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Abstract We present an approach for finding the overlap
area between two ellipses that does not rely on proxy curves.
The Gauss-Green formula is used to determine a segment
area between two points on an ellipse. Overlap between two
ellipses is calculated by combining the areas of appropri-
ate segments and polygons in each ellipse. For four of the
ten possible orientations of two ellipses, the method requires
numerical determination of transverse intersection points.
Approximate intersection points can be determined by solv-
ing the two implicit ellipse equations simultaneously. Alter-
native approaches for finding transverse intersection points
are available using tools from algebraic geometry, e.g., based
on solving an Eigen-problem that is related to companion
matrices of the two implicit ellipse curves. Implementations
in C of several algorithm options are analyzed for accuracy,
precision and robustness with a range of input ellipses.

Keywords Ellipse segment · Ellipse sector · Ellipse area ·
Ellipse overlap · Quartic formula · Ellipse · Algorithm

1 Introduction

Ellipses are useful in many applied scenarios, and in widely
disparate fields. In our research, we have encountered a com-
mon need for efficiently calculating the overlap area between
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two ellipses. In one case, the design for a solar calibrator
onboard an orbiting satellite required an efficient routine for
finding ellipse overlap areas. In a more down-to-earth set-
ting, calculating ellipse overlap areas is useful for model-
ing pedestrian dynamics. The approach described in [4] sur-
rounds each pedestrian by an elliptical footprint area that
the model uses to anticipate obstacles and other pedestrians
in or near the intended path. A force-based model produces
a repulsive force between ellipses, causing the pedestrians
to slow down or change course when the exclusion force
becomes large. To calibrate the strength of the repulsive force
a quantity describing the amount of overlapping between two
ellipses was defined, which requires calculating the overlap
area between many different ellipses in general orientations
and the overlap algorithm must be efficient, so as not to bog
down the simulation.

Overlap area between two ellipses can be determined with
high accuracy and precision by Monte Carlo integration (e.g.,
[17]), but the method is numerically intensive. More efficient
approaches for determining ellipse areas based on approx-
imating the ellipse curves with polygons [9,11], adaptive
polygons [10], polytopes [1], and polyarcs [8] have also been
described. For these methods, accuracy of the overlap area
value is governed by the number of sample points used to rep-
resent the original curve with a polygon or other proxy curve.
Other than Monte Carlo integration, we have yet to find any
ellipse overlap area algorithms in the peer-reviewed litera-
ture that do not rely on use of proxy curves. An un-published
algorithm that does not use proxy curves is available online
[5].

– In this paper, we provide an algorithm that determines the
overlap area between two general ellipses without using
proxy curves. We first find the area of an ellipse segment,
which is the area between a secant line and the ellipse



boundary. The segment algorithm then forms the basis of
an application for calculating the overlap area between two
general ellipses, using points of intersection between the
two ellipses to identify appropriate segment areas. Inter-
section points can be found by solving the two implicit
ellipse equations simultaneously. Alternative methods for
determining intersection points can be adopted from Alge-
braic Geometry, such as solving an Eigen-problem that
is formed from companion matrices of the two implicit
ellipse curves. Accuracy of the area estimate is deter-
mined by accuracy and precision of calculated intersec-
tion points. The algorithm is implemented in C and tested
with a range of input ellipses.

2 Ellipse equations and areas

2.1 Ellipse parametric and implicit polynomial equations

Consider an ellipse that is centered at the origin, with its axes
aligned to the coordinate axes. If the semi-axis length along
the x-axis is A, and the semi-axis length along the y-axis is
B, then the ellipse is defined by a locus of points that satisfy
the implicit polynomial Eq. (1a), or parametrically as in Eq.
(1b):

x2

A2 + y2

B2 = 1 (1a)

x(t) = A · cos(t)
y(t) = B · sin(t)

}
0 ≤ t ≤ 2π (1b)

More generally, a rotated ellipse can be defined paramet-
rically using Eq. (1b) with a general 2-D rotation through
counterclockwise angle ϕ:

[
x(t)
y(t)

]
=

[
cos(ϕ) −sin(ϕ)

sin(ϕ) cos(ϕ)

]
·
[

A · cos(t)
B · sin(t)

]}
0 ≤ t ≤ 2π

x(t) = A · cos(ϕ) · cos(t) − B · sin(ϕ) · sin(t)
y(t) = A · sin(ϕ) · cos(t) + B · cos(ϕ) · sin(t)

}
0 ≤ t ≤ 2π (2)

In the most general case, the rotated ellipse can also be trans-
lated away from the origin by an amount (h, k), and the para-
metric form of a rotated-then-translated ellipse is given by:

x(t) = A · cos(ϕ) · cos(t) − B · sin(ϕ) · sin(t) + h
y(t) = A · sin(ϕ) · cos(t) + B · cos(ϕ) · sin(t) + k

}
0 ≤ t ≤ 2π

(3)

A rotated-then-translated ellipse can be defined by the set of
parameters {A, B, h, k, ϕ}, with the understanding that the
rotation throughϕ is performed before the translation through
(h, k).

Parametric formulation of ellipses is commonly used
in models, since the parameters have intuitive geometric
analogs. However, finding intersection points between two

ellipses is generally accomplished by implicitizing the para-
metric form. For a general ellipse that may be rotated and
translated, the implicit polynomial form is written in the con-
ventional way as:

AA · x2 + B B · x · y + CC · y2 + DD · x

+ E E · y + F F = 0 (4a)

Equation (4a) can also be written as the matrix equation XT ·
A · X = 0, where XT = [x, y, 1] and A is the symmetric
matrix of coefficients [(ai, j )]:

a1,1 · x2 + 2 · a1,2 · x · y + a2,2 · y2

+2 · a1,3 · x + 2 · a2,3 · y + a3,3 = 0 (4b)

[
x y 1

] ·
⎡
⎣ a1,1 a1,2 a1,3

a1,2 a2,2 a2,3

a1,3 a2,3 a3,3

⎤
⎦ ·

⎡
⎣ x

y
1

⎤
⎦ = 0 (4c)

Equivalence of Eqs. (4b) and (4c) is easily verified by mul-
tiplying the matrices in Eq. (4c). The matrix form will be
convenient for several operations in the overlap area algo-
rithm.

Implicitization from parametric form of Eq. (3) to implicit
form of Eq. (4a) is commonly required in applications,
and in particular for determining intersection points. Para-
metric ellipse parameters can be converted algebraically to
implicit polynomial coefficients. Suppose the original ellipse
is defined by the set of parameters {A, B, h, k, ϕ}. Any point
(x, y) on the original ellipse can be translated by (−h,−k),
and then rotated through an angle −ϕ:

[
x ′
y′

]
=

[
cos(−ϕ) −sin(−ϕ)

sin(−ϕ) cos(−ϕ)

]
·
{[

x
y

]
+

[−h
−k

]}

=
[

cos(ϕ) · (x − h) + sin(ϕ) · (y − k)

−sin(ϕ) · (x − h) + cos(ϕ) · (y − k)

]

The locus of points (x ′, y′) all satisfy the implicit polynomial
form of Eq. (1a), with parameters A and B:

[cos(ϕ) · (x − h) + sin(ϕ) · (y − k)]2

A2

+ [−sin(ϕ) · (x − h) + cos(ϕ) · (y − k)]2



AA = a1,1 = cos2(ϕ)

A2 + sin2(ϕ)

B2 (5a)

B B = 2 · a1·2 = 2 · sin(ϕ) · cos(ϕ)

A2 − 2 · sin(ϕ) · cos(ϕ)

B2

(5b)

CC = a2,2 = sin2(ϕ)

A2 + cos2(ϕ)

B2 (5c)

DD = 2 · a1,3 = −2 · cos(ϕ) · [h · cos(ϕ) + k · sin(ϕ)]

A2

+2 · sin(ϕ) · [k · cos(ϕ) − h · sin(ϕ)]

B2 (5d)

E E = 2 · a2,3 = −2 · sin(ϕ) · [h · cos(ϕ) + k · sin(ϕ)]

A2

+2 · cos(ϕ) · [h · sin(ϕ) − k · cos(ϕ)]

B2 (5e)

F F = a3,3 = [h · cos(ϕ) + k · sin(ϕ)]2

A2

+ [h · sin(ϕ) − k · cos(ϕ)]2

B2 − 1 (5f)

Note that for an ellipse which is centered at the origin, as in
Eq. (2), we have (h, k) = (0, 0), and some implicit polyno-
mial coefficients are simplified, as DD = 0, E E = 0, and
F F = −1. Also note that for an ellipse which is both cen-
tered and axis aligned, we have (h, k) = (0, 0) and ϕ = 0,
resulting in AA = (1/A)2, B B = 0, CC = (1/B)2, DD =
0, E E = 0, and F F = −1, and Eq. (4a) simplifies exactly
to Eq. (1), as expected.

2.2 Ellipse area

The area of a centered and axis-aligned ellipse can be found
using the parametric form of Eq. (1b) with the Gauss-Green
formula:

Area = 1

2

t2∫
t1

[
x(t) · y′(t) − y(t) · x ′(t)

]
dt (6)

= 1

2

2π∫
0

[A · cos(t) · B · cos(t)

−B · sin(t) · (−A) · sin(t)] dt

= 1

2

2π∫
0

A · B ·
[
cos2(t) + sin2(t)

]
dt

= A · B

2

2π∫
0

dt

= π · A · B (7)

Rotation of an ellipse is an area-preserving transforma-
tion, and it is easily verified that the Gauss-Green integrand
x(t) · y′(t) − y(t) · x ′(t) for a rotated, centered ellipse sim-

(x1, y1)

(x2, y2)

1

2

Fig. 1 The area of a sector between two points on an ellipse that is
centered at the origin is the area swept out by a vector from the origin
to the first point (x1, y1) as the vector tip travels along the ellipse in a
counter-clockwise direction to the second point (x2, y2)

plifies to A · B when using the parametric form in Eq. (2).
It is also clear that translation by (h, k) is an area-preserving
transformation.

2.3 Ellipse sector area

The ellipse sector between two points (x1, y1) and (x2, y2) on
an ellipse is the area that is swept out by a vector that begins
at the ellipse center and ends on the ellipse curve, starting
the sweep at the first point (x1, y1), as the vector end travels
along the ellipse in a counter-clockwise direction from the
point (x1, y1) to the point (x2, y2). An example is shown in
Fig. 1 for a centered, rotated ellipse.

The Gauss-Green formula (Eq. (6)) can be used to deter-
mine the area of a centered ellipse sector by:

Sector Area = A · B

2

θ2∫
θ1

dt = (θ2 − θ1) · A · B

2
(8)

The parametric angle θ corresponding to a point (x, y) on
the ellipse is formed between the ellipse axis branch that
corresponds to the positive x-axis when ϕ = 0, with positive
θ in the counter-clockwise direction. Using the principal-
valued inverse trigonometric functions that return angles in
the in the range 0 ≤ θ ≤ π for θ = arccos (z), and in
the range −π/2 ≤ θ ≤ π/2 for θ = arcsin (z), ellipse
parametric angles can be found with the relations in Table 1.

For calculating a sector area, the Gauss-Green formula is
sensitive to the direction of integration. For the larger goal of
determining ellipse overlap areas, we follow the convention
that the sector area is calculated from the first point (x1, y1)

to the second point (x2, y2) in a counter-clockwise direction.
For example, if the points (x1, y1) and (x2, y2) of Fig. 1 were
to have their labels switched, then the ellipse sector defined
by the new points will have an area that is complementary to
that of the sector in Fig. 1, as shown in Fig. 2.

The definitions in Table 1 will always produce an angle in
the range 0 ≤ θ < 2π for any point on the ellipse; as such,



Table 1 Relations for finding the parametric angle corresponding to a
given point (x, y) on a centered, rotated ellipse defined with parameters
{A, B, 0, 0, ϕ}[

x ′
y′

]
=

[
cos(ϕ) · (x − h) + sin(ϕ) · (y − k)

−sin(ϕ) · (x − h) + cos(ϕ) · (y − k)

]

Quadrant II (x ′ < 0 and y′ ≥ 0) Quadrant I (x ′ ≥ 0 and y′ ≥ 0)

θ = arccos(x ′/A) θ = arccos(x ′/A)

= π − arcsin(y′/B) = arcsin(y′/B)

Quadrant III (x ′ < 0 and y′ < 0) Quadrant IV (x ′ ≥ 0 and y′ < 0)

θ = 2π − arccos(x ′/A) θ = 2π − arccos(x ′/A)

= π − arcsin(y′/B) = 2π + arcsin(y′/B)

The parametric angle θ is formed between the ellipse axis branch that
corresponds to the positive x-axis when ϕ = 0 and a line drawn from
the origin to the given point, with counterclockwise being positive.
Using standard (principal-valued) inverse trigonometric functions, the
resulting angle will be in the range 0 ≤ θ < 2π for any point on the
ellipse

(x2, y2)

(x1, y1)

2

1

Fig. 2 The ellipse sector area is calculated from the first point (x1, y1)

to the second point (x2, y2) in a counter-clockwise direction

with the point orientations shown in Fig. 2, the corresponding
angles will be ordered as θ1 > θ2. The first angle can be
transformed by subtracting 2π to restore the condition that
θ1 < θ2, and the sector area formula of Eq. (8) can then be
used, with the integration angle from (θ1 − 2π) through θ2.

2.4 Ellipse segment area

For the overall goal of determining overlap areas between two
ellipses, a useful measure is the area of an ellipse segment. A
secant line drawn between two points on an ellipse partitions
the ellipse area into two fractions, as shown in Figs. 1 and 2.
An ellipse segment is the area confined by the secant line and
the portion of the ellipse from the first point (x1, y1) to the
second point (x2, y2) traversed in a counter-clockwise direc-
tion. The segment’s complement is the second of the two
areas demarcated by the secant line. For the ellipse shown in
Fig. 1, the segment area defined by the secant line through
the points (x1, y1) and (x2, y2) is the area of the sector minus
the area of a triangle defined by the two points and the ellipse
center (at the origin). The coordinates for the triangle’s ver-
tices are known, i.e., as (x1, y1), (x2, y2) and the origin (0,
0), and the triangle area can be found by:

Triangle Area = 1

2
· |x1 · y2 − x2 · y1| (9)

For the case depicted in Fig. 1, subtracting the triangle area
(Eq. (9)) from the area of the ellipse sector (Eq. (8)) gives
the area between the secant line and the ellipse, i.e., the area
of the ellipse segment counter-clockwise from (x1, y1) to
(x2, y2).

For the ellipse of Fig. 2, the area of the segment shown is
the sector area plus the area of the triangle. The key difference
between the cases in Figs. 1 and 2 that requires the area of the
triangle to be either subtracted from, or added to, the sector
area is the size of the integration angle. If the integration angle
is less than π, then the triangle area must be subtracted from
the sector area to give the segment area. If the integration
angle is greater than π, the triangle area must be added to the
sector area.

Segment Area = (θ2 − θ1) · A · B

2
± 1

2
· |x1 · y2 − x2 · y1|

(10)

An algorithm for determining the area of an ellipse segment
for a general ellipse is achieved through a generalization of
the cases illustrated in Figs. 1, 2 and Eq. (10). Points are
passed to the algorithm as (x1, y1) and (x2, y2), both of which
must be on the ellipse. The ELLIPSE_SEGMENT algorithm
is outlined below:
1. (x1, y1), (x2, y2) on ellipse {A, B, h, k, ϕ} Inputs to the

algorithm

2.

[
x ′

i
y′

i

]
=

[
cos(ϕ) · (xi − h) + sin(ϕ) · (yi − k)

−sin(ϕ) · (xi − h) + cos(ϕ) · (yi − k)

]
,

i = 1, 2

3.

θ1 =
{

arccos(x ′
1/A), y′

1 ≥ 0
2π − arccos

(
x ′

1/A
)
, y′

1 < 0

θ2 =
{

arccos(x ′
2/A), y′

2 ≥ 0
2π − arccos(x ′

2/A), y′
2 < 0

4. θ̂1 =
{

θ1, θ1 < θ2

θ1 − 2π, θ1 > θ2

5. Area =
(
θ2−θ̂1

)
·A·B

2 + sign
(
θ2−θ̂1−π

)
2 · |x1 · y2 − x2 · y1|

where:

the ellipse is defined by the set of parameters {A, B, h, k, ϕ},
under the convention that rotation through ϕ is performed
before translation by (h, k)

(x1, y1) is the first given point, which must be on the ellipse
(x2, y2) is the second given point, which must be on the
ellipse
θ1 and θ2 are the parametric angles corresponding to the
points (x1, y1) and (x2, y2)

Area = segment area proceeding from (x1, y1) counterclock-
wise to (x2, y2)



3 Ellipse-ellipse overlap area

We seek a method to determine the overlap area between
two general ellipses that are defined parametrically as
(A1, B1, h1, k1, ϕ1) and (A2, B2, h2, k2, ϕ2). The ellipses
are first characterized as belonging to one of the ten pos-
sible relative positions of two ellipses. Six of the 10 relative
positions do not involve transverse intersection points, and
overlap area can be computed directly. For the four remaining
relative positions, overlap area is calculated by combining the
areas of appropriate segments and polygons in each ellipse
based on the location of intersection points, which are found
numerically.

3.1 Relative position of two ellipses

An algorithm for ellipse overlap area benefits from first
determining relative ellipse positions. A robust approach for
characterizing the relative positions of two ellipses with-
out knowledge of intersection points is described by [7].
For two ellipses with coefficient matrices A = [(ai, j )] and
B = [(bi, j )] as annotated in Eq. (4b), the characteristic poly-
nomial of the pencil λA + B is defined as:

f (λ) = det (λ · A + B) = λ3 + a · λ2 + b · λ + c (11)

To summarize results from [7], it is not necessary to deter-
mine roots of the characteristic polynomial. Cases shown in
Fig. 3 can be discerned by evaluating inequalities of algebraic
combinations of the characteristic polynomial coefficients.

In the context of calculating ellipse area overlap, six of
the 10 possible relative positions of two ellipses can be dis-
pensed before attempting to determine points of intersection.
Determining relative position reduces the overall calculations
required by an overlap area routine that is called many times,
as in a simulation. The approach may also avoid sending some
ill-conditioned cases to the intersection routine. On the other
hand, some ill-conditioned cases may be mis-classified by
the relative position algorithm, leading to erroneous overlap
area results; difficult cases are discussed in Sect. 3.6.

An algorithm adapted from [7] for determining the rel-
ative position of two general ellipses defined implicitly as
(AA1, B B1, CC1, DD1, E E1, F F1) and (AA2, B B2, CC2,

DD2, E E2, F F2) called ELLIPSE_CASE is outlined below.

1. {AA1, B B1, CC1, DD1, E E1, F F1} , {AA2, B B2, CC2,

DD2, E E2, F F2} Inputs to the algorithm
2. Calculate coefficients of det (λ · [A] + [B]) = λ3 + a ·

λ2 + b · λ + c

d = AA1 ·
(

CC1 · F F1 − E E2
1

)

−
(

CC1 · DD2
1 − 2 · B B1 · DD1 · E E1 + F F1 · B B2

1

)

a = 1

d
· [AA1 · (CC1 · F F2 − 2 · E E1 · E E2 + F F1 · CC2)

+ 2 · B B1 · (E E1 · DD2 − F F1 · B B2 + DD1 · E E2)

+ 2 · DD1 · (E E1 · B B2 − CC1 · DD2)

−
(

B B2
1 · F F2 + DD2

1 · CC2 + E E2
1 · b1,1

)
+ (CC1 · F F1 · AA2)]

b = 1

d
·
[

AA1 ·
(

CC2 · F F2 − E E2
2

)
+ 2 · B B1 · (E E2 · DD2 − F F2 · B B2)

+ 2 · DD1 · (E E2 · B B2 − CC2 · DD2)

+ CC1 ·
(

AA2 · F F2 − DD2
2

)
+ 2 · E E1 · (B B2 · DD2 − AA2 · E E2)

+ F F1 ·
(

AA2 · CC2 − B B2
2

)]

c = 1

d
·
[

AA2 ·
(

CC2 · F F2 − E E2
2

)

−
(

B B2
2 · F F2 − 2 · B B2 · DD2 · E E2 + DD2

2 · CC2

)]

3. Interpret Coefficients of λ3 + a · λ2 + b · λ + c

s4 = −27 · c3 + 18 · c · a · b + a2 · b2

−4 · a3 · c − 4 · b3



Fig. 3 Classification of the
relative positions of two ellipses
from [7]. A tenth possible
configuration is represented by
coincident ellipses, i.e., the two
ellipses are the same. Overlap
area for cases 3, 4, 6, 7, 8 and 10
can be calculated directly from
Eq. (7). For the remaining four
cases, overlap area is
determined by combining the
areas of appropriate segments
and polygons in each ellipse,
based on the position of
transverse intersection points

1: Transversal
at 4 Points

2: Transversal at 2 Points 3: Separated

4: One Ellipse Contained in 
the Other

5: Transversal at 2 Points and 
Tangent at 1 Point

6: Externally Tangent

7: Internally Tangent at 1 
Point

8: Internally Tangent at 2 
Points

9: Transversal at 1 Point and 
Tangent at 1 Point

3.2 Determining transverse intersection points I: a direct
approach

A direct approach for finding intersection points, discussed in
[5], seeks to solve the two implicit ellipse equations simulta-
neously. The two polynomials, in the form of Eq. (4a), can be
re-written as quadratic polynomials in x whose coefficients
are functions of y:

(AA1) · x2 + (B B1 · y + DD1) · x +
(

CC1 · y2

+E E1 · y + F F1) = 0 (12a)

(AA2) · x2 + (B B2 · y + DD2) · x +
(

CC2 · y2

+E E2 · y + F F2) = 0 (12b)

Any points of intersection (x, y) for the two ellipses will
satisfy Eqs. (12a) and (12b) simultaneously. For convenience,
the coefficients can be substituted:

u2 · x2 + u1 · x + u0 = 0

u2 = (AA1), u1 = (B B1 · y + DD1) ,

u0 =
(

CC1 · y2 + E E1 · y + F F1

)
(13a)

v2 · x2 + v1 · x + v0 = 0

v2 = (AA2), v1 = (B B2 · y + DD2) ,

v0 =
(

CC2 · y2 + E E2 · y + F F2

)
(13b)

Using a standard approach (developed in the nineteenth cen-
tury), the two polynomials of Eq. (13) have a common root

whenever their Bézout determinant is zero:

(u1 · v0 − u0 · v1) · (u2 · v1 − u1 · v2)

− (u2 · v0 − u0 · v2)
2 = 0 (14)

Using the definitions from Eq. (13) and substituting into
Eq. (14) produces a quartic polynomial in y with the fol-
lowing coefficients:

cy[4] · y4 + cy[3] · y3 + cy[2] · y2

+ cy[1] · y1 + cy[0] = 0 (15)

where:

cy[4] = (B B1 · CC2 − CC1 · B B2) · (AA1 · B B2 − B B1 · AA2)

− (AA1 · CC2 − CC1 · AA2)
2

cy[3] = 2 · (E E1 · AA2 − AA1 · E E2) · (AA1 · CC2 − CC1 · AA2)

+ (DD1 · CC2 + B B1 · E E2 − E E1 · B B2 − CC1 · DD2)

· (AA1 · B B2 − B B1 · AA2) + (B B1 · CC2 − CC1 · B B2)

· (AA1 · DD2 − DD1 · AA2)

cy[2] = 2 · (F F1 · AA2 − AA1 · F F2) · (AA1 · CC2 − CC1 · AA2)

+ (DD1 · E E2 + B B1 · F F2 − F F1 · B B2

−E E1 · DD2) · (AA1 · B B2 − B B1 · AA2)

+ (DD1 · CC2 + B B1 · E E2 − E E1 · B B2 − CC1 · DD2)

· (AA1 · DD2 − DD1 · AA2) − (AA1 · E E2 − E E1 · AA2)
2

cy[1] = 2 · (F F1 · AA2 − AA1 · F F2) · (AA1 · E E2 − E E1 · AA2)

+ (DD1 · E E2 + B B1 · F F2 − F F1 · B B2 − E E1 · DD2)

· (AA1 · DD2 − DD1 · AA2)

+ (DD1 · F F2 − F F1 · DD2) · (AA1 · B B2 − B B1 · AA2)



cy[0] = (DD1 · F F2 − F F1 · DD2) · (AA1 · DD2 − DD1 · AA2)

− (AA1 · F F2 − F F1 · AA2)
2

When roots of Eq. (15) are found, y-values where the poly-
nomials of Eq. (12) intersect can be determined by:

ȳ = AA1 · (CC2 · ȳ2+E E2 · ȳ+F F2)−AA2 · (CC1 · ȳ2+E E1 · ȳ + F F1)

AA2 · (B B1 · ȳ + DD1) − AA1 · (B B2 · ȳ + DD2)

(16)

To find points of intersection, substitute each ȳ back into Eq.
(12a) (or Eq. (12b)), and solve for two x̄ values, using the
quadratic formula:

x̄ =
− (B B1 · ȳ + DD1) ± AA2 ·

√
(B B1 · ȳ + DD1)

2 − 4 · AA1 · (
CC1 · ȳ2 + E E1 · ȳ + F F1

)
2 · AA1

(17)

Pairs (x̄, ȳ) that satisfy both Eqs. (12a) and (12b) represent
points of intersection of the two original ellipses.

Many options exist for numeric solution of the quartic
polynomial in Eq. (15); see, e.g, [16] or [6] for a survey
of modern methods, and [13] for a comprehensive list of
root-finding references. However, polynomial root-finding
remains a challenging problem, and until recently the accu-
racy of most numerical implementations has been limited,
particularly when multiple roots are present or when inex-
act coefficients are supplied. Several algorithms have been
introduced recently that provide improved accuracy. One
such algorithm is described in [15], based on recursive
numerical splitting of the input polynomial into the prod-
uct of factors. Another routine with improved accuracy is
gsl_poly_complex_solve from the GNU scientific
library (GSL), which is based on [19]. A custom GSL exten-
sion specifically for quartic polynomials is also available
[18]. The algorithm in [19] first calculates the multiplicity
structure for the roots, and computes an initial approxima-
tion to the roots; the initial approximation is then refined to
an optimal accuracy.

In the context of determining ellipse area overlap for a sim-
ulation, some benefit may be obtained from a non-iterative
solution of the quartic equation, even if results are less accu-
rate than iterative solvers can provide. An expedient (non-
iterative) method for determining roots of the polynomial
in Eq. (15) can be accomplished using Ferrari’s quartic for-
mula. A numerical implementation of Ferrari’s formula is
given in [14]. Four complex roots are returned, and any roots
whose imaginary part is returned as zero is a real root. When
polynomial coefficients are constructed as in Eq. (15), the
general case of two distinct ellipses typically results in a
quartic polynomial, i.e., the coefficient cy[4] of Eq. (15)
is non-zero. However, certain cases lead to polynomials of
lesser degree. The solver in [14] is conveniently modular, pro-
viding separate functions BIQUADROOTS, CUBICROOTS

and QUADROOTS to handle all the possible polynomial
cases that arise when seeking points of intersection for two
ellipses.

3.3 Determining transverse intersection points II: tools
from algebraic geometry

To identify intersection points, the direct approach of solv-
ing the two implicit ellipse equations simultaneously is eas-
ily implemented. However, even with accurate root-finding
algorithms, the direct approach encounters difficulties with
some ill-conditioned cases. The root-finding algorithms in

[15] and [19] are robust in general situations; even so, both
algorithms are still susceptible to error propagation from
inexact coefficients, particularly when there are multiple
roots or roots that are clustered very close together. The direct
approach calculates polynomial coefficients from Eq. (15),
and will send difficult polynomials to the root-finding routine
in cases where the curves intersect at a shallow angle. Robust-
ness of the area overlap algorithm can be improved using
methods from algebraic geometry that have been designed
specifically for identifying intersection points of implicitly
defined curves.

Several independent approaches are available for finding
intersection points of two implicit curves. [12] describe a
method for computing geometrically isolated higher order
intersections of curves. A similar method is described in
[3]. Both of these methods are based on solving an Eigen-
problem that is related to companion matrices of the two
implicit ellipse curves. In the context of finding intersection
points, one advantage of the companion matrix approach is
that accuracy of numerical approaches for Eigen-problems
is well-studied, and error bounds for intersection points can
be established.

3.4 Overlap area determination

In six of the 10 possible relative positions of two ellipses
shown in Fig. 3, ellipse overlap area can be calculated
directly. In relative positions 3 and 6, the ellipses are disjoint
and the overlap area is 0. In relative position 10 (coincident
ellipses), the overlap area is π · A · B. For relative positions 4,
7 and 8, the overlap area is the area of the contained ellipse,
which must be the smaller of the two ellipse areas.

Relative positions 2 and 9 each have two intersection
points. Overlap area is found by adding the area of two ellipse
segments, one from each ellipse, as shown in Fig. 4. The two
intersection points (x1, y1) and (x2, y2) must be passed to



Fig. 4 Relative Positions 2 and 9 have two transverse intersection
points. Overlap area is found by adding the area of two ellipse seg-
ments, one from each ellipse

the segment area algorithm in the order that will return the
correct segment from each ellipse. Only one area from each
ellipse contributes to the overlap area. A check is made to
determine which point order will return the desired segment
area for each ellipse. First, the parametric angles θ1 and θ2

corresponding to (x1, y1) and (x2, y2) on the first ellipse are
determined, by the rules in Table 1. Then, a point midway
between (x1, y1) and (x2, y2) on the first ellipse is found
using the parametric form:

xmid = A · cos(ϕ1) · cos

(
θ1 + θ2

2

)

−B · sin(ϕ1) · sin

(
θ1 + θ2

2

)
+ h1 (18a)

ymid = A · sin(ϕ1) · cos

(
θ1 + θ2

2

)

+B · cos(ϕ1) · sin

(
θ1 + θ2

2

)
+ k1 (18b)

The point (xmid, ymid) is on the first ellipse between (x1, y1)

and (x2, y2) when travelling counter- clockwise from (x1, y1)

and (x2, y2). If (xmid, ymid) is inside the second ellipse,
then the desired segment of the first ellipse contains the
point (xmid, ymid), and the segment algorithm should inte-
grate counterclockwise from (x1, y1) to (x2, y2), which
is the default order. Otherwise, the order of the points
should be reversed before calling the segment algorithm. The
implicit polynomial form can be used to determine whether
(xmid, ymid) is inside or outside the second ellipse:

T = AA2 · x2
mid + B B2 · xmid · ymid + CC2 · y2

mid

+DD2 · xmid + E E2 · ymid + F F2 (19)

If T < 0 then the point (xmid, ymid) is inside the second
ellipse. The desired segment area from the second ellipse is
found in a manner similar to the first ellipse.

Relative position 5 has three intersection points, but only
two are transverse. Overlap area can be found by the same
method as relative positions 2 and 9, if the two transverse
intersection points are used, as shown in Fig. 5. For ellipses
in relative position 5, the transverse intersection points corre-
spond to roots of multiplicity 1. The tangential intersection

Fig. 5 Relative position 5 (left) has three intersection points, but only
two are transverse. Overlap area is found by determining which two
points are transverse, then adding the area of two ellipse segments,
one from each ellipse. Relative position 1 (right) has four transverse
intersection points. Overlap area is found by adding the area of four
ellipse segments, two from each ellipse, and one quadrilateral

point corresponds to a root of multiplicity 2. For ellipses
in relative position 9, there are two transverse intersection
points; one of the points corresponds to a root of multiplicity
1, and the other corresponds to a root of multiplicity 3.

Relative position 1 consists four transverse intersection
points, shown in Fig. 5. The two ellipse curves must cross at
all four of the intersection points, resulting in a partial over-
lap. The overlap area consists of two segments from each
ellipse, and a central convex quadrilateral. The four inter-
section points are sorted ascending in a counter-clockwise
order around the first ellipse. The ordered set of intersection
points is (x1, y1), (x2, y2), (x3, y3) and (x4, y4). The order-
ing allows a direct calculation of the quadrilateral area. The
standard formula uses the cross-product of the two diagonals:

area = 1

2

∣∣(x3 − x1, y3 − y1
) × (

x4 − x2, y4 − y2
)∣∣

= 1

2

∣∣(x3 − x1) · (
y4 − y2

) − (x4 − x2) · (x3 − x1)
∣∣
(20)

The point ordering also simplifies the search for the appro-
priate segments of each ellipse that contribute to the overlap
area. Suppose that the first two sorted points (x1, y1) and
(x2, y2) demarcate a segment of the first ellipse that con-
tributes to the overlap area. It follows that contributing seg-
ments from the first ellipse are between the points (x1, y1) and
(x2, y2), and also between the points (x3, y3) and (x4, y4). In
this case, the contributing segments from the second ellipse
are between the points (x2, y2) and (x3, y3), and between the
points (x4, y4) and (x1, y1). To determine which segments
contribute to the overlap area, it suffices to test whether a
point midway between the points (x1, y1) and (x2, y2) is
inside or outside the second ellipse. The segment algorithm is
used for each of the four areas, and added to the quadrilateral
to obtain the total overlap area.



3.5 General overlap area algorithm

Combining the results presented above leads to an algo-
rithm for determining the overlap area between two general
ellipses defined parametrically as (A1, B1, h1, k1, ϕ1) and
(A2, B2, h2, k2, ϕ2). The algorithm ELLIPSE_OVERLAP is
outlined below. Condition of the implicitization operation
can be improved for some difficult cases by translating both
ellipses to put the midpoint of the two ellipse centers at the
origin. Translation does not affect the relative position of the
two original ellipses.

1.
{

A1, B1, h̄1, k̄1, ϕ1
}
,
{

A2, B2, h̄2, k̄2, ϕ2
}

Inputs to the
algorithm

2.

[
h̄i

k̄i

]
=

[
hi − h1+h2

2
ki − k1+k2

2

]
, i = 1, 2

3.

{
A1, B1, h̄1, k̄1, ϕ1

}→{AA1,B B1,CC1,DD1,E E1,F F1}{
A2, B2, h̄2, k̄2, ϕ2

}→{AA2,B B2,CC2,DD2,E E2,F F2}
by Eq. (5)

4. Determine relative position of the two implicitly defined
ellipses by ELLIPSE_CASE algorithm adapted from [7],
as given in Sect. 3.1

5. RELATIVE POSITION:

CASE10: one ellipse contained in the other
AREA = π · A1 · B1 = π · A2 · B2 : RETURN

CASE 3, 6: no overlap area
AREA=0: RETURN

CASE 4, 7, 8: one ellipse contained in the other
AREA= min {π · A1 · B1, π · A2 · B2} : RETURN

CASE 1, 2, 5, 9: transverse intersections
Calculate coefficients cy[4], cy[3], cy[2], cy[1],
cy[0] by Eq. (15)
Solve quartic cy[4] · y4 + cy[3] · y3 + cy[2] ·
y2 + cy[1] · y1 + cy[0] = 0
Calculate intersection points (x̄, ȳ) by Eqs. (16)
and (17)

CASE 2, 5, 9: two transverse intersections
Calculate segment area contributed by each
ellipse using ELLIPSE_SEGMENT algo-
rithm, as given in Sect. 2.4
AREA=Segment 1+Segment 2:RETURN

CASE 1: four transverse intersections
Calculate four segment areas contributed
by each ellipse using ELLIPSE_SEGMENT
algorithm, as given in Sect. 2.4
Calculate quadrilateral area contributed by
each ellipse using Eq. (20)
AREA=Segment 1+Segment 2+Segment
3+ Segment 4+Quadrilateral :RETURN

3.6 Notes on accuracy, precision, and robustness

The algorithms presented in this paper describe an approach
for determining the overlap area between two general
ellipses. Any numerical implementation of the algorithm is
susceptible to propagation of fixed-point round-off errors.
Round-off errors that arise during implicitization of the
ellipse parameters using Eq. (5) can produce inexact poly-
nomial coefficients, leading to inaccurate roots. Inaccuracy
the polynomial roots produces perturbed intersection points,
and the error propagates to the determination of polygon and
ellipse sector areas. Closed-form determination of overlap
areas is not available for all but the simplest cases, so absolute
accuracy of the algorithm is not obtainable. For ellipses that
are commonly encountered in applications, errors in the over-
lap area algorithm are directly tied to root-finding, for which
error bounds are available [15]. We have encountered some
‘odd’ cases, such as extremely eccentric ellipses, where the
algorithm returns the wrong polynomial case; in these situ-
ations, the area returned by the algorithm is unrelated to the
actual overlap area.

A relevant question is whether the algorithm as presented
here will handle cases where one or both ellipses are circles.
In such cases, inputs to the algorithm could include one or
two ellipses defined using the parametric definition for an
ellipse as (A, A, h, k, 0), representing a circle of radius A
centered at (h, k). The implicitization of Eq. (5) is still valid,
and simplifies to:

AA = a1,1 = 1

A2 (21a)

B B = 2 · a1,2 = 0 (21b)

CC = a2,2 = 1

A2 (21c)

DD = 2 · a1,3 = −2 · h

A2 (21d)

E E = 2 · a2,3 = −2 · k

A2 (21e)

F F = a3,3 = h2

A2 + k2

A2 − 1 (21f)

Following the algorithm by inputting circles as ellipses
with the appropriate features, the polynomial coefficients
of Eq. (15) are calculated, as shown in Eq. (21), and the
algorithm returns the correct overlap area where one or both
curves are circles. The eccentricity of a circle is zero, so cir-
cles do not result in eccentricity-related issues for the algo-
rithm. Circles that are very close in size and position can still
lead to difficult root-finding cases.

An implementation in C-code of the ELLIPSE_OVERLAP
algorithm and all of its dependencies was compiled and run
under Cygwin-1.7.7-1 and Debian 7.2 (Wheezy), and returns
the following values for examples of the test cases presented
in Fig. 3:



//-- CASE 1 
A1 = 3.; B1 = 2.; H1 = 0.; K1 = 0.; PHI_1 = 0.; 
A2 = 3.; B2 = 1.; H2 = 1.; K2 = -0.5; PHI_2 = pi/4.; 

//-- CASE 2 
A1 = 3.; B1 = 2.; H1 = 0.; K1 = 0.; PHI_1 = 0.; 
A2 = 2.; B2 = 1.; H2 = -2.; K2 = -1.; PHI_2 = pi/4.; 

//-- CASE 3 
A1 = 2.; B1 = 1.; H1 = 0.; K1 = 0.; PHI_1 = 0.; 
A2 = 1.5; B2 = 0.75; H2 = -2.5; K2 = 1.5; PHI_2 = pi/4.; 

//-- CASE 4 
A1 = 3.; B1 = 2.; H1 = 0.; K1 = 0.; PHI_1 = 0.; 
A2 = 2.; B2 = 1.; H2 = -.75; K2 = 0.25; PHI_2 = pi/4.; 

//-- CASE 5 
A1 = 3.; B1 = 2.; H1 = 0.; K1 = 0.; PHI_1 = 0.; 
A2 = 3.; B2 = 3.; H2 = 0.; K2 = 1.; PHI_2 = 0.; 

//-- CASE 6 
A1 = 2.; B1 = 1.; H1 = 0.; K1 = 0.; PHI_1 = 0.; 
A

/
A
A

/
A
A

/
A
A

/
A
A

$ 
$ 
C
C
C
C
C
C
C
C
C
C
C

2 = 2.; B2 = 

/-- CASE 7 
1 = 3.; B1 = 
2 = 2.; B2 = 

/-- CASE 8 
1 = 3.; B1 = 
2 = 1.; B2 = 

/-- CASE 9 
A1 = 9.; BB1 
A2 = 143.; B

/-- CASE 10 
1 = 3.; B1 = 
2 = 3.; B2 = 

cc call_ee.
./call_ee 

alling ellip
ASE 1: area 
ASE 2: area 
ASE 3: area 
ASE 4: area 
ASE 5: area 
ASE 6: area 
ASE 7: area 
ASE 8: area 
ASE 9: area 
ASE 10: area 

1.; H2 = 0.

2.; H1 = 0.
1.; H2 = -1

2.; H1 = 0.
2.; H2 = 0.

= 0.; CC1 = 
B2 = 0.; CC2 

2.; H1 = 0.
2.; H2 = 0.

c ellipse_ov

se_overlap.c 
=     16.937
=      3.822
=      0.000
=      6.283
=     17.602
=      0.000
=      6.283
=      6.283
=      3.425
=      6.28

; K2 = 2.; P

; K1 = 0.; P
.02452092600

; K1 = 0.; P
; K2 = 0.; P

100; DD1 = 
= 773; DD2 

; K1 = 0.; P
; K2 = 0.; P

erlap.c -o ca

91852
54574 
00000 
18531 
18852 
00000 
18531 
18531 
54080 
318531 

HI_2 = 0.; 

HI_1 = 0.; 
22; K2 = 0.2

HI_1 = 0.; 
HI_2 = 0.; 

0.; EE1 = 0.;
= -267.; EE2 

HI_1 = 0.; 
HI_2 = 0.; 

ll_ee 

5; PHI_2 = 

; FF1 = -81.
 = -155.; F

pi/4.; 

; 
F2 = -509.; 

The accuracy of the algorithm, as implemented in C and
C++, was tested extensively. We compare the results of 1,000
selected pairs of ellipses with the overlap areas and calcula-
tion times of the corresponding n-sided polygons. Figure 6
shows that implementation of the analytical solution on an
Intel Core i7-2620M, 2,7 GHz, 4MB Cache, is 40–140 times
faster than the solution based a polygon-approximation of
ellipses. For the results presented in Fig. 6, we make use of the
C++-library Boost-polygon [2]. Figure 7 shows a quantita-
tive visualization of the calculated crossing points of selected
ellipses. The code is open source and can be downloaded from
https://github.com/chraibi/EEOver.

Fig. 6 Top: The ratio of the run-time of the polygon-based method (tp)

and the analytical solution presented in this paper as implemented in
C++ (te) with respect to the number of edges. Bottom: The relative error
of the calculated overlap areas with respect to the number of edges of a
corresponding n-sided polygons used to approximate the area

https://github.com/chraibi/EEOver


Fig. 7 Results of selected test cases. The red and blue points represent ellipse centers, and green points represent intersection points, calculated
with the algorithm as implemented in C++
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