answer and the problem of theirpattern is that less correction information might be neces-
capacities might thus be hard to define. sary to obtain the correct answer. Under the further con-
But even the restriction to binary models yields several dition that only spurious ones or spurious zeros occur, and
alternatives. For instance, the patterns can be coded througmot both of them at the same time, the number of erroneous
and the weights may assume one of the valtidsinstead output units can be calculated without any further informa-
of zero or one. Models may be based on other learning tion. If both types of errors occur, an additional spurious one
rules to determine the weights of the connection and on and an additional spurious zero will not change the number
different retrieval strategies as mentioned above. Further-of zeros and ones in the output. This latter case was studied
more, the kind of incomplete connectivity may also differ. A in (Palm, 1981), who investigated a model with adaptive

7. Discussion



threshold, leading to spurious ones and zeros. Palm estabwith biological neural networks that exhibit behavior simi-
lished a lower bound of 0.05 for the capacity of a hetero- lar to associative memories.

associative memory. This bound is considerably lower than

those presented in this paper, illustrating that it is more
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