LARGE SETS OF ZERO ANALYTIC CAPACITY

JOHN GARNETT AND STAN YOSHINOBU

(Communicated by Juha M. Heinonen)

ABSTRACT. We prove that certain Cantor sets with non-sigma-finite one-dimensional Hausdorff measure have zero analytic capacity.

1. INTRODUCTION

In this paper we consider a Cantor set K similar to the $\frac{1}{4}$-Cantor set of [G70] and [I84]. Fix $p > 2$ and for $n > 0$ define

$$
\sigma_n = 4^{-n}a_n = 4^{-n}[\log(n + 1)]^{1/p}.
$$

Set $K_0 = [0, 1] \times [0, 1]$ and $K_1 = \bigcup_{j=1}^4 K_{1,j}$, where $K_{1,j} \subset K_0$ is a square of sidelength σ_1 having sides parallel to the axis and containing one of the four corners of K_0. Next take 4^2 squares $K_{2,j}$ of sidelength σ_2, one in each corner of each square $K_{1,j}$, and define $K_2 = \bigcup_{j=1}^{4^2} K_{2,j}$. Continuing we obtain $K_n = \bigcup_{j=1}^{4^n} K_{n,j}$, where $K_{n,j}$ is a square of sidelength σ_n. The Cantor set we study is

$$
K = K(p) = \bigcap_{n=1}^{\infty} K_n.
$$

If E is a compact plane set define

$$
A(E, 1) = \{f : f \text{ analytic on } E^c, \ f(\infty) = 0, \ \|f\|_{L^\infty(E^c)} \leq 1\}
$$

and define the analytic capacity of E by

$$
\gamma(E) = \sup\{\|f'(\infty)\| : f \in A(E, 1)\},
$$

where

$$
f'(\infty) = \lim_{z \to \infty} zf(z).
$$

If $\gamma(E) = 0$, then the only function in $A(E, 1)$ is the constant $f \equiv 0$ and in this case E is removable for bounded analytic functions. For more details about analytic capacity see [G72].

Theorem 1. Let $p > 2$, and let K be the four-corner Cantor set $K(p)$. Then $\gamma(K) = 0$ but K does not have σ-finite one-dimensional measure.
The proof of Theorem 1 depends on a lemma of Jones [J89] used for a proof different from [G70] that the $\frac{1}{4}$-Cantor set has zero analytic capacity.

Let $h(t)$ be an increasing continuous function on $t \geq 0$ with $h(0) = 0$, and write $\Lambda_{h(t)}(E)$ for the Hausdorff h-measure of E. Now define an increasing function $h(t)$ so that $h(0) = 0$ and $h(\sigma_n) = 4^{-n}$ for all n. We say $h(t)$ is a measure function corresponding to the Cantor set K. For every n define a measure μ_n on K_n by $\mu_n(K_{n,j}) = 4^{-n}$ for all j. Then $\{\mu_n\}$ converges weak-star to a measure μ supported on K and satisfying $\mu(K_{n,j}) = 4^{-n}$. Suppose $\frac{\sqrt{2}}{2}\sigma_n \leq r < \frac{\sqrt{2}}{2}\sigma_{n-1}$ and let $D(z, r)$ be a disk of radius r and center $z \in K$. Then $D(z, r)$ can meet at most 4 squares of sidelength σ_n. Hence

$$
\mu(D(z, r)) \leq 4\mu(K_{n,j}) = 4 \cdot 4^{-n} = 4h(\sigma_n) \leq 4h(r),
$$

so that $\mu(D(z, r)) \leq 16h(r)$ for any disk $D(z, r)$. Therefore $\Lambda_h(K) > 0$ by Frostman’s Theorem [G72]. Since

$$
\lim_{t \to 0} \frac{h(t)}{t} = 0,
$$

if follows that K has non-σ-finite 1-dimensional measure.

If $h(t)$ is a measure function corresponding to K, then

$$
\int_0^1 \frac{h(t)^2}{t^3} \, dt \sim \sum_{n=1}^\infty \frac{1}{(a_n)^2} = \sum_{n=1}^\infty \frac{1}{(\log n)^2} = \infty.
$$

On the other hand, Mattila [M96] proved that $\gamma(K) > 0$ if K is a Cantor set built with squares of side σ_n and if

$$
\int_0^1 \frac{h(t)^2}{t^3} \, dt < \infty,
$$

where h is any measure function for corresponding to K. Mattila’s proof used Menger curvature (see [Me95] and [MMV96]). However, if the Cantor set K has corresponding measure function h satisfying

$$
\int_0^1 \frac{h(t)^2}{t^3} \, dt = \infty,
$$

then Eiderman [E98] proved that $\gamma^+(K) = 0$, where

$$
\gamma^+(E) = \sup \left\{ \int_E d\mu : \left| \int_E \frac{d\mu(z)}{\zeta - z} \right| < 1, \forall z \in \mathbb{C}\setminus E, \mu > 0, \text{spt}(\mu) \subset E \right\}.
$$

Since $\gamma^+(E) \leq \gamma(E)$, our result is a partial improvement of Eiderman’s theorem. Mattila [M96] has conjectured that for Cantor sets of this type $\gamma(K) = 0$ if and only if

$$
\int_0^1 \frac{h(t)^2}{t^3} \, dt = \infty,
$$

when h corresponds to K. This latter condition holds if and only if

$$
\sum_{n=1}^\infty \frac{1}{(a_n)^2} = \infty.
$$

If Mattila’s conjecture is true, then together with Eiderman’s theorem it gives Cantor set evidence supporting the more ambitious conjecture that $\gamma(E) > 0$ implies $\gamma^+(E) > 0$.
In [G72] it was incorrectly claimed that $\gamma(K) > 0$ if and only if
$$\int_0^1 \frac{h(t)}{t^2} dt < \infty.$$Eiderman, however, found a mistake in the proof. In fact the result in [M96] shows that the claim is false. See L.D. Ivanov [I84] for the first example of a Cantor set of non-σ-finite linear measure and zero analytic capacity.

2. TWO LEMMAS OF PETER JONES

We need the following two lemmas from [J89]. The proofs we give are small variations on [J89] and [C90].

Define $\gamma^m_j = \partial cK_{n,j}$, where $cK_{n,j}$ is the square concentric to $K_{n,j}$ with sidelength $c\sigma_n$ and where $c > 1$ is chosen so that the γ^m_j do not overlap. We refer to γ^m_k as a square, although it is only the boundary of a square. Notice that
$$A_1(\gamma^m_k) = cA_1(\partial K_{m,k})$$
for the same constant c. We associate to each γ^m_k a “square annulus”

$$A^m_k = \{w : \text{dist}(w, \gamma^m_k) \leq \varepsilon_0\sigma_m\}$$
and we choose $\varepsilon_0 > 0$ so small that the annuli A^m_k are pairwise disjoint.

Define $\Omega = \mathbb{C}\setminus K$. Since K has positive logarithmic capacity, Green’s function $G(z, \zeta)$ exists for $\zeta, z \notin K$, and harmonic measure $\omega(\zeta, E)$ exists for $\zeta \notin K$ and $E \subset K$. We write $\omega(\zeta, K_{m,k})$ for $\omega(\zeta, K_{m,k} \cap K)$.

We also define the slightly larger “squares”
$$S_{m,k} = \{w : \text{dist}(w, K_{m,k}) \leq \varepsilon_1\sigma_m\}$$
and set
$$S_m = \bigcup_{k=1}^{4^m} S_{m,k},$$
where $\varepsilon_1 > 0$ is so small that $S_{m,k} \cap A^m_k = \emptyset$. Then $K = \bigcap_{m=1}^{\infty} S_m$. Green’s function and harmonic measure also exist for the domain $\Omega_m = \mathbb{C}\setminus S_m$. Denote these by $G_m(z, \zeta)$ and $\omega_m(\zeta, E)$ respectively.

Lemma 2. Let $z \in A^m_k$.

(a) There are constants $0 < c_1 < c_2 < 1$, independent of k and m, such that
$$c_1 \leq \omega_m(z, \partial S_{m,k}) \leq c_2.$$

(b) If $\zeta \in \Omega$ and $1 \geq \text{dist}(\zeta, K) \geq 2 \text{dist}(z, K)$, then
$$G_m(z, \zeta) \sim \omega_m(\zeta, \partial S_{m,k}).$$

Proof. For (a) note that there is $c' > 0$ such that there exists a second square annulus B_k^m so that $A_k^m \subset B_k^m \subset \Omega_m$ and $\text{dist}(z, \partial B_k^m) \geq c'\sigma_m$. The lower bound then follows by a comparison with B_k^m. There is $S_{m,j}$ with $j \neq k$ such that $\text{dist}(S_{m,j}, S_{m,k}) \leq c_4\sigma_m$ and the upper bound follows by a comparison with $\mathbb{C}\setminus(S_{m,k} \cup S_{m,j})$, using symmetry and Harnack’s inequality.

To prove (b) note first that as in the proof of (a) there are constants C_1 and C_2 such that by Harnack’s inequality and a comparison
$$C_1 \leq G_m(z, w) \leq C_2$$
for $w \in \partial B_k^m$. Then using the symmetry of Green’s function and (a) for a larger square we obtain

\[C_1 \omega_m(\zeta, \partial S_{m,k}) \leq G_m(\zeta, z) \leq C_2 \omega_m(\zeta, \partial S_{m,k}). \]

We write $\gamma_k^m \prec \gamma_j^n$ and say γ_k^m is subordinate to γ_j^n if γ_j^n has winding number one about γ_k^m. If the winding number is zero, we write $\gamma_k^m \not\prec \gamma_j^n$. For any $f \in A(K, 1)$ and γ_k^m define

\[D(\gamma_k^m) = \sup_{w \in \gamma_k^m} |f'(w)| \sigma_n. \]

We say a square γ_k^m has condition J if

\[D(\gamma_k^m) \leq \delta \]

for some previously defined f and $\delta > 0$.

Lemma 3. Let $f \in A(K, 1)$. For every $\delta > 0$ there exists a $C_0 > 0$ such that for every γ_j^n there exists $\gamma_k^m \prec \gamma_j^n$ such that $m \leq n + C_0 \delta^{-2}$ and such that γ_k^m has condition J.

Proof. Observe that by Harnack’s inequality

\[\sup_{\gamma_{n,j}} |f'(z)|^2 \sim \int \int_{A_k^e} \frac{|f'|^2}{\sigma_n^2}. \]

Suppose the lemma is false. Choose ζ with $\text{dist}(\zeta, K) = 1$. Then by Green’s theorem and the above observation

\[4 \geq \int_{\partial \Omega_n} |f(z) - f(\zeta)|^2 d\omega_n(\zeta, z) \]
\[= \int_{\Omega_n} |f'(z)|^2 G_n(z, \zeta) dx dy \]
\[\geq n \sum_{t=m+1}^{n} \sum_{j} \int_{A_j^e} |f'(z)|^2 G_n(z, \zeta) dx dy \]
\[\geq C \delta^2 \sum_{t=m+1}^{n} \sum_{j} \omega(\zeta, S_{t,j} \cap K) \]
\[\geq C'(n - m) \delta^2 \]

and we have a contradiction.

3. A STOPPING-TIME ARGUMENT

We choose $n_\delta = 4^{Mq}$ where $q > 1$ and $M = \left[1 + \frac{C_0}{\delta^2}\right]$. Then because $p > 2$ in the definition of $a_n = (\log(n + 1))^{\frac{1}{p}}$ we have

\[\lim_{\delta \to 0^+} \delta \cdot a_n M = 0 \]

and

\[\lim_{\delta \to 0^+} \left(1 - 4^{-M}\right)^{n_\delta} a_n M = 0. \]

By construction, either $\gamma_k^m \prec \gamma_j^n$, $\gamma_j^n \prec \gamma_k^m$, or neither is subordinate to the other. We also write $\gamma_k^m \not\prec F$ if $\gamma_k^m \not\prec \gamma_j^n$ for all $\gamma_j^n \in F$ where F is some family of γ_j^n.
Lemma 4. For every $\epsilon > 0$, there exists $\delta > 0$, integer m and two families of sets F_1 and F_2, such that for some constant c:

(a) $F_1 = \{ \gamma_j^n : \gamma_j^n \text{ has condition J} \}$,
(b) $\delta \Lambda_1(\bigcup_{F_1} \gamma_j^n) < c \epsilon$,
(c) $F_2 = \{ \gamma_k^m : \gamma_k^m \neq F_1 \}$,
(d) $\Lambda_1(\bigcup_{F_2} \gamma_k^m) < c \epsilon$,
(e) $F_1 \cup F_2$ has winding number 1 about K.

Proof. Given $\epsilon > 0$, choose $\delta > 0$ so that $\delta a_{n,M} < \epsilon$ and $(1 - 4^{-M}) a_{n,M} < \epsilon$. Fix $m = n_\delta M$.

Now define F_1 to be the set of γ_k^n such that $n \leq m$, γ_k^n has condition J, and γ_k^n is maximal, i.e. if $K_{n,k} \subset K_{t,j}$ with $t < n$, then γ_t^j does not have condition J. Then (a), (c) and (e) hold for F_1 and F_2.

To prove (b) consider $\gamma_j^n \in F_1$. Since $0 \leq n \leq m$ we may replace γ_j^n by 4^{m-n} squares of the form γ_k^m. Consequently,
\[\Lambda_1(\bigcup_{F_1} \gamma_j^n) \leq 4^{m-n} \cdot \sigma_m = 4^{-n} a_m. \]

Since the $\gamma_j^n \in F_1$ have pairwise disjoint $K_{n,j}$, $\bigcup_{F_1} \gamma_j^n$ has smaller Λ_1 measure than $\bigcup_{k=1}^{4^m} \gamma_k^m$ and therefore
\[
\delta \Lambda_1 \left(\bigcup_{F_1} \gamma_j^n \right) \leq \delta \Lambda_1 \left(\bigcup_{k=1}^{4^m} \gamma_k^m \right) \\
\leq c \delta \cdot 4^m \cdot 4^{-m} a_m \\\n= c \delta a_{n,M} \\\n\leq c \epsilon,
\]
where c is a universal constant.

To prove (d) we use Lemma 3 to obtain
\[
\Lambda_1 \left(\bigcup_{F_2} \gamma_k^m \right) \leq c(4^M - 1)^m 4^{-m} a_m \\\n\leq c(1 - 4^{-M}) a_{n,M} \\\n\leq c \epsilon.
\]

4. Proof of Theorem 1

Suppose $f \in A(K,1)$ and $\epsilon > 0$ are arbitrary. Let F_1 and F_2 be the two families provided by Lemma 4. Let z_k^m be an arbitrary point in γ_k^m. Then
\[
2\pi |f'(\infty)| = \left| \sum_{\gamma_k^m \in F_1} \int_{\gamma_k^m} f(z) dz + \sum_{\gamma_k^m \in F_2} \int_{\gamma_k^m} f(z) dz \right| \\
\leq \left| \sum_{\gamma_k^m \in F_1} \int_{\gamma_k^m} f(z) dz \right| + \left| \sum_{\gamma_k^m \in F_2} \int_{\gamma_k^m} f(z) dz \right| \\
\leq \sum_{\gamma_k^m \in F_1} \int_{\gamma_k^m} |f(z) - f(z_k^m)| dz + \Lambda_1(\bigcup_{F_2} \gamma_k^m) \].
\[\leq c \sum_{\gamma_k^m \in F_1} \sup_{\gamma_k^m, w \in \gamma_k^m} |f'(w)| 4^{-m} a_m dz + \varepsilon \]

\[= c \sum_{\gamma_k^m \in F_1} D(\gamma_k^m) \Lambda_1(\gamma_k^m) + \varepsilon \]

\[\leq c \delta \sum_{\gamma_k^m \in F_1} \Lambda_1(\gamma_k^m) + \varepsilon \]

\[\leq c \delta \sigma_{\eta s} M + \varepsilon \]

\[\leq c \varepsilon . \]

Since \(\varepsilon \) was chosen arbitrarily and \(c \) is a universal constant, \(f'(\infty) = 0 \). Therefore, \(\gamma(K) = 0 \).

5. REMARK

We could obtain a better result if we could improve the estimate in Jones’ lemma (Lemma 3). For example, if we could only replace \(M = \frac{C_3}{\delta} \) by \(\frac{C_3}{\delta^q} \) for \(q < 2 \), then in the theorem \(a_n \) could grow like \((\log n)^{\frac{1}{q}} \). As noted above, Mattila [M96] conjectured that \(\gamma(K) = 0 \) if the Cantor set \(K \) has \(\sum_{(a_n)^{1/2}} = +\infty \). Mattilla’s conjecture would follow from the method here if the Jones’ lemma could be established with \(M = c \log(\frac{1}{\delta}) \) with \(c \) constant.

REFERENCES

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF CALIFORNIA AT LOS ANGELES, LOS ANGELES, CALIFORNIA 90095

E-mail address: jbg@math.ucla.edu

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF ARIZONA, TUCSON, ARIZONA 85721

E-mail address: syoshino@math.arizona.edu