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ABSTRACT / A strategy for management of giant sequoia 
groves is formulated using a conceptual framework for eco­

system management recently developed by Region Five of the 
USDA Forest Service. The framework includes physical, bio­
logical, and social dimensions. Environmental indicators and 
reference variability for key ecosystem elements are discussed 
in this paper. The selected ecosystem elements include: 1) 
attitudes, beliefs, and values; 2) economics and subsistence; 
3) stream channel morphology; 4) sediment; 5) water; 6) fire; 
7) organic debris; and 8) vegetation mosaic. Recommenda­
tions are made for the attributes of environmental indicators 
that characterize these elements. These elements and associ­
ated indicators will define and control management activities 
for the protection, preservation, and restoration of national 
forest giant sequoia ecosystems. 

Since their discovery by settlers in 1852, giant se­
quoia trees (Sequoia gigantea [Lindl.] Decne.)1 have 
fascinated people throughout the world (Figure 1). 
Early exploitation by commercial interests led to many 
laws and administrative decisions designed to protect 
the groves where these magnificent wonders of nature 
are found (Piirto and others 1997, Tweed 1994). 

In 1990, the Sequoia National Forest was party to a 
mediated settlement agreement which established 
goals for giant sequoia management: to protect, pre­
serve, and restore the groves for the benefit of present 
and future generations (USDA Forest Service 1990). In 
1992, President Bush issued a proclamation that indi­
rectly validated these goals and made them national in 
scope. Of the approximately 75 naturally occurring 
giant sequoia groves (Figure 2), 43 are found on na­
tional forests; most of the remainder are found in 
national parks (Rundel 1972a, Willard 1995, Rogers 
1998). Portions of nine groves are in private ownership. 
All of the naturally occurring giant sequoia groves are 
found on the west slope of the Sierra Nevada moun­
tains in California. 
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1The common name, giant sequoia, and the scientific name, Sequoia 
gigantea (Lindl.) Decne., rather than Sequoiadendron giganteum (Lindl.) 
Buchholz, will be used in this paper. Justification for this is docu-

Management Goals 

Although the mediated settlement agreement 
(USDA Forest Service 1990) does not elaborate on the 
meaning of protect, preserve, and restore, the presiden­
tial proclamation (Bush 1992) does provide a context 
from which meanings useful for management purposes 
can be derived. In the proclamation President Bush 
declared: “Naturally occurring old-growth giant se­
quoia groves . . . are unique national treasures that are 
being managed for biodiversity, perpetuation of the 
species, public inspiration, and spiritual, aesthetic, rec­
reational, ecological, and scientific values.” Among 
other things, he proclaimed: “The designated giant 
sequoia groves shall be protected as natural areas with 
minimum development.” 

Scope and Context of this Paper 

The goals of protect, preserve, and restore are not 
independent of each other. Restoring giant sequoia 
ecosystems to conditions that resulted from centuries of 
adaptation to their environment appears to be the best 
way to protect them in the present, and to assure their 
preservation (or more appropriately, perpetuation) in 
the future (Fullmer and others 1996). This paper pro­
vides a scientific foundation upon which management 
decisions affecting these goals can be based. The foun­
dation is developed in five steps: 

1. Define the ecosystem management process as it 
applies to national forest giant sequoia groves 

mented in Davidson (1972) and Piirto (1977). 



Figure 1. A The Confederate Group of giant sequoias in Mariposa Grove, Yosemite National Park. Note the signs that give each 
large tree an individual name. (Photo taken circa 1890.) B By 1970, in the absence of frequent surface fires, a dense thicket of 
white firs grew at the base of the sequoias. Such thickets provide fuels that could conduct fire high into the sequoias. 
(Photographs courtesy of Bruce M. Kilgore, National Park Service.) 



(most of which are currently within the Giant Se­
quoia National Monument administered by the 
USDA Forest Service). Ecosystem management 
combines the social, physical, and biological di­
mensions of the environment in a holistic way that 
is particularly appropriate to the goals described 
above. 

2.	 Identify elements that are key to the function of 
giant sequoia ecosystems. This is the second step of 
the ecosystem management process. It identifies 
processes (i.e., fire and water), components (e.g., 
plant species), and structures (arrangement of 
components) that are important in characterizing 
giant sequoia groves. 

3.	 Identify indicators of the key elements. 
4.	 Describe how measures of those indicators can vary 

within naturally functioning giant sequoia ecosys­
tems. 

5.	 Provide practical guidance on how to apply the 
principles developed above. This context, is neces­
sary for application of the principles developed in 
this paper. 

Ecosystem Management in the USDA 
Forest Service 

Forest Versus Ecosystem Management 

Forest management helps people achieve their goals 
for forests. It seeks to produce results that meet land­
owner expectations, whether the owners are public or 
private. Leuschner (1984) states: “Forest management 
in the broadest sense, integrates all of the biological, 
social, economic, and other factors that affect manage­
ment decisions about the forest.” As defined by Manley 
and others (1995) ecosystem management is “the skill­
ful, integrated use of ecological knowledge at various 
scales to produce desired resource values, products, 
services and conditions in ways that also sustain the 
diversity and productivity of ecosystems. This approach 
blends the physical, biological, and cultural/social 
needs” (Figure 3). 

There appears to be no difference between the two 
approaches to the management of wildland natural 
resources, at least at the philosophical level. So, if the 
concept of ecosystem management brings anything 
new it is simply a reminder that elements of an ecosys­
tem are interconnected, and viewing them otherwise 
leads to faulty assumptions about the consequences of 
management actions. Former Chief of the Forest Ser­
vice, Dr. Jack Ward Thomas, expressed this thought 
when he said: “It is time to consider land use in a 
broader context than a series of single-use allocations 

to address specific problems or pacify the most vocal 
constituencies” (Thomas 1993). 

