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Introduction 

My introduction to survival analysis methods came during the winter 2010 quarter when I 

took Stat 417, Survival Analysis, with Dr. Sklar.  Here, I learned how to draw inference on time-

to-event data.  We analyzed various time-to-event data sets, learned what left/right censoring 

meant, along with its correct use in a models with survival analysis techniques.   Also, in the 

course our grade depended on three items: a midterm, a final, and an out-of-class project.  For 

the out of class project I was paired up with two other individuals and came up with the 

interesting idea. 

For our project, we used a data set that involved how many children a couple had, when 

they married, when they separated, and their corresponding finalization of their divorce.   One 

complication that arose was that not all divorces were completed, that is some couples hadn’t 

finalized the divorce.  Here came the first application of what I learned in Survival Analysis.  

Before any of the analysis could be run we had to create two variables, one being the length of 

marriage (date of separation – date of marriage) and the other being time to judgment (date if 

their divorce finalization – date of separation).  Due to the fact that not all of the divorces were 

finalized, I had to create a right censoring indicator variable and set the date of divorce 

finalization for each of these events to the date of when the data was collected, 06/11/03.  

 We had a fair amount of work in hand when dealing with data before it was all done but I 

drew a great interest from this form of data analyses, so much so that I chose to do something 

similar for my senior project.  With the aid of Dr. Frame, I have been able to research a similar 

data set that was collected in Santa Barbara County instead of San Luis Obispo County.  The 

complete data set used can be found on a pdf file online.   
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San Luis Obispo Data Collection Process 

During my third year (Winter 2010) at Cal Poly- San Luis Obispo I chose to take survival 

analysis, Stat 417.  Towards the end of the quarter each student was assigned to a group of three 

to four students and each group was given the task of finding a data set which we could 

implement survival analysis methods on.  At first, this seemed a simple task but as time went by 

we found this process to be rather hard.  Search engines such as Bing, Yahoo, and Google could 

not find sufficient data to fit the need of our survival analysis project.  After restless hours of 

searching for data sets online we decided to make a data set of our own.  One of the project 

members acquired this idea from a recent project one of the Statistic Department members had 

recently finished.   This data set concerned divorces in Santa Barbara County.  The data set 

originally used had four variables: a variable that indicated whether the couple had a child or not, 

the date the couple was married, the date of the couples separation, and the date their divorce 

was finalized.  We could have easily used this data set but due to the fact we had to personally 

collect the data this wouldn’t apply. 

We chose to collect a similar data set but instead of it concerning Santa Barbara County 

divorces concerned San Luis Obispo County divorces.  Even though this process of which I will 

talk about was extremely time consuming it was possible due to the fact that divorce files are 

public records.  The first thing you must do is find the San Luis Obispo Courthouse Annex 

address.  The address for this location is 1035 Palm Street, San Luis Obispo, CA, 93401.  This 

entrance is about 100 feet southwest from the Santa Rosa and Palm Street intersection.  Once 

you have arrived at this location, you must pass through metal detector.  This process usually 

doesn’t take long but one must leave sharp objects at home.  Once you’ve passed the metal 

detector you should enter room 385 which is the first door on your left.  You will then approach 
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an open window and ask for the Microfiche files that hold the divorce information.  There are 

two microfiche projectors on the far right corner of the room that allow you to view the files.  

The files vary from about four slides to some that are fifty slides.  The variable values for each 

observation are at times hard to find and therefore about three minutes should be expected in 

finding all of the variables for each case.  What our group chose to use was a Microsoft Excel 

spreadsheet to write down all of the observation values but any sort of spreadsheet should do. 

Santa Barbara County Divorce Data 

As stated in the background section, the data set used includes only Santa Barbara 

County divorces.  The data set originally consisted of over 300 observations, but due to some 

observations having missing entries, the data set we actually used only consisted of 287 

observations.  From the raw dataset found online, I was able to collect four variables: date of 

marriage, date of separation, date of judgment, and a variable indicating whether the couple had 

children or not.  From these four variables, I was able to produce two more variables.  One 

indicating how long the couple was married (in years) and the other indicating how long it took 

for the divorce to be finalized (in months).  I was then able to create a marriage duration 

categorical variable.  The categorical variable has four levels, very short, short, medium, and 

long.  The very short level accounts for the marriages that last for less than one year, the very 

short level accounts for marriages that span one year to five years,  the medium  level accounts 

for marriages that span five to ten years, and the long level accounts for marriages that last 

longer than ten years. 

A necessary measure had to be taken when developing the amount of time until the 

divorce was finalized.  Since some divorces hadn’t been finalized, I had to specify the date of 

collection as the data of finalization.  This measure was taken due to the fact we only know of 
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each time-to-event observation up to this day of its collection.  Whether the divorce was ever 

actually finalized is outside of what we can figure out from the data set.  For each of these 

observations, 06/11/03 was set as the date of judgment.  To account for variability that comes 

from these observations, I created a censor indicator variable.   This allows for each of the 287 

observations to have a time to judgment response and thus be included in the making of each of 

our statistical models. 
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Methods 

When analyzing a quantitative response variable by other quantitative or indicator 

variables, a model that usually applies is a regression model.   A regression model leads to a 

functional relationship between a response and a set of explanatory variables.  A regression 

model indicates which explanatory variables have an effect on the response variable, in this case 

time to judgment.  A regression model allows us to ask “what if” type of questions.  In the 

context of my data one can ask what if a couple had a child and what if they were married for an 

extended period of time rather than short.  A regression model allows us to estimate the mean 

time to judgment for different circumstances.  

The coefficient for each explanatory variable level will be assessed at the five percent 

significance level.  For any conclusion to be valid we must check the assumptions that are 

necessary for a regression model.  The assumptions necessary for a regression model are 

normality and constant variance. To assess that the assumption of normality of the error terms is 

met we usually first look at a Normal Probability Plot.  If a Normal Probability Plot shows 

departure from the straight diagonal line, which represents normality, there is reason to believe 

that this assumption is violated. If this assumption is violated then many problems can arise, the 

most problematic in this situation is that tests used to assess the significance of terms in our 

models are possibly compromised.  To assess the constant variance assumption of the error terms 

we look at a Residual versus Fitted Values Plot, a plot of the error terms against the values that 

the model predicts for that value.  If the plot has a rectangular (random scatter) look to it then 

this is evidence that this assumption is not violated. Violations of this assumption make 

estimating the precision that we are able to have when estimating parts of our model we wish to 

estimate. 
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To assess which model best fits our response variable, time to judgment, it is appropriate 

to use a partial f test and use the leave one out cross-validation technique.  In using a partial f test 

to compare models we are testing whether or not certain predictor variables are necessary when 

predicting our response, time to judgment.  This type of model selection technique allows us to 

compare a simplified regression models versus fuller models.  For a partial f test to be 

appropriate, all variables used in the simplified version of the regression model must be in the 

full regression model.  In this case an example of a null and alternative hypothesis is as follows: 

H0: y = β0 + β1 + β2 (smaller model) 

H1: y = β0 + β1 + β2 + β3 + β4 + β5 (larger model) 

*If the null hypothesis is rejected, at least one of the β terms added in the larger model is said to 

be different from 0. 

The partial f test should lead us to the best fitting model for our given data but a cross-

validation technique can be used to evaluate our model’s predictive capability.  The cross-

validation technique used is called the leave one out method.  The leave one out technique allows 

us simulate a “new” observation  by removing data points, fitting the model without the data, 

using the estimated model to predict the response values, and consider the sum of squared 

prediction errors.  The smaller the value for the error term, the better our models predictive 

capability is. 

The only problem with analyzing our data with a regression models is that it doesn’t 

completely account for the fact that there are right censored data points.  In a way, we can 

account for this affect by having a censor indicator variable that specifies whether or not a 

divorce has been finalized.  To fit a survival regression models to our complete data set I will use 
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the survreg function found in R.  When using the survreg function in R, we identify the 

possibility of some observations being right-censored.  One interesting aspect about this form of 

regression models is that a distribution must be fit to our response variable, since that is all the 

survreg function allows.  R allows us to choose from six distributions: Weibull, Exponential, 

Gaussian, Logistic, Lognormal, or Log-logistic.  The output coming from this model will allow 

me to conclude which explanatory variables are significant predictors in predicting time to 

judgment. 
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Results 

Prior to running any of the previously explained statistical methods, I chose to first take a 

look at descriptive statistics and their corresponding graphs.  The first set of descriptive statistics 

I looked at concerned looking at our response variable, time to judgment, by the four marriage 

duration level. 

 
             Figure 1: Time to Judgment by Marriage Duration (Complete Data Set) 

 

The first graph I looked at is that of the complete data set with 287 observations, Figure 

1.  Here, comparisons can be made between the four marriage duration groups.  The black dotted 

line corresponds to the overall time to judgment mean, the green line corresponds to the mean 

time to judgment by marriage duration category, and the red line represents the 95% confidence 

interval for time to judgment at each of the four marriage duration categories.  From Figure 1 we 

can see that the overall means for the four categories yield different time to judgment means.  

The couples that correspond to the very short category, which match up to couples that have 

been married for less than one year, on average take the longest time to finalize their divorce.  
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The couples that correspond to the short marriage, on average, took the shortest time to finalize 

their divorce.  Even though there are small differences between groups, it is worth noting that 

this graph, and the next two, don’t necessarily account for whether the couple has children or if 

their divorce is finalized.  It is simply looking at the complete data set without accounting for any 

other variables.  

 
            Figure 2: Time to Judgment by Marriage Duration (Censored Data Set) 

 

If we solely look at the observations which are right censored, there is an apparent 

amount of variability shown within each of the four marriage groups, as seen in Figure 2.  This is 

shown by the wide estimates for the 95% confidence intervals.  There is also an apparent change 

in each time to judgment point estimate.  The values of time to judgment that before had an 

overall mean of about 42 months now have a mean length of about 102 months.  The mean that 

corresponds to the very short marriage group still yields the highest average time to judgment, 

while the mean that corresponds to the short marriage group yields the lowest average for time to 

judgment.  As previously stated, the variability for each of our four variables is very large.  This 
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may be due to a couple of things: the sample size for each of these groups is 6, 11, 12, and 13 

respectively and due to the fact that all of these cases were never finalized the censor date may 

be far from separation. 

 
                   Figure 3: Time to Judgment by Marriage Duration (Non-Censored Data Set) 

 

When looking only at the cases where all divorce cases are finalized, we can see that on 

average, the four marriage duration groups have similar time to judgment means.  Another 

difference between Figure 2 and Figure 3 is the large difference in overall mean.  This difference 

is averaged out in the graph corresponding to the complete data set, Figure 1. The group that 

yields the largest average are couples who have been married for at least ten years, the long 

marriage duration group.  The variability corresponding to each of these four subgroups is also 

relatively small compared to the following group that amounts only of censored observations.  

This is mainly due to the fact that most data points which greatly deviate from the mean are 

removed, and their means are smaller along with the decrease in magnitude of the 95% 

confidence intervals. 
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To further investigate the variability within each data set knowledge of central moments 

may be used, in this case kurtosis.  In Tables 1, 2, and 3, confidence intervals for time to 

judgment by marriage duration levels are listed with their corresponding kurtosis values.  The 

95% confidence intervals found on these tables are displayed on the previous three graphs 

(Figures 1, 2,  and 3).  What cannot be explained by the previous three simple graphs is the 

amount of variation due to extreme observations; this is where kurtosis can be used.   

      Table 1: Complete 95% Confidence Intervals (n=287) 

Marriage Length Lower Bound Upper Bound 

Duration = Very Short 29.97 71.40 

Duration = Short 30.82 45.88 

Duration = Medium 29.55 53.13 

Duration = Long 31.79 53.19 
 

      Table 2: Censored 95% Confidence Intervals (n=42) 

Marriage Length Lower Bound Upper Bound 

Duration = Very Short 61.78 165.08 

Duration = Short 75.02 101.02 

Duration = Medium 50.66 158.79 

Duration = Long 41.28 165.85 

 
     Table 3: Non-Censored 95% Confidence Intervals (n=245) 

Marriage Length Lower Bound Upper Bound 

Duration = Very Short 18.23 38.83 

Duration = Short 24.12 38.38 

Duration = Medium 21.56 39.98 

Duration = Long 26.28 38.61 

 

For the confidence interval values found on Tables 1, 2, and 3 the time to judgment by 

marriage length level that yields the largest kurtosis value is the long marriage length category 

found in the complete data set, 40.31.  In the same data set, the time to judgment by marriage 

duration subgroup that yields the smallest kurtosis value is the short duration group, 3.33.   
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When looking at the data set, its seems as though the large kurtosis value is mainly due to 

one or two extreme observations.  In the Complete/Long histogram, observation 258 of our 

complete data set has a time to judgment response value of 442.63.  This sole extreme 

observation makes it so that the kurtosis value for the subgroup to be large and thus wider 

confidence interval.  In attempt to grasp the effect of this sole observation, I chose to omit the 

observation from our data set and re-evaluate the kurtosis and confidence interval values.  After 

removing the 258
th

 observation, the sample standard deviation for the Complete/Long subgroup 

drops from 51.67 to 30.02, thus showing this extreme effect of this single observation.  A second 

observation we can make when removing the extreme value is the reduction of the 95% 

confidence interval width.  The confidence interval drops from (31.79, 53.19) to (31.84, 44.35) 

when removing this single point.  Lastly, the kurtosis value can be looked at.  Prior to the 

omission of the extreme observation the kurtosis value was 40.31, amplified mainly by one 

observation.  Once this observation is removed the kurtosis value is now 3.78.  Now, the kurtosis 

value found in the Complete/Long group is similar to that of the Complete/Short group.  This 

makes intuitive sense when looking at the corresponding histograms of both subgroups.  

Multiple Regression Models 

The first data set I chose to analyze with multiple regression models was the Non-

Censored data set, where all of the divorces were finalized.  For this data set, I chose to fit four 

separate regression models where time to judgment as the response variable and combination of 

marriage duration category and the children indicator as the explanatory variables.  From the 

four models used to predict time to judgment, the model where the children indicator variable is 

the only predictor best fits our data adequately.  The duration cat variable is insignificant at its 

four levels along with the interaction between children and the durationcat variable at its four 
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levels.  Another way to further justify that this is an adequate model is by running a partial f test 

where we can make comparisons between models.  The partial f test indicates there is a strong 

relationship between whether the couple has a child and how long it takes to finalize a divorce.  

Table 4 indicates how significant the intercept and child indicator variable actually are, at the 5% 

significance level.  The children indicator variable coefficient can be interpreted as, if a couple 

has children the amount of time it takes for their divorce to be finalized is on average 10.131 

months greater.  Table 4 also indicates that the couples without children the reference group. 

              Table 4: Non-Censored Data Model (n=245) 

Term Coef SE T-Value P-Value 

Intercept 26.35 2.83 9.306 <0.0001 

Children  10.13 4.05 2.504 0.0129 

Marriage Duration = Short 1.24 8.55 0.145 0.8850 

Marriage Duration = Medium -0.24 8.64 -0.027 0.9782 

Marriage Duration = Long -0.65 8.71 -0.074 0.9408 

 

In analyzing which model best predicts time to judgment where the possible explanatory 

variables are the children indicator variable and the length of their marriage categorical variable, 

the LOOM method indicates that a simpler model is adequate.  This model includes the marriage 

duration category variable as the only explanatory variable, where the very short marriage 

duration group is the reference group.  The reason why the model selected using the LOOM 

cross-validation method is different than the model selected when a partial f test is used is mainly 

due to the fact that the LOOM method only looks at the models predictive capabilities.  An 

ANOVA table of this model tells us that none of the four marriage duration categories yield 

different estimates, insignificant at the 5% significance level.  Another reason why these two 

separate techniques yield contradictory models is the fact that extreme observation may highly 
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influence our models.  This is evident from the standard error values present on Table 4 which 

indicates large variability within groups. 

The last data set I examined was the complete data set (n=287).  The multiple regression 

models created for this data set are comparable to the ones made for the two previous data sets, 

with the addition of the censored observations being included with the non-censored 

observations.  I was able to generate several models which included the two categorical 

predictors along with a combination of their interactions.  From the models examined, there is no 

model that yields significant p-values for the corresponding terms.  An example of an observed 

model is found in Table 5.  For this model, the couples married for less than one year with 

children are the reference group.   A reason why all terms in models for the complete data set are 

insignificant is due to the fact that we are not accounting for the possibility of right censored 

observations.  Extreme values for right-censored observations don’t allow us to find significant 

terms. 

               Table 5: Complete Data Set Without Censor Indicator (n=287) 

 

 

 

When analyzing the nine models’ predictive capabilities, the LOOM cross-validation 

technique indicates that the model found in Table 5 is most appropriate.  This is concluded by the 

corresponding model having the smallest cross-validation error term value compared to other 

models.   

Term Coef SE T-Value P-Value 

Intercept 49.06 10.09 4.861 <0.0001 

Children 6.23 5.86 1.064 0.2880   

Marriage Duration = Short -13.19 11.23 -1.174 0.2410 

Marriage Duration = Medium -10.76 11.34 -0.949    0.3440    

Marriage Duration = Long -10.76 11.41 -0.943    0.3460    
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Parametric Survival Regression Models 

A proper way of analyzing a time-to-event data such as this is by creating a parametric 

survival regression model.  This is possible through the survreg function found in R which fits a 

parametric survival regression model to our data.  Since the survreg function can only be used 

when a distribution is assumed for the response variable, time to judgment, I chose to fit several 

distributions.  The best fitting distribution to time to judgment is the lognormal distribution as 

shown in Figure 4.  As the name indicates, a lognormal distribution is a random variable whose 

logarithm is normally distributed.  Once the log of time to judgment has been taken, the data is 

normally distributed with mean 3.245 and standard deviation 1.019. 
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Figure 4: Lognormal Distribution Imposed on Time to Judgment 

 

 A similar procedure to previous multiple regression models is applied to our survival 

regression models.  The fact that there are right censored time-to-event observations is accounted 

for by response variable, using the surv function found in R.  There are only two explanatory 

variables we can apply to this model, them being marriage duration category and the children 

indicator variable.  There are four separate models possible when dealing with only two 

explanatory variables.  Of the four, the model I found appropriate was the model where both the 

children indicator and marriage duration category variables are the explanatory variables as seen 
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on Table 6.  In this model, the reference groups are the couples with no children along with the 

couples that have been married for less than a year.  At the 5 % significance level, children and 

duration = medium are significant predictors of variation in our model.  Even though there are 

only two significant predictors at the 5% significance level in our model our model, also shows 

that Duration = Short, and Duration = Long are also moderately significant.  If we were to run 

our model at the 10% significance level, all of the predictors in the model would be significant. 

 When interpreting the results seen in Table 6 one must consider the fact that I took the 

log of the original response variable.  To adequately interpret each case, we must first sum their 

coefficients and then exponetiate the entire value.  We can estimate time to judgment for a 

couple with children that are married five to ten years.  We first sum the coefficient values that 

corresponding to the intercept, children indicator variable, and the Marriage Duration = Medium 

term, which amounts to a value of 3.53.  We expenetiate this value and now have a time to 

judgment estimate for the couple. This same process can be applied to each of the other cases. 

 

     Table 6: Survival Regression Model (Lognormal Distribution)(n=287) 

 

 

 

Lastly for the Santa Barbara County divorce survival regression model, I decided to make 

predictions for each of the marriage duration by the children indicator variable.  These estimates, 

found on Figure 5, show the differences between each of the eight subcategories.  From Figure 5, 

the same prediction pattern is followed for both couple with children and no children due to the 

fact there is no significant interaction between these two categorical groups.  Also from Figure 5, 

Term Coef SE Z-Value P-Value 

Intercept 3.52 0.24 14.530 <0.0001 

Children 0.56 0.14 4.060 <0.0001 

Marriage Duration = Short -0.49 0.27 -1.840 0.0665 

Marriage Duration = Medium -0.55 0.27 -2.030 0.0420 

Marriage Duration = Long -0.49 0.27 -1.780 0.0753 
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couples that are married for less than one year and have children yield the largest time to 

judgment prediction, 59.14 months.  These predictions can be computed from the coefficient 

values found in Table 6, but a graphical representation allows us to see the magnitude in 

differences. 

 
         Figure 5: Santa Barbara County Time to Judgment Predictions 

 

The last statistical procedure I chose to produce for my senior project was to apply a 

similar parametric survival regression model to the data I collected for my Stat 417 project.  A 

problem that arises when using this data set is that it is rather small.  With a small data set, there 

may exist a problem in detecting significant differences when in reality one exists. This is due to 

the large sample variation due to the small sample size.  Another problem that arises is visually 

evident in Figure 6.  Since we are fitting a parametric regression model to our data, the time to 

judgment response variable must fit one of the six distributions given by the survreg function.  

From the six distributions I imposed on the data, the lognormal distributed fit best.  Once the log 
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has been taken, time to judgment seems to somewhat follow a normal distribution with a mean of 

0.0182 and standard deviation 0.475. 
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Figure 6: Lognormal Distribution Imposed of Time to Judgment (SLO Data)(n=52) 

 

 When comparing the four models created, the model that best fits our data is where the 

length of marriage categorical variable is the only explanatory variable, found in Table 7.  The 

reference level in this model are the marriages that lasted than one year.  When comparing the 

three additional categories in our model, only the medium duration category is significantly 

different.  The two other categories aren’t significant at any relevant significance level.  As 

stated before, the standard error is rather large and this it is hard to find significant results. 

        Table 7: Survival Regression Model for SLO County (n=52) 

Term Coef SE Z-Value P-Value 

Intercept -0.50 0.78 -0.633 0.5267 

Children -0.35 0.34 -1.023 0.3064 

Duration = Short 1.45 0.84 1.726 0.0844 

Duration = Medium 2.13 0.88 2.425 0.0153 

Duration = Long 1.45 0.87 1.409 0.1590 

 
 We get a last look at any differences between couples’ time to judgment with predictions.  

A few things are obvious when looking at the predictions found in Figure 7. First is that the lines 

separated by whether a couple has children is parallel.  This is due to the fact that the interaction 

between these two categorical predictors was insignificant.  Next, the couple with children 
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yielded larger predictions, similar to our predictions for the Santa Barbara County survival 

model.  Lastly, couples with children and were married five to ten years yielded the largest 

response, about five months. 

 
Figure 7: San Luis Obispo County Time to Judgment Predictions 
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Summary of Findings 
 

Using survival analysis methods I am able to conclude that whether a couple has a child 

and the marriage duration category variables are at least moderately significant.  There are 

graphical and tabular summaries throughout the previous sections in this project that further 

prove this.  Our analysis also allowed us to estimate which regression models best predicts time 

to judgment, which is found in the middle of our Results section.  In future studies, 

improvements that can be made on such studies is to take a random sample of all Americans. 

Since this data sets only consists of Santa Barbara County divorces, we can only draw inference 

on Santa Barbara county divorces.  With a random sample, we can draw inference on the 

American population.  Something else that could be further investigated is why there were 

missing entries for certain observations.  It would be interesting if different results can be 

achieved with the completion of each missing observation. 
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Appendix 
library(moments) 

SantaBarbaraDivorce = read.csv("SantaBarbaraDivorce.csv", header = FALSE) 

names(SantaBarbaraDivorce) = c("DOM","DOS","DOJ","Children") 

SantaBarbaraDivorce$Children = as.character(SantaBarbaraDivorce$Children) 

SantaBarbaraDivorce$DOJ = as.character(SantaBarbaraDivorce$DOJ) 

 

### SantaBarbaraDivorce[SantaBarbaraDivorce[,3]=="",] 

for (itor in 1:length(SantaBarbaraDivorce$DOJ)) 

{ 

 if (SantaBarbaraDivorce[itor, 3] =="" ) SantaBarbaraDivorce[itor, 3] = "06/11/2003" 

 if (SantaBarbaraDivorce[itor, 4] =="No ") SantaBarbaraDivorce[itor, 4] = "No" 

 if (SantaBarbaraDivorce[itor, 4] =="Yes ") SantaBarbaraDivorce[itor, 4] = "Yes"  

} 

SantaBarbaraDivorce$DOM = as.Date(SantaBarbaraDivorce$DOM, "%m/%d/%Y") 

SantaBarbaraDivorce$DOS = as.Date(SantaBarbaraDivorce$DOS, "%m/%d/%Y") 

SantaBarbaraDivorce$DOJ = as.Date(SantaBarbaraDivorce$DOJ, "%m/%d/%Y") 

SantaBarbaraDivorce$Children = as.factor(SantaBarbaraDivorce$Children) 

 

MarriageLength = ((SantaBarbaraDivorce$DOS-SantaBarbaraDivorce$DOM)/365) 

SeperationLength = ((SantaBarbaraDivorce$DOJ-SantaBarbaraDivorce$DOS)/30) 

SantaBarbaraDivorce = data.frame(cbind(SantaBarbaraDivorce, MarriageLength, SeperationLength)) 

 

######################################################################## 

## Creating the censored variable 

######################################################################## 

CensorIndicator = NULL 

CensorIndicator[1:287] = 1 

CensorIndicator[SantaBarbaraDivorce$DOJ == "2003-06-11"] = 0 

SantaBarbaraDivorce = data.frame(cbind(SantaBarbaraDivorce, CensorIndicator)) 

######################################################################## 

## Categorical Marriage Length 

######################################################################## 

Length(Cesored$DurationCat) 

N = nrow(SantaBarbaraDivorce) 

DurationCat = NULL 

for (DataItor in 1:N) 

{ 

 if(SantaBarbaraDivorce$MarriageLength[DataItor] < 1) 

 { 

  DurationCat[DataItor] = 'VeryShort' 

 } 

 if((SantaBarbaraDivorce$MarriageLength[DataItor] >= 1) & 

(SantaBarbaraDivorce$MarriageLength[DataItor] < 5)) 

 { 

  DurationCat[DataItor] = 'Short1' 

 } 
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 if((SantaBarbaraDivorce$MarriageLength[DataItor] >= 5) & 

(SantaBarbaraDivorce$MarriageLength[DataItor] < 10)) 

 { 

  DurationCat[DataItor] = 'Medium' 

 } 

 if(SantaBarbaraDivorce$MarriageLength[DataItor] >= 10) 

 { 

  DurationCat[DataItor] = 'Long' 

 } 

} 

Duration = factor(DurationCat, levels = c('VeryShort', 'Short1', 'Medium', 'Long')) 

DurationCat = factor(DurationCat, levels = c('VeryShort', 'Short1', 'Medium', 'Long')) 

SantaBarbaraDivorce = data.frame(cbind(SantaBarbaraDivorce, DurationCat)) 

 

 

SantaBarbaraDivorce$MarriageLength = gsub("days", "", SantaBarbaraDivorce$MarriageLength) 

SantaBarbaraDivorce$SeperationLength = gsub("days", "", SantaBarbaraDivorce$SeperationLength) 

 

SantaBarbaraDivorce$MarriageLength = as.numeric(SantaBarbaraDivorce$MarriageLength)  

SantaBarbaraDivorce$SeperationLength = as.numeric(SantaBarbaraDivorce$SeperationLength) 

######################################################################## 

## Seperation of the Censored and Uncensored Data 

######################################################################## 

CensorData = grep('0', SantaBarbaraDivorce$CensorIndicator) 

Censored = SantaBarbaraDivorce[CensorData,] 

nrow(Censored) 

NonCensor = grep('1', SantaBarbaraDivorce$CensorIndicator) 

NonCensored = SantaBarbaraDivorce[NonCensor,] 

nrow(NonCensored) 

######################################################################## 

## multiple regression to predict T2J (Time to Judgement) 

######################################################################## 

## Regression Models for NonCensored data set 

######################################################################## 

par(mfrow=c(2,2)) 

NonCensoredLinearModel1 = lm((as.numeric(NonCensored$SeperationLength)) ~ 

as.factor(NonCensored$DurationCat)) 

summary(NonCensoredLinearModel1) 

NonCensoredLinearModel1Resid = NonCensoredLinearModel1$resid 

NonCensoredLinearModel1Fitted = NonCensoredLinearModel1$fitted 

qqnorm(NonCensoredLinearModel1Resid, main = "Non-Censored Linear Model 1 NPP") 

qqline(NonCensoredLinearModel1Resid) 

plot(NonCensoredLinearModel1Fitted, NonCensoredLinearModel1Resid, xlab = "Fitted Values", ylab =         

"Residuals", main = "Non-Censored Linear Model 1 Versus Fits") 

hist(NonCensoredLinearModel1Resid, xlab = "Residuals", main = "Non-Censored Linear Model 1  

Histogram") 

bartlett.test((as.numeric(NonCensored$SeperationLength)) ~ 0 + as.factor(NonCensored$DurationCat)) 

NonCensoredLinearModel1Shapiro = shapiro.test(NonCensoredLinearModel1Resid) 
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par(mfrow=c(2,2)) 

NonCensoredLinearModel2 = lm((as.numeric(NonCensored$SeperationLength)) ~  

as.factor(NonCensored$Children)) 

summary(NonCensoredLinearModel2) 

NonCensoredLinearModel2Resid = NonCensoredLinearModel2$resid  

NonCensoredLinearModel2Fitted = NonCensoredLinearModel2$fitted 

qqnorm(NonCensoredLinearModel2Resid,  main = "Non-Censored Linear Model 2 NPP") 

qqline(NonCensoredLinearModel2Resid) 

plot(NonCensoredLinearModel2Fitted, NonCensoredLinearModel2Resid, xlab = "Fitted Values", ylab =  

"Residuals", main = "Non-Censored Linear Model 2 Versus Fits") 

hist(NonCensoredLinearModel2Resid, xlab = "Residuals", main = "Non-Censored Linear Model 2  

Histogram") 

bartlett.test((as.numeric(NonCensored$SeperationLength)) ~ 0 + as.factor(NonCensored$Children)) 

NonCensoredLinearModel2Shapiro = shapiro.test(NonCensoredLinearModel2Resid) 

 

par(mfrow=c(2,2)) 

NonCensoredLinearModel3 = lm((as.numeric(NonCensored$SeperationLength)) ~  

as.factor(NonCensored$Children)+ as.factor(NonCensored$DurationCat)) 

summary(NonCensoredLinearModel3) 

NonCensoredLinearModel3Resid = NonCensoredLinearModel3$resid  

NonCensoredLinearModel3Fitted = NonCensoredLinearModel3$fitted 

qqnorm(NonCensoredLinearModel3Resid,  main = "Non-Censored Linear Model 3 NPP") 

qqline(NonCensoredLinearModel3Resid) 

plot(NonCensoredLinearModel3Fitted, NonCensoredLinearModel3Resid, xlab = "Fitted Values", ylab =  

"Residuals", main = "Non-Censored Linear Model 3 Versus Fits") 

hist(NonCensoredLinearModel3Resid, xlab = "Residuals", main = "Non-Censored Linear Model 3  

Histogram") 

bartlett.test((as.numeric(NonCensored$SeperationLength)) ~ 0 + as.factor(NonCensored$Children)+ 

as.factor(NonCensored$DurationCat)) 

NonCensoredLinearModel3Shapiro = shapiro.test(NonCensoredLinearModel3Resid) 

 

par(mfrow=c(2,2)) 

NonCensoredLinearModel4 = lm(((as.numeric(NonCensored$SeperationLength))) ~ 

as.factor(NonCensored$Children)*as.factor(NonCensored$DurationCat)) 

summary(NonCensoredLinearModel4) 

NonCensoredLinearModel4Resid = NonCensoredLinearModel4$resid  

NonCensoredLinearModel4Fitted = NonCensoredLinearModel4$fitted 

qqnorm(NonCensoredLinearModel4Resid,  main = "Non-Censored Linear Model 4 NPP") 

qqline(NonCensoredLinearModel4Resid) 

plot(NonCensoredLinearModel4Fitted, NonCensoredLinearModel4Resid, xlab = "Fitted Values", ylab =  

"Residuals", main = "Non-Censored Linear Model 4 Versus Fits") 

hist(NonCensoredLinearModel4Resid, xlab = "Residuals", main = "Non-Censored Linear Model 4  

Histogram") 

bartlett.test((as.numeric(NonCensored$SeperationLength)) ~ 0 + 

as.factor(NonCensored$Children)*as.factor(NonCensored$DurationCat)) 

NonCensoredLinearModel4Shapiro = shapiro.test(NonCensoredLinearModel4Resid) 
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summary(NonCensoredLinearModel4) 

 

###Partial F tests for the NonCensored Data 

anova(NonCensoredLinearModel1, NonCensoredLinearModel3) 

anova(NonCensoredLinearModel2, NonCensoredLinearModel3) 

anova(NonCensoredLinearModel1, NonCensoredLinearModel4) 

anova(NonCensoredLinearModel2, NonCensoredLinearModel4) 

 

######################################################################## 

## Regression Models for Censored data set 

######################################################################## 

par(mfrow=c(2,2)) 

CensoredLinearModel1 = lm(((as.numeric(Censored$SeperationLength))) 

~as.factor(Censored$DurationCat)) 

summary(CensoredLinearModel1) 

CensoredLinearModel1Resid = CensoredLinearModel1$resid 

CensoredLinearModel1Fitted = CensoredLinearModel1$fitted 

qqnorm(CensoredLinearModel1Resid , main = "Censored Linear Model 1 NPP") 

qqline(CensoredLinearModel1Resid) 

plot(CensoredLinearModel1Fitted, CensoredLinearModel1Resid, xlab = "Fitted Values", ylab =  

"Residuals", main = "Censored Linear Model 1 Versus Fits") 

hist(CensoredLinearModel1Resid, xlab = "Residuals", main = "Censored Linear Model 1 Histogram") 

CensoredLinearModel1Bartlett =  bartlett.test(((as.numeric(Censored$SeperationLength))) ~ 0 +  

as.factor(Censored$DurationCat)) 

CensoredLinearModel1Shapiro = shapiro.test(CensoredLinearModel1Resid) 

 

par(mfrow=c(2,2)) 

CensoredLinearModel2 = lm(((as.numeric(Censored$SeperationLength))) ~  

as.factor(Censored$Children)) 

summary(CensoredLinearModel2) 

CensoredLinearModel2Resid = CensoredLinearModel2$resid 

CensoredLinearModel2Fitted = CensoredLinearModel2$fitted 

qqnorm(CensoredLinearModel2Resid , main = "Censored Linear Model 2 NPP") 

qqline(CensoredLinearModel2Resid) 

plot(CensoredLinearModel2Fitted, CensoredLinearModel2Resid, xlab = "Fitted Values", ylab =  

"Residuals", main = "Censored Linear Model 2 Versus Fits") 

hist(CensoredLinearModel2Resid, xlab = "Residuals", main = "Censored Linear Model 2 Histogram") 

CensoredLinearModel2Bartlett = bartlett.test(((as.numeric(Censored$SeperationLength))) ~ 0 +  

as.factor(Censored$Children)) 

CensoredLinearModel2Shapiro = shapiro.test(CensoredLinearModel2Resid) 

 

par(mfrow=c(2,2)) 

CensoredLinearModel3 = lm(((as.numeric(Censored$SeperationLength))) ~ \

 as.factor(Censored$Children)+ as.factor(Censored$DurationCat)) 

summary(CensoredLinearModel3) 

CensoredLinearModel3Resid = CensoredLinearModel3$resid 

CensoredLinearModel3Fitted = CensoredLinearModel3$fitted 

qqnorm(CensoredLinearModel3Resid , main = "Censored Linear Model 3 NPP") 
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qqline(CensoredLinearModel3Resid) 

plot(CensoredLinearModel3Fitted, CensoredLinearModel3Resid, xlab = "Fitted Values", ylab =  

"Residuals", main = "Censored Linear Model 3 Versus Fits") 

hist(CensoredLinearModel3Resid, xlab = "Residuals", main = "Censored Linear Model 3 Histogram") 

CensoredLinearModel3Bartlett = bartlett.test(((as.numeric(Censored$SeperationLength))) ~ 0 +  

as.factor(Censored$Children)+ as.factor(Censored$DurationCat)) 

CensoredLinearModel3Shapiro = shapiro.test(CensoredLinearModel3Resid) 

 

par(mfrow=c(2,2)) 

CensoredLinearModel4 = lm(((as.numeric(Censored$SeperationLength))) ~  

as.factor(Censored$Children)*as.factor(Censored$DurationCat)) 

summary(CensoredLinearModel4) 

CensoredLinearModel4Resid = CensoredLinearModel4$resid 

CensoredLinearModel4Fitted = CensoredLinearModel4$fitted 

qqnorm(CensoredLinearModel4Resid , main = "Censored Linear Model 4 NPP") 

qqline(CensoredLinearModel4Resid) 

plot(CensoredLinearModel4Fitted, CensoredLinearModel4Resid, xlab = "Fitted Values", ylab =  

"Residuals", main = "Censored Linear Model 4 Versus Fits") 

hist(CensoredLinearModel4Resid, xlab = "Residuals", main = "Censored Linear Model 4 Histogram") 

CensoredLinearModel4Bartlett = bartlett.test(((as.numeric(Censored$SeperationLength))) ~ 0 +  

as.factor(Censored$Children)*as.factor(Censored$DurationCat)) 

CensoredLinearModel4Shapiro = shapiro.test(CensoredLinearModel4Resid) 

 

###  Partial F tests for the Censored Data 

anova(CensoredLinearModel1, CensoredLinearModel3) 

anova(CensoredLinearModel2, CensoredLinearModel3) 

anova(CensoredLinearModel1, CensoredLinearModel4) 

anova(CensoredLinearModel2, CensoredLinearModel4) 

 

######################################################################## 

## Multiple Regression of the whole data set 

######################################################################## 

 

par(mfrow=c(2,2)) 

SantaBarbaraDivorceLinearModel1 = lm((as.numeric(SantaBarbaraDivorce$SeperationLength)) ~  

(as.factor(SantaBarbaraDivorce$DurationCat))) 

summary(SantaBarbaraDivorceLinearModel1) 

SantaBarbaraDivorceLinearModel1Resid = SantaBarbaraDivorceLinearModel1$resid 

SantaBarbaraDivorceLinearModel1Fitted = SantaBarbaraDivorceLinearModel1$fitted 

qqnorm(SantaBarbaraDivorceLinearModel1Resid , main = "Complete Linear Model 1 NPP") 

qqline(SantaBarbaraDivorceLinearModel1Resid ) 

plot(SantaBarbaraDivorceLinearModel1Fitted , SantaBarbaraDivorceLinearModel1Resid , xlab = "Fitted  

Values", ylab = "Residuals", main = "Complete Linear Model 1 Versus Fits") 

hist(SantaBarbaraDivorceLinearModel1Resid , xlab = "Residuals", main = "Complete Linear Model 1 

Histogram") 

SantaBarbaraDivorceLinearModel1Bartlett  =

 bartlett.test(((as.numeric(SantaBarbaraDivorce$SeperationLength))) ~ 0 +  

as.factor(SantaBarbaraDivorce$DurationCat)) 
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SantaBarbaraDivorceLinearModel1Shapiro = shapiro.test(SantaBarbaraDivorceLinearModel1Resid) 

 

 

par(mfrow=c(2,2)) 

SantaBarbaraDivorceLinearModel2 = lm(((as.numeric(SantaBarbaraDivorce$SeperationLength))) ~  

as.factor(SantaBarbaraDivorce$Children)) 

summary(SantaBarbaraDivorceLinearModel2) 

SantaBarbaraDivorceLinearModel2Resid = SantaBarbaraDivorceLinearModel2$resid 

SantaBarbaraDivorceLinearModel2Fitted = SantaBarbaraDivorceLinearModel2$fitted 

qqnorm(SantaBarbaraDivorceLinearModel2Resid , main = "Complete Linear Model 2 NPP") 

qqline(SantaBarbaraDivorceLinearModel2Resid ) 

plot(SantaBarbaraDivorceLinearModel2Fitted , SantaBarbaraDivorceLinearModel2Resid , xlab = "Fitted  

Values", ylab = "Residuals", main = "Complete Linear Model 2 Versus Fits") 

hist(SantaBarbaraDivorceLinearModel2Resid , xlab = "Residuals", main = "Complete Linear Model 2  

Histogram") 

SantaBarbaraDivorceLinearModel2Bartlett  =  

bartlett.test(((as.numeric(SantaBarbaraDivorce$SeperationLength))) ~ 0 +  

as.factor(SantaBarbaraDivorce$Children)) 

SantaBarbaraDivorceLinearModel2Shapiro = shapiro.test(SantaBarbaraDivorceLinearModel2Resid) 

 

par(mfrow=c(2,2)) 

SantaBarbaraDivorceLinearModel3 = lm((as.numeric(SantaBarbaraDivorce$SeperationLength)) ~  

as.factor(SantaBarbaraDivorce$Censor)) 

summary(SantaBarbaraDivorceLinearModel3) 

SantaBarbaraDivorceLinearModel3Resid = SantaBarbaraDivorceLinearModel3$resid 

SantaBarbaraDivorceLinearModel3Fitted = SantaBarbaraDivorceLinearModel3$fitted 

qqnorm(SantaBarbaraDivorceLinearModel3Resid , main = "Complete Linear Model 3 NPP") 

qqline(SantaBarbaraDivorceLinearModel3Resid ) 

plot(SantaBarbaraDivorceLinearModel3Fitted , SantaBarbaraDivorceLinearModel3Resid , xlab = "Fitted  

Values", ylab = "Residuals", main = "Complete Linear Model 3 Versus Fits") 

hist(SantaBarbaraDivorceLinearModel3Resid , xlab = "Residuals", main = "Complete Linear Model 3  

Histogram") 

SantaBarbaraDivorceLinearModel3Bartlett  =  

bartlett.test((as.numeric(SantaBarbaraDivorce$SeperationLength)) ~ 0 +  

as.factor(SantaBarbaraDivorce$Censor)) 

SantaBarbaraDivorceLinearModel3Shapiro = shapiro.test(SantaBarbaraDivorceLinearModel3Resid) 

 

 

par(mfrow=c(2,2)) 

SantaBarbaraDivorceLinearModel4 = lm((as.numeric(SantaBarbaraDivorce$SeperationLength)) ~  

as.factor(SantaBarbaraDivorce$DurationCat) + as.factor(SantaBarbaraDivorce$Children)) 

summary(SantaBarbaraDivorceLinearModel4) 

SantaBarbaraDivorceLinearModel4Resid = SantaBarbaraDivorceLinearModel4$resid 

SantaBarbaraDivorceLinearModel4Fitted = SantaBarbaraDivorceLinearModel4$fitted 

qqnorm(SantaBarbaraDivorceLinearModel4Resid , main = "Complete Linear Model 4 NPP") 

qqline(SantaBarbaraDivorceLinearModel4Resid ) 

plot(SantaBarbaraDivorceLinearModel4Fitted , SantaBarbaraDivorceLinearModel4Resid , xlab = "Fitted  

Values", ylab = "Residuals", main = "Complete Linear Model 4 Versus Fits") 
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hist(SantaBarbaraDivorceLinearModel4Resid , xlab = "Residuals", main = "Complete Linear Model 4  

Histogram") 

SantaBarbaraDivorceLinearModel4Bartlett  =  

bartlett.test(((as.numeric(SantaBarbaraDivorce$SeperationLength))) ~ 0 +  

as.factor(SantaBarbaraDivorce$DurationCat) + as.factor(SantaBarbaraDivorce$Children)) 

SantaBarbaraDivorceLinearModel4Shapiro = shapiro.test(SantaBarbaraDivorceLinearModel4Resid) 

 

 

SantaBarbaraDivorceLinearModel4 = lm((as.numeric(SantaBarbaraDivorce$SeperationLength)) ~  

as.factor(SantaBarbaraDivorce$DurationCat) + as.factor(SantaBarbaraDivorce$Children)) 

summary(SantaBarbaraDivorceLinearModel4) 

##################################################################### 

### Building the 4 distinct subgroups (very short, short, medium, long) within our 3 data sets. 

#####################################################################################

SantaBarbaraDivorce$SeperationLength = as.numeric(SantaBarbaraDivorce$SeperationLength) 

 

CompleteVeryShort = grep('VeryShort', SantaBarbaraDivorce$DurationCat) 

CompleteVeryShort = SantaBarbaraDivorce[CompleteVeryShort,] 

CompleteMeanVeryShort = mean(CompleteVeryShort$SeperationLength) 

CompleteShort = grep("Short1", SantaBarbaraDivorce$DurationCat) 

CompleteShort = SantaBarbaraDivorce[CompleteShort,] 

CompleteMeanShort = mean(CompleteShort$SeperationLength) 

CompleteMedium = grep('Medium', SantaBarbