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LARGE SETS OF ZERO ANALYTIC CAPACITY 

JOHN GARNETT AND STAN YOSHINOBU 

(Communicated by Juha M. Heinonen) 

ABSTRACT.We prove tha t  certain Cantor sets with non-sigma-finite one-
dimensional Hausdorff measure have zero analytic capacity. 

In this paper we consider a Cantor set K similar to the :-Cantor set of [G70] 
and [I84].Fix p > 2 and for n > 0 define 

4Set KO = [0,11 x [0, 11 and K1 = Uj=,  K l ~ j ,  where Kl,j  c KO is a square of 
sidelength a1 having sides parallel to the axis and containing one of the four corners 
of KO.Next take 42 squares K2,jof sidelength 0 2 ,  one in each corner of each square 

42K1,j,and define K2 = Uj=,  K2,j .  Continuing we obtain Kn = u:l1K,,j, where 
K n ~ jis a square of sidelength on. The Cantor set we study is 

CO 

K = K(p)= nKn. 
n=l  

If E is a compact plane set define 

A(E,1 )  = {f : f analytic on EC,f (a)= 0, 1 1  f IIL~(E~lI1) 
 

and define the analytic capacity of E by 

T ( E )= sup{l f'(0)f E A(E,  111, 1 :  
where 

f ' (a)= lim zf ( 2 ) .  
2-a3 
 

If y (E)  = 0, then the only function in A(E,  1) is the constant f - 0 and in this 
case E is removable for bounded analytic functions. For more details about analytic 
capacity see [G72]. 

Theorem 1. Let  p > 2 ,  and let K be the  four-corner C a n t o r  se t  K(p) .  T h e n  
7 ( K )= 0 but K does n o t  have 0 - f in i t e  one-dimensional  measure.  
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The proof of Theorem 1 depends on a lemma of Jones [J89] used for a proof 
different from [G70] that the +-Cantor set has zero analytic capacity. 

Let h(t)  be an increasing continuous function on t > 0 with h(0) = 0, and write 
Ah(t)(E)for the Hausdorff h-measure of E. Now define an increasing function h(t) 
so that h(0) = 0 and h(a,) = 4-" for all n. We say h(t) is a measure function 
corresponding to the Cantor set K .  For every n define a measure p, on K n  by 
pn(Kn. j )= 4Cn for all j .  Then {P,) converges weak-star to a measure p supported 

4 4on K and satisfying p ( K n ~ j )  = 4Cn. Suppose ,an < r < -2-on-1 and let D ( z , r )  
be a disk of radius 1. and center z E K .  Then D(z,  r) can meet a t  most 4 squares 
of sidelength 0,. Hence 

so that p (D(z ,  1.)) < lGh(r) for any disk D(z,  r ) .  Therefore Ah(K) > 0 by Frost- 
man's Theorem [G72]. Since 

lim h( t ) = 0, 
t i 0  t 

if follows that K has non-0-finite 1-dimensional measure. 
If h( t )  is a measure function corresponding to K ,  then 

On the other hand, Mattila [M96] proved that y ( K )  > 0 if K is a Cantor set built 
with squares of side 0, and if 

where h is any measure function for corresponding to  K .  Mattila's proof used 
Menger curvature (see [Me951 and [MMV96]). However, if the Cantor set K has 
corresponding measure function h satisfying 

l1!!gd t  = oo, 

then Eiderman [Egg] proved that y + ( K )  = 0, where 

Since y + ( E )  < y ( E ) ,  our result is a partial improvement of Eiderman's theorem. 
Mattila [M96] has conjectured that for Cantor sets of this type -/(K) = 0 if and 
only if 

l1!!gd t  = oo, 

when h corresponds to  K .  This latter condition holds if and only if 

If Matilla's conjecture is true, then together with Eiderman's theorem it gives Can- 
tor set evidence supporting the more ambitious conjecture that y ( E )  > 0 implies 
y + ( E )  > 0. 
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In [G72] it was incorrectly claimed that y ( K )  > 0 if and only if 

Eiderman, however, found a mistake in the proof. In fact the result in [M96] shows 
that the claim is false. See L.D. Ivanov [I841 for the first example of a Cantor set 
of non-0-finite linear measure and zero analytic capacity. 

We need the following two lemmas from [J89]. The proofs we give are small 
variations on [J89] and [C90]. 

Define 7," = dcK,~j,  where cKn,j  is the square concentric to  Kn, j  with sidelength 
con and where c > 1 is chosen so that the 7," do not overlap. We refer to  y p  as a 
square, although it is only the boundary of a square. Notice that 

for the same constant c. We associate to  each y p  a '"quare annulus" 

and we choose EO > 0 SO small that the annuli A T  are pairwise disjoint. 
Define R = E\K. Since K has positive logarithmic capacity, Green's function 

G(z,C) exists for 5,z $ K ,  and harmonic measure w(<, E) exists for $ K and 
E c K .  We write u(C, K,,k) for w(C, K,,k n K ) .  

We also define the slightly larger "squares" 

and set 

where ~1 > 0 is SO small that S m , k  n A p  = 0.Then K = n:=,Srn. Green's 
function and harmonic measure also exist for the domain R, = 

-
@\S,. Denote 

these by G,(z, C)  and urn(<, E) respectively. 

Lemma 2. Let z E Ap. 
(a) There are constants 0 < cl < c2 < 1, independent of k and m, such that 

(b) If C E R and 1 > dist(C, K )  >. 2 dist(z, K ) ,  then 

Proof. For (a)  note that there is c' > 0 such that there exists a second square 
annulus B p  SO that Ap c B p  c Rrn and dist(z, 8 B y )  > c'o,. The lower 
bound then follows by a comparison with B p .  There is S,,j with j # k such 

-
that dist(S,~j, S,,k) < c40m and the upper bound follows by a comparison with 
@\(S,,k U S,, j),  using symmetry and Harnack's inequality. 

To prove (b)  note first that as in the proof of (a) there are constants C1 and Cz 
such that by Harnack's inequality and a comparison 
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for w E d B r .  Then using the symmetry of Green's function and ( a )  for a larger 
square we obtain 

We write - / r  4 -/? and say $is subordinate to -/? if 73"has winding number 
one about y p .  If the winding number is zero, we write-$ # -/?. For any f E A(K,  1) 
and -/p define 

We say a square y r  has condition J if 

for some previously defined f and 6 > 0. 

Lemma 3. Let f E A(K,  1). For every 6 > 0 there exists a C o  > 0 such that for 
there exists y p  4 77 such that m 5 n + Co6-' and such that ~rhas 

condition J. 

Proof. Observe that by Harnack's inequality 

Suppose the lemma is false. Choose C with dist(5, K )  = 1.Then by Green's theorem 
and the above observation 

7: every 

and we have a contradiction. 

3. A STOPPING-TIME ARGUMENT 

We choose ns  = 4"q where g > 1 and M = 11 + 31.Then because p > 2 in 

the definition of an= (log(n + 1 ) ) k  we have 

lim 6 .  an,n4 = 0 
6+O+ 

and 

By construction, either - / r  4 A/?, -/? + -/p, or neither is subordinate to  the 
other. We also write y p  # F if y p  # -/? for all 7," E F where F is some family of 

73". 
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L e m m a  4. For every E > 0 ,  there exists 6 > 0 ,  integer m and two families of sets 
Fl and F2, such that for some constant c: 

( a )  Fl = {A/? : 77 has condition J } ,  
(b) 6Al(UF1-/,"I < cE, 
(c )  Fz = (7,": 7," j: F l } ,  
  
(dl Al(UF2 7,")< cE7 
 
( e )  Fl U F2 has winding number 1 about K .  

Proof. Given E > 0,  choose 6 > 0 so that 6an,hI < E and ( 1  - 4-M)n6an,h1 < E .  

Fix m = n s M .  

Now define Fl to be the set of 7," such that n < m, 7; has condition J ,  and 7," 
is maximal ,  i.e. if Kn,k c Kt , j  with t < n, then -/: does not have condition J. 
Tlien (a) ,  ( c )  and ( e ) hold for Fl and F2. 

To prove (b) consider 77 E Fl .  Since 0 5 n 5 m we may replace by 4m-n 
squares of the form y p .  Consequently, 

Since the 7," E Fl have pairwise disjoint Kn, j ,  UFl77 has smaller A1 measure than 
rn 
 

~ i n/r=and therefore ~ 

where c is a universal constant. 
 
To prove ( d )we use Lemma 3 to obtain 
 

Suppose f E A(K, 1)  and E > 0 are arbitrary. Let Fl and F2 be the two families 
provided by Lemma 4. Let 2," be an arbitrary point in y?. Then 
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sup I f ' ( ~ ) 4 - ~ a , d z + ~  

< cSa,,ncr + E 

< ce. 

Since E was chosen arbitrarily and c is a universal constant, f'(oo) = 0. Therefore, 
y ( K )  = 0. 

We could obtain a better result if we could improve the estimate in Jones' lemma 
(Lemma 3). For example, if we could only replace M = 9by 9for q < 2, then in 

the theorem a, could grow like (logn)i.As noted above, Mattila [M96]conjectured 
that 7 ( K )  = 0 if the Cantor set K has & = +m. Matilla's conjecture 
would follow from the method here if the Jones' lemma could be established with 
M = clog(:) with c constant. 
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