Concepts of Ecosystem Management 

Rhetoric abounds, but literature describing the ac­
tual practice of ecosystem management is scant. An 
exception is Manley and others (1995), a systematic 
process by field-oriented practitioners to put the con­
cepts of ecosystem management to work on the ground. 
It deals with five basic conceptual questions: 1) How did 
the ecosystem develop? 2) What is sustainable? 3) What 
do we want (within the limits of sustainability)? 4) What 
do we have? 5) How do we move conditions from what 
we have to what we want? 

These questions change the focus from output 
driven project planning which asks: “What do we need 
to mitigate because of our actions,” to outcome driven 
planning which asks: “What do we want to create with 
our actions?” 

The process developed by Manley and others (1995) 
used in this paper involves 14 steps to be applied at the 
landscape level: 

Step 1—select a landscape to analyze 
Step 2—select key ecosystem elements and their 

environmental indicators 
Step 3—derive recommended management vari­

ability for the indicators 
Step 4 —define desired condition 
Step 5—determine existing condition 
Step 6 —compare desired condition to existing 

condition 
Step 7—identify opportunities to approach desired 

condition 
Step 8 —list potential projects (possible manage­

ment practices) 
Step 9 —project selection, prioritization, and 

scheduling 
Step 10 —NEPA analysis and disclosure 
Step 11—responsible Official decision 
Step 12—project implementation 
Step 13—monitoring and feedback 
Step 14 —possible forest plan adjustment (adaptive 

management). 
These steps provide a systematic and administratively 

feasible approach to ecosystem management. 

Connecting Science to Ecosystem Management 

Sustainable ecosystems require that the integrity of 
their components, structures, and processes (the three 
general types of elements) be maintained through time 
and space. This requires a reasonable understanding of 
how these ecosystems developed into their present 
state. Landscape conditions within all ecosystems are 



  

dynamic, thus measures of their elements change over 
time and space, but within certain limits. An under­
standing of this “range of variability” is critical to en­
suring the sustainability of these ecosystems. Science 
plays a key role in providing that understanding (Bon­
nicksen 1985, 1988, Stephenson 1996, Piirto and others 
1997). 

Figure 2. Locations of giant 
sequoia groves in the Sierra 
Nevada (University of Califor­
nia 1996). 

Selecting Key Ecosystem Elements 

Ecosystem management in Region 5 of the USDA 
Forest Service (Figures 3 and 4) is guided by the con­
cepts and principles established in “Sustaining Ecosys­
tems—A Conceptual Framework” (Manley and others 
1995). This work includes a lengthy list of ecosystem 



elements that could be helpful in defining and control­
ling the management actions in national forest giant 
sequoia groves. If all were used in practice the admin­
istrative task would become hopelessly complex. It is 
therefore necessary to concentrate on just the “key” 
ecosystem elements (Holling 1992). These are the ones 
that broadly represent the ecosystem, are influenced by 
management decisions, and are reasonably well under­
stood (Piirto and Rogers 1999b). The selected key 
elements for giant sequoia ecosystems are shown in 
Table 1. 

Selecting Environmental Indicators 

Once key ecosystem elements are identified, the 
next step is to determine what environmental indica­
tors will be used to assess them. From a practical ad­
ministrative point of view the selected indicators should 
be affected by management actions, change over rela­
tively short periods of time, be feasible to measure 
either directly or indirectly, and be useful in describing 
desired conditions (Piirto and Rogers 1999b). The se­
lected environmental indicators for giant sequoia eco­
systems that meet these criteria are shown in Table 1 
(Piirto and Rogers 1999b). 

Natural Range of Variability 

Environmental indicators are to an ecosystem man­
ager what an engine temperature gauge is to an auto­
mobile driver. Environmental indicators are a measure 
of ecosystem performance, and at the extremes of their 
range they often warn of danger. Just as the automobile 
engine temperature can range from below freezing on 
a cold day to the boiling point of the engine coolant on 
a hot one, environmental indicators also range between 
extremes. This range is referred to as reference vari­
ability, natural range of variability, or historic range of 
variability. 

Manley and others (1995) elaborate as follows: “Ref­
erence Variabilities represent the full distribution of 
values for environmental indicators including infre­
quent and extreme events (e.g., severe floods, high 
intensity wildfires, etc.). The role of these more ex­
treme disturbances in maintaining ecosystem processes 
is not well understood, but their importance for biolog­
ical elements is a well-accepted notion.” A desirable and 
more closely defined operating range is usually found 
between the extremes. This range is referred to as the 
recommended management variability (RMV). Again 
Manley and others (1995) elaborate: “The entire Ref­
erence Variability distribution is important and should 
be realized, for biological elements, over long-term, 

Figure 3. The USDA Forest Service Pacific Southwest region 
approach to ecosystem management. Biological, cultural/so­
cial, and physical considerations are integrated to arrive at a 
desired condition (Manley et al. 1995). 

evolutionary temporal scales. However, planned man­
agement activities should not normally seek to replicate 
extreme values of the distribution if they will occur 
naturally.” Under most conditions, properly designed 
and executed management actions should be able to 
maintain environmental indicators within the RMV, 
and by so doing minimize the risk of extreme events 
that would jeopardize ecosystem sustainability and re­
siliency (Figure 4). 

The recommended management variability for any 
ecosystem must take into account the influence of cli­
mate on forest community development (Patterson and 
Prentice 1985). Over long periods of time climates do 
change dramatically. However, even with similar cli­
mate regimes there is substantial variation in the com­
position within and between the giant sequoia groves. 
Stephenson (1996) states in the context of the biolog­
ical dimension: “. . . . It  therefore seems reasonable to 
conclude that a variety of different grove structures, not 
a single predictable grove structure, probably occurred 
during periods that shared similar climates.” Such vari­
ation can also be expected in the cultural/social and 
physical dimensions as well. 

Indicators for all of the key giant sequoia ecosystem 
elements are discussed in detail in Piirto and Rogers 
(1999b). Because fire, organic debris, and vegetation 
mosaic are of paramount importance to both users and 
managers, indicators for these elements will be dis­
cussed here. 



Fire Severity Indicator 

High intensity crown fires were evidently rare in the 
presettlement giant sequoia-mixed conifer forest (Kil­
gore and Taylor 1979, Muir 1961). The risk of high 
severity fires occurring in giant sequoia groves has in­
creased over the last century due to a reduction in the 
areal extent of fire in the Sierra Nevadas. Giant sequoia 
mixed conifer forests now have: 1) more smaller trees 
with higher proportions of white fir (Abies concolor) and 
incense-cedar (Libocedrus decurrens) than were present 
historically; and 2) increased levels of fuel both on the 
forest floor and as fuel ladders (McKelvey and others 
1996, Skinner and Chang 1996, Stephenson 1994). Ste­
phenson (1994) states: “By far the largest deviation 
from equilibrium conditions (stationary age distribu­
tion) in giant sequoia populations over the last two to 

Figure 4. Relationships be­
tween ecosystem elements, indi­
cators and recommended man­
agement variability (Manley et 
al. 1995). 

three millennia is due to the effects of fire suppression 
during the last century.” 

Within this context, Shulman and Gelobter (1996) 
developed a preliminary wildfire severity and behavior 
model to evaluate potential loss of spotted owl (Strix 
occidentalis) habitat during nintieth percentile burning 
conditions on the Sequoia National Forest. They used 
stand structure, surface fuels, slope, and weather to 
estimate the potential for habitat loss. They defined fire 
risk categories of low, moderate, high, very high, and 
extreme relying on BEHAVE (Fire Behavior Model) 
and FOFEM (First Order Fire Effects Model). 

According to Mr. Jack Eaton (1996), retired USDA 
Forest Service Fuels Specialist, a giant sequoia grove with 
only 25% of its area in the high to extreme fire risk 
categories is likely to avoid crown fires even under ninti­



Table 1. Recommended environmental indicators for national forest giant sequoia groves 

Ecosystem Elements Recommended Environmental Indicators 

Attitudes, Beliefs, and Values ● expression of realized expectations 
● recognition and incorporation of diverse values and beliefs 

Economics and Subsistence ● resource uses 
● financial feasibility 

Stream Channel Morphology ● sinuosity, confinement, and gradient (Rosgen channel types) 

Sediment ● vegetative bank protection (upper banks) 
● cutting (lower banks) 
● deposition (lower banks) 
● scouring and deposition (channel bottom) 
● percent stable material (channel bottom) 

Water ● drainage density 
● surface distribution 
● concentration 

Fire ● severity 
● return rate (i.e., fire return interval) 

Organic Debris ● weight of down material 
● distribution of down material 
● snag density 

Vegetation Mosaic ● gap and patch size 
● gap and patch frequency 
● plant community 

● plant species 
● plant density 

eth percentile burning conditions. A grove with 75% of its 
area in those categories is seriously threatened. 

Recommendation. The potential for crown fires in gi­
ant sequoia groves should be kept at low levels. However, 
because of considerations for the vegetative mosaic ele­
ment, there should be some allowance for patches of 
dense, multi-layered forest cover even though it contrib­
utes to crown fire potential. The recommended manage­
ment variability for the fire severity indicator should allow 
between 10% and 25% of the grove area to be in the high 
to extreme range of potential fire severity, the remainder 
should be moderate to low. 

Fire Return Rate (Interval) Indicator 

It is generally agreed that low to moderate intensity 
fires in the mixed conifer forest were much more fre­
quent prior to the late 1800’s than they are today. 
Skinner and Chang (1996) summarized data from sev­
eral authors that describe a reference variability for fire 
return interval of 1–35 years for the giant sequoia-
mixed conifer forest. Swetnam and others (1992) and 
Swetnam (1993) reported a fire return interval for the 
presettlement giant sequoia-mixed conifer forest of 
three to eight years with a maximum interval generally 
less than 15 years (Figure 5). Fire-free periods of 20 –30 
years occasionally appeared in the record. 

Recommendation. Although the studies cited here 
were conducted on widely different scales (from 1 to 
100 hectares), and include a variety of aspects and 
other factors that influence fire return interval, there 
appears to be consensus that the fine scale (on the 
order of 1 ha) presettlement return interval was on the 
order of 10 years. If prescribed fire is used extensively, 
then intervals very much shorter than 10 years are likely 
to be logistically infeasible for management to attain. 
On the other hand, intervals longer than about 20 years 
would probably allow fuels to build to excessive levels 
(in excess of recommended management variability) in 
many cases. The recommended management variability 
for returning low to moderate intensity fire to national 
forest giant sequoia ecosystems should be in the range 
of 5–20 years. 

Weight of Organic Debris-Down Material Indicator 

Stephenson (1996) and Keifer (1995) report that 
existing fuel loads can vary from 19 to 134 tons per acre 
in groves not recently disturbed. From a fire protection 
point of view, the less organic debris (fuel) the better. 
However, this same debris provides habitat for animals 
and plants that are important to the ecosystem in other 
ways, and there are administrative constraints on how 
much can be removed (USDA Forest Service 1993). Rog­



Figure 5. The return rate indicator for the fire ecosystem 
element. Reference variability ranges from 1 to 35 years for 
the giant sequoia-mixed conifer forest (Skinner and Chang 
1996). The recommended management variability (RMV) for 
returning low to moderate intensity fire to national forest 
giant sequoia groves should be in the range of 5 to 20 years. 

ers (1997) developed a “desired condition” for fuel within 
groves with this compromise in mind. However, he dealt 
only with fire protection, and was therefore concerned 
with the maximum fuel loading that would allow direct 
suppression under most burning conditions. 

Recommendation. Until better information is available, 
the recommended management variability for weight of 
down material should be based on Rogers (1997) but 
modified to include minimum levels of organic debris for 
soil protection and other ecosystem values: 

●	 1–15 tons/acre forest floor (needle carpet and de­
composing organic layer) 

●	 1–2 tons/acre for 0 –1” woody material 
●	 1–3 tons/acre for 1–3” woody material 
●	 1–3 tons/acre for 3–9” woody material 
●	 10–20 tons/acre for �9” woody material 

Distribution of Down Organic Material Indicator 

In 1875 John Muir observed a fire burning in the 
Atwell Mill Grove (Muir 1961). He noted “. . .  fires seldom 
or never sweep over the trees. . . Here they creep from 
tree to tree with tranquil deliberation. . . Only at con­
siderable intervals were fierce bonfires ignited where 
heavy branches broken off by snow had accumulated.” 
This observation suggests that the fuelbed matrix was 
relatively uniform and light—likely on the order of 
10–20 tons/acre. However, there were hot spots where 
fuel loading could have easily exceeded 100 tons/acre. 

These were the places where gaps in the forest canopy 
could be created, even when fires were burning under 
moderate weather and fuel moisture conditions. 

Recommendation. Until better information is avail­
able the distribution of down material should be ac­
cording to weight by size class as recommended in the 
previous section for at least 90% of the grove area. 
Heavier concentrations should be confined to aggrega­
tions of one acre or less. In the event of uncontrolled 
wildfire this would allow for the possibility of creating 
canopy gaps compatible with indicators for the vegeta­
tion mosaic ecosystem element discussed later in this 
paper. 

Snag Density Indicator 

Little is known about how snags (dead trees) were 
distributed in the natural forest. However, it is likely 
that they appeared in a patchwork pattern as did other 
components of the vegetation mosaic. It is also likely 
that compared to the number of large snags that were 
produced by very old trees dying from insects and 
disease, there were many small ones caused by frequent 
fires and other agents. The small snags, however, were 
probably ephemeral in nature while the large ones may 
have endured for decades. There are no scientific stud­
ies that deal quantitatively with the snag density refer­
ence variability within giant sequoia groves. 

Recommendation. Verner (1998) and McKelvey 
(1998) speculate that the natural rates of production 
and distribution of snags were so variable that it would 
be futile to manage for a predetermined snag density, 
even if the reference variabilities were known. As a 
practical matter they suggest simply managing for the 
natural forest and allowing snags to occur at their own 
rate and in their own pattern. 

Vegetation Mosaic Ecosystem Element 

The vegetative pattern in giant sequoia groves is 
made up of a variety of gaps and patches. Many authors 
recognize this mosaic pattern as being an important 
attribute of the groves (Bonnicksen and Stone 1981, 
1982 a, b, Stephenson and others 1991, Stohlgren 
1993 a, b). Huntington (1914) noted that giant sequoia 
trees generally grow in groups of 6 trees of the same age 
forming a circle. Stephenson et al. (1991) report that 
the Parker, Senate, House, and Founders groups in 
Giant Forest range in size from 0.1 ha to 0.2 ha with 5 
to 20 large giant sequoia trees of similar age. They 
further report that the largest cohort of giant sequoia 
regeneration caused by prescribed fire in Sequoia and 
Kings Canyon National Park is about 4 ha with patchi­
ness of giant sequoia regeneration being a function of 
patchiness of fire disturbance. The distribution of other 



Figure 6. Sequoia grove structure and dynamics can be un­
derstood in terms of a mosaic of forest gaps and patches. This 
schematic diagram shows the location of trees in a 50 m by 
50 m (164 ft by 164 ft) section of the Redwood Mountain 
Grove, unburned for about a century. Lines are meant to 
accentuate the forest mosaic by delimiting patches of rela­
tively uniform forest structure and composition, though it is 
clear that patch boundaries are not always distinct and their 
designation can be somewhat arbitrary. The tree symbols 

vegetation follows a similar pattern. Bonnicksen and 
Stone (1981, 1982 a, b) report that existing aggrega­
tions in Redwood Mountain Grove range in size from 
135 to 1600 m2 (0.01 to 0.16 ha) with most overstory 
aggregations generally less than 800 m2 (0.08 ha). 

The forest mosaic as depicted by Bonnicksen (1982 
a, b, 1993 a, b) is illustrated in Figure 6. The boundaries 
of gaps and patches in giant sequoia groves are charac­
terized as being diffuse, often without sharp edges with 
many gaps having living trees that survived the effects of 
fire disturbance (Demetry and Duriscoe 1996). This is 
important in that restoration work must focus both on 
gap and patch development as well as vegetation con­
dition within the entire forest mosaic. It is critical to 
realize that in the natural or “ancient” forest only a few 
patches (on the scale of a fraction to a few hectares) 
may be dominated by large, old trees. However, large 

represent: a, giant sequoias greater than 35 m (115 ft) tall; b, 
sugar pines greater than 35 m tall; c, white firs greater than 
35 m tall; d, sugar pines 10 to 35 m (33 to 115 ft) tall; e, white 
firs 10 to 35 m tall; f, sugar pines 3 to 10 m (10 to 33 ft) tall; 
g, white firs 3 to 10 m tall; �, seedlings. For clarity, the tree 
symbols are reduced in size relative to the plot, lending a 
somewhat open appearance to the stand. (Adapted from Bon­
nicksen and Stone [1982a, b, 1993a, b], with permission of the 
Ecological Society of America.) 

old trees will be scattered throughout the forest mosaic 
(on a scale of hundreds of ha) giving the entire land­
scape an “old growth,” “ancient forest,” or “late seral 
stage” character. 

Gap and Patch Size Indicator 

Demetry and Duriscoe (1996) studied fire-caused 
gaps as part of the research needed for ecological 
restoration of Giant Forest Village in Sequoia National 
Park. They analyzed the vegetation response in 18 gaps 
of three different sizes that were created by prescribed 
fire within the last 15 years. The gaps ranged in size 
from 0.067 ha to 1.17 ha. 

Stephenson and others (1991) and Stephenson 
(1994) reported even-aged patches ranging in size from 
0.03 to 0.4 ha. The minimum size of gap leading to 
successful recruitment of giant sequoia appeared to be 



around 0.1 ha. Gaps larger than 10 ha created by 
avalanches or single or repeated fires are reported as 
being a rare occurrence within most presettlement gi­
ant sequoia groves (Fry 1933, 1948, Stephenson and 
others 1991, Caprio and others 1994, Stephenson 1994, 
1996). 

Stephenson (personal communication: 1998) spec­
ulates that perhaps two thirds of all gaps in presettle­
ment times were less than 0.20 ha in size. Based on work 
in the Redwood Mountain Grove, Bonnicksen (1993 a, 
b) reiterates that even-aged groups of trees in ancient 
giant sequoia forests were generally less than 0.08 ha in 
size. However, the gaps from which these groups devel­
oped were probably larger than that (Stephenson 
1987). Available information suggests that most gaps 
created by natural causes within giant sequoia groves 
probably ranged from 0.04 to 0.8 ha (0.1 to 2 acres) in 
size as shown in Figure 7. This figure is constructed 
from an estimate of presettlement distribution of gaps 
of different sizes based on work by Bonnicksen and 
Stone (1978, 1982a) and personal communication with 
Stephenson (1998). 

Recommendation. Most gaps and patches of vegeta­
tion that arise from them, should be at least .08 ha. The 
recommended management variability should range 
from 0.04 to 0.80 ha (Figure 7). 

Gap and Patch Frequency Indicator 

No empirical data exists to verify the exact amount 
of area within a giant sequoia grove that was disturbed 
during any given period in presettlement times. How­
ever, some clues to this question can be gained from 
Bonnicksen and Stone’s (1982 a, b) work. They esti­
mated that in 1890 the Redwood Mountain Grove con­
tained 7% of the area in aggregations dominated by 
bare soil (gaps), 6% grass and forbs, 10% seedling trees 
(trees less than 3 m in  height), 19% brushland, and 
17% saplings (trees 3–10 m in height). These condi­
tions suggest that about 13% of the area was subject to 
recent disturbance (the bare soil, grass, and forb aggre­
gations). Stephenson (personal communication: 1998) 
suggests gaps created within a given decade probably 
occupied significantly less than 10% of the landscape. 
This is consistent with the 7% bare soil area estimated 
by Bonnicksen and Stone (1982 a, b). Bonnicksen and 
Stone (1982 a, b) also estimate that 15% of the area was 
dominated by pole-size trees (trees 10–35 m in height), 
9% by mature trees (�35 m in height but �1.2 m in 
diameter breast height), 10% by large mature trees (� 
35 m in height and � 1.2 m in diameter breast height), 
and 7% was occupied by rock or unclassified vegetation 
(Figure 8). 

Figure 7. The gap size and frequency indicators for the Veg­
etation Mosaic ecosystem element. An approximation based 
on anecdotal data provided by Stephenson (1998) and empir­
ical data in Bonnicksen and Stone (1981, 1982a, b), Stephen­
son (1991, 1994, 1996), Caprio and others (1994), Demetry 
and Duriscoe (1996). Even though two-thirds of all presettle­
ment gaps were probably less than 0.20 ha, they accounted for 
only one-third of all gap area. 

Recommendation. 

●	 Recently created gaps in the forest canopy (� 10 
years old), other than sites with unproductive soils, 
should occupy 1–10% of grove area. 

●	 Early seral stage patches (vegetation 10 –20 years 
old) should dominate on 30–40% of grove area. 

●	 Mid-seral stage patches (20–150 years old) should 
dominate on 40 –50% of the grove area. 

●	 Patches of late seral stage vegetation (�150 years 
old) should occupy 10–20% of grove area. 

Consideration should be given to the fact that gap 
and patch boundaries tend to be diffuse and that rem­
nants of seral stages other than the dominant one can 
occupy portions of a gap or patch. There can be 
“young” understory vegetation in late seral patches, and 
“old” overstory in early seral patches, and various other 
combinations within a given gap or patch. 

Tree Species Composition (Plant Community 
Indicator) 

According to Rundel (1971) giant sequoia groves 
are differentiated from adjacent mesic habitats in the 
mixed conifer forest only by the presence of giant 



Figure 8. The plant community indica­
tor of landscape area for the Vegetation 
Mosaic ecosystem element based on em­
pirical data provided by Bonnicksen and 
Stone (1982a, b) for Redwood Mountain 
Grove. Illustrated in this figure is the 
estimated amount of landscape area oc­
cupied by different vegetation types. A 
similar shift in vegetation types has been 
anecdotally observed for other national 
forest giant sequoia groves. 

sequoia. Other plant species in giant sequoia groves 
probably vary in abundance in response to the same 
conditions that promote the giant sequoia. Pacific dog­
wood (Cornus nuttallii), for example, is a moisture-
loving plant. It frequently seems more prevalent in 
giant sequoia groves than the surrounding forest. It 
appears that there have been no changes in the domi­
nant trees species present in giant sequoia groves when 
compared to presettlement times, but there have been 
dramatic changes in density, age structure, and the 
overall vegetation pattern (Stephenson 1996). 

There is general agreement that the absence of fire 
in most of the giant sequoia groves has resulted in an 
increase of white fir, reduced regeneration of giant 
sequoia and pines, and reduced density of shrubs and 
hardwoods (Hartesveldt and Harvey 1967, Kilgore and 
Taylor 1979, Harvey and others 1980, Bonnicksen and 
Stone 1982 a, b). Bonnicksen and Stone (1982 a, b) 
found that the proportion of the area occupied by 
conifer aggregations has increased from 49% in 1890 to 
63% in 1977. The number of aggregations dominated 
by white fir increased from 27% in 1890 to 37% in 1977. 
However, Stephenson (1987) contends that Bonnick­
sen and Stone (1982 a, b) underestimated the amount 
of white fir in 1890, particularly in the overstory. 

Considerable information is available on tree stock­
ing density for the mixed conifer forest in general 
(Dunning and Reineke 1933), but little is specific to  
giant sequoia groves. Stephenson (1994) discusses age 
distribution and Stohlgren (1991, 1992, 1993 a, b) dis­
cusses basal area and tree distribution of giant sequoias 
within selected groves. Rundel (1971) provides valuable 
information on basal area and frequency of occurrence 

by major tree species within groves. All of these studies 
are contemporary; the data include changes from the 
past 100–150 years of “settlement.” Nevertheless, they 
do provide a basis for speculating on how the presettle­
ment groves may have been structured. 

Stohlgren’s cumulative frequency giant sequoia tree 
data for 31 National Park groves (1991), for example 
(Figure 9), shows that over 90% of the existing giant 
sequoia basal area is in trees �152 cm in diameter. 
Trees of this size were almost certainly well established 
at least 100 year ago, and probably persisted with about 
the same mortality that would be expected even with 
the periodic low intensity fires of presettlement times. 
Thus, except for perhaps 10% of the total basal area, 
contemporary basal area distribution for giant sequoias 
appears to be a reasonable representation of the pre-
settlement distribution. For the size classes represent­
ing structure development since settlement, basal area 
in larger trees (say 76 and 152 cm in diameter) proba­
bly is greater than presettlement values because these 
trees did not experience significant thinning by fire. 
On the other hand, basal area in smaller trees is prob­
ably under-represented because seedlings were not be­
ing established in the undisturbed, closed canopy forest 
(Stephenson 1994). 

Rundel (1971) provides data on basal area distribu­
tion (relative dominance) by species in four groves. 
However, these data may not give a close approxima­
tion to presettlement. Willard (1995) provides anec­
dotal data that helps with the interpretation of mixed 
species within giant sequoia groves. He analyzed 23 sets 
of cruise data taken in five groves between 1908 and 
1936. (All but five of the sets were taken in 1908.) Giant 



Figure 9. Distribution of giant sequoia trees as expressed by 
numbers of trees and basal area per hectare. 

sequoia ranged 57–87% of the total merchantable 
board foot volume, the average being 73%. Although 
cruise procedures are unknown it is almost certain that 
the basal area proportion of giant sequoia was less than 
the cruise proportion. This is because cruise volume is 
a function of basal area times height, and the giant 
sequoia trees that account for most of the basal area are 
taller than most other conifers in these stands. Thus for 
the same volume, giant sequoias require less basal area 
than the other conifers. However, some of this differ­
ence, which could be on the order of 40 –50%, could be 
offset by breakage estimates used by the cruisers. They 
surely estimated greater breakage, and hence a propor­
tionally lower net volume, than for the other conifers. If 
Willard’s giant sequoia volume proportion is reduced 
by, say, 10% to compensate for giant sequoia height 
and breakage differences, Willard’s data corroborates 
Rundel’s very well. Rundel’s (1971) data on four groves 
averages 65% dominance (basal area) for giant se­
quoia, Willard’s (based mostly on 1908 data) would 
estimate 63% on average. Surprisingly, it appears that 
contemporary relative dominance by species is similar 
to presettlement times. This probably is not true for the 
mixed conifer forest in general where there has been 
significantly more disturbance. However, even here 
McKelvey and Johnston (1992) estimate only a 10 –20% 
shift toward white fir dominance. 

The same cannot be said about relative density 
(numbers of trees per ha). In contemporary groves 
Rundel (1971) shows that giant sequoias account for 
5–11% of trees present and white fir 54–85%. Many 
suggest there were many more young giant sequoias 
and fewer white fir in presettlement times (Hartesveldt 

and Harvey 1967, Rundel 1971, Kilgore and Taylor 
1979, Harvey and others 1980, Bonnicksen and Stone 
1982 a, b). Muir (1961) corroborates this suggestion 
with anecdotal observations such as: “On a bed of sandy 
ground 15 yards square, which had been occupied by 
four sugar pines, I counted ninety-four promising seed­
lings, an instance of sequoia gaining ground from its 
neighbors. Here also I noted eighty-six young sequoias 
from 1 to 50 feet high on less than half an acre of 
ground that had been cleared and prepared for their 
reception by fire.” Willard (1995) does not have cor­
roborating evidence from cruise data. However, it is 
safe to say that young giant sequoias (seedlings to trees 
perhaps 76 cm in diameter) were relatively more abun­
dant and other species, primarily white fir, were less 
abundant in presettlement times. 

Recommendation (Tree and Plant Species). Intuition 
suggests that for ecosystem resilience and stability the 
array of plant species currently existing (other than 
exotics) should be maintained. Until better informa­
tion is available, no other species should be introduced 
and seeds for giant sequoia planting within a grove 
should come from trees within that grove (Fins and 
Libby 1982, Fins and Libby 1994). Until more is known 
about their presettlement distribution, the abundance 
of shrubs and herbaceous plants should be allowed to 
vary according to their natural propagation following 
natural or management induced disturbance. Based on 
work done by Rundel (1971), Stohlgren (1991), and 
Willard (1995) tree species recommendations for 
groves are: 

●	 Giant sequoias should account for approximately 55– 
75% of total basal area and �10% of the total trees. 

●	 The mixed conifer component should contain 25– 
45% of the total basal area with white fir (Abies 
concolor) being the dominant species. Incense cedar 
(Calocedrus decurrens), sugar pine (Pinus lamberti­
ana), ponderosa pine (Pinus ponderosa), and black 
oak (Quercus kelloggii) are also important compo­
nents of most groves, but even in combination 
should occupy �20% of the total basal area. 

●	 For less common associates, no recommendations 
are made at this time other than to recognize their 
legitimacy. These species include Jeffrey pine (Pinus 
jeffreyi), Douglas-fir (Psuedotsuga menziesii), red fir 
(Abies magnifica), Pacific yew (Taxus bervifolia), Pa­
cific dogwood, California hazel (Corylus cornuta var. 
californica), white alder (Alnus rhombifolia), Scouler 
willow (Salix scouleriana), bigleaf maple (Acer macro­
phyllum), bitter cherry (Prunus emarginata), and can­
yon live oak (Quercus chrysolepis). 



Table 2. Reference variability for number of giant sequoia trees and basal area per hectarea 

Diameter Class Average Basal Area/Ha Range of Basal Area/Ha 
(cm) Average Trees/Ha Range of Trees/Ha (m2) (m2) 

7 19.5 0.0–45.0 0.07 0.0–0.17 
30 11.4 0.2–31.6 0.81 0.2–2.25 
60 3.0 0.5–14.6 0.83 0.15–4.12 
90 1.5 0.2–8.4 0.86 0.12–5.36 

120 0.7 0.0–7.4 0.89 0.0–8.50 
150 0.7 0.2–4.9 1.11 0.22–8.84 
180 0.7 0.0–4.9 1.58 0.0–12.72 
210 0.7 0.0–1.5 2.20 0.0–4.89 
240 0.7 0.0–1.5 2.84 0.0–6.32 
270 0.5 0.0–1.5 3.11 0.0–8.57 
300 0.5 0.0–1.7 3.41 0.0–12.37 
340 0.5 0.0–2.5 4.08 0.0–22.70 
370 0.5 0.0–1.0 4.40 0.0–11.73 
400 0.2 0.0–1.0 4.32 0.0–13.71 
430 0.2 0.0–1.0 3.98 0.0–13.19 
460 0.2 0.0–0.7 3.51 0.0–13.61 
490 0.2 0.0–0.7 3.06 0.0–12.00 
520 �0.2 0.0–0.2 1.95 0.0–4.5 
550 �0.2 0.0–0.5 1.78 0.0–5.95 
580 �0.2 0.0–0.2 1.09 0.0–1.95 
610 �0.2 0.0–0.2 0.67 0.0–2.67 
641 �0.2 0.0–0.2 0.44 0.0–4.03 
670 �0.2 0.0–0.2 0.17 0.0–2.05 
700 �0.2 0.0–0.2 0.10 0.0–0.42 
730 �0.2 0.0–0.2 0.05 0.0–0.20 
760 �0.2 0.0–0.2 0.02 0.0–0.12 
790 �0.2 0.0–0.2 0.02 0.0–0.07 
820 �0.2 0.0–0.2 0.05 0.0–0.17 
850 �0.2 0.0–0.2 0.02 0.0–1.11 

aThe average and range of values shown are based on studies completed by Hammon and others (1964, 1970, 1975, 1976), Western Timber Service 
(1970), Stohlgren (1991) for 31 national park giant sequoia groves containing 30 or more giant sequoia trees. 

Recommendation (Tree and Plant Densities). As dis­
cussed above, recommending management variability 
for tree densities (trees per hectare by size and species) 
is problematical, particularly for the smaller size classes. 
For steady state sustainability on a scale of 10 to 100 ha, 
though, to account for mortality, each smaller size class 
must have progressively more members than the pre­
ceding one. One such distribution for giant sequoia is 
illustrated in Table 2. It is based on Stohlgren’s (1991) 
work for the larger sizes with estimates for the smaller 
sizes. For practical application in the field Table 3 
condenses Stohlgren’s data set (Table 2) and this same 
information is graphically depicted in Figures 10 and 
11. It is assumed other tree species will be distributed in 
a similar (uneven-aged) fashion. Guldin (1991) pro­
vides one approach for defining the relationships be­
tween size (as a proxy for age), number of trees, and 
basal area per hectare. By combining the work of Run-
del (1971) and Stohlgren (1991) one can conclude that 
average basal area stocking for groves should be on the 
order of 48 m2 per hectare for giant sequoia and 25 m2 

per hectare for other species. These figures include the 
basal area of trees that exist in the forest as a result of 
fire suppression in the last century. However, the con­
tribution of these trees to total basal area is relatively 
small, as shown in Figure 8, especially in the case of 
giant sequoia, because most of the basal area is ac­
counted for by trees � than 100 years old. 

Interpretation and Application 

Overview 

The information provided in this paper is intended 
to serve as an ecological basis for site-specific grove 
management planning. Recommendations given here 
will be improved upon as scientists add to the body of 
giant sequoia knowledge, and as monitoring provides 
feedback on the short- and long-term effects of man­
agement actions. Adaptive management will create a 
strong link between science and management of na­
tional forest giant sequoia ecosystems. The purpose of 



Table 3. Recommended management variability (RMV) for giant sequoia treesa 

DBH Size Group RMV for Trees/Ha Average Basal Area/Ha RMV for Basal Area/Ha Range 
(cm) Average Trees/Ha Rangea,b,c (m2) (m2) 

0.25–14.99 19.5 25–99 0.007 0.05–0.14 
14.99–44.96 11.4 12–20 0.80 0.12–0.34 
44.96–74.93 3.0 5–25 0.85 0.22–0.91 
74.93–165.10 3.0 2–10 2.85 0.91–3.67 

165.10–285.0 2.7 2–5 9.72 3.21–9.38 
285.0–475.0 2.2 0–5 23.6 0.00–27.22 

�475.0	 0.2 0–5 9.40 0.00–75.70 

TOTAL 42.0	 47.2 

aRecommended management variability is based on a complete giant sequoia tree inventory of 31 national park groves with more than 30 giant
 
sequoia trees present (Hammon and others 1964, 1970, 1975, 1976, Western Timber Service 1970, Stohlgren 1991). Original grove size estimates
 
used by Stohlgren were modified to reflect current information. Stohlgren estimated 8,277 acres (3,351 ha), current estimates show 9,665 acres
 
(3,913 ha) in the 31 national park groves. This difference in size affects per hectare and per acre calculations and explains why numbers shown
 
here do not correspond directly to Stohlgren’s per hectare values.
 
bProbable range needed for sustainability—not substantiated by empirical or other data.
 
cNo giant sequoia grove is known to have on average more than 2 trees per acre in these size classes.
 

this section is to provide a context for practical appli­
cation. 

Completing the Ecosystem Management Process 

This paper has concentrated on giant sequoia eco­
systems, their elements, associated environmental indi­
cators, and reference variability. These are critical vari­
ables in the process of ecosystem management 
planning, but identifying and quantifying them only 
completes three steps out of the 14-step process dis­
cussed by Manley and others (1995). The context in 
which ecosystem elements and environmental indica­
tors are applied in practice must take into account all 
14 steps in the planning process with significant em­
phasis on Steps 1 and 14 (landscape to analyze and 
adaptive management). 

Selecting the Landscape Area 

The first step in the Manley and others (1995) eco­
system management process is to select a landscape for 
analysis. The focus of this paper has been on grove 
ecosystems, the boundaries of which are defined by the 
outermost giant sequoia trees within the groves. The 
paper does not attempt to deal with external influ­
ences. However, the ecosystem management process 
must take into account the larger landscape of which 
the groves are a part. An approach to defining the 
ecologically rational zone of influence for giant sequoia 
groves should definitely take into account two of the 
key elements identified in this paper: fire and water 
(Rundel 1972b, Anderson 1995, University of Califor­
nia 1996). Using this approach, and with only rudimen­
tary knowledge of fire behavior and hydrology, leads to 
the conclusion that sub-watersheds that contain the 

groves should be the landscape of concern. More spe­
cifically, fire influence is of concern in those portions of 
the sub-watershed that lie below the grove, and water 
influence is of concern for those portions that lie di­
rectly around and above the grove. 

Management Caveats 

The following observations are intended to assist 
with the practical application of the information pre­
sented in this paper: 

●	 Recommended management variability (RMV) in­
cludes a range of values within reference variability 
that implies a high degree of resilience and sustain-
ability for the ecosystem. RMVs most often describe 
mid-range values under the assumption that the 
extremes should be rare and will occasionally exist 
whether or not there is a deliberate attempt to 
create or maintain them. 

●	 Allowing indicators to routinely exist at extremes, 
or outside the range of variability, probably de­
creases ecosystem resilience and sustainability in 
most cases. In rare cases such as the realized expec­
tation indicator for the Attitudes, Beliefs, and Val­
ues Ecosystem Element, values at the extreme can 
sometimes be very desirable (Piirto and Rogers 
1999b). 

●	 The need for management action (management 
opportunity) is indicated by a difference between 
existing condition and RMV. 

●	 Part of the variation within reference variability is 
random (e.g., mortality is influenced by weather 
pattern during a particular fire event), and part is 
systematic (e.g., species composition is influenced 



Figure 10. Distribution of giant sequoia trees within 31 NPS groves as expressed by numbers of trees per hectare (adapted from 
Stohlgren 1991). 

by aspect and elevation). Deciding where to operate 
within RMV therefore requires a knowledge of the 
physical and biological landscape as well as the 
cultural/social context in which management deci­
sions are made. 

●	 Sustainability of range-wide grove attributes is not 
necessarily dependent on sustainability of individ­
ual grove attributes (e.g., it may be acceptable, or 
even desirable, for one grove to be deficit in an 
attribute if another grove is surplus). In fact, for 
certain attributes this is very much the way things 
work in nature. Not all giant sequoia groves are 
going to have trees as large as the General Sherman. 
Therefore, any proposal to correct the difference 
between RMV and existing conditions in a specific 
grove should consider whether or not it is impor­
tant to take into account the existing conditions in 
all the other groves. 

●	 In the social dimension be wary of the interpreta­
tion of the “limit of acceptable change”. Regardless 
of scientific validity, diverse values and cultural in­
ertia will allow change to happen only so fast. 

●	 The concepts of ecosystem management presented 
in this paper are relatively new. Therefore, in the 

application of RMVs developed in this paper, com­
mon sense in relation to known science and site-
specific conditions should prevail. 

Concluding Comments 

The key ecological elements, environmental indica­
tors, and the quantification of indicators presented in 
this paper must be subject to review and revalidation. 
Members of the recently formed Giant Sequoia Na­
tional Monument Science Board (Clinton 2000) and 
Giant Sequoia Ecology Cooperative (USDA 1996) 
should be an integral part of this adaptive management 
process. 

Not seeing the forest for the trees has been a 
common expression in forestry. We have observed 
through this work that our past and present efforts to 
classify vegetation and ecosystems often masks our 
view of the finer scale of diversity that exists within 
these types. 

We have also learned through this work that the 
restoration and maintenance of healthy forest eco­
systems cannot simply focus on process. Rather, an 
understanding of structure and process at both the 



Figure 11. Distribution of giant sequoia trees within 31 NPS groves as expressed by basal area per hectare (adapted from 
Stohlgren 1991). 

landscape (coarse) and plant aggregation (fine) 
scales is essential. 
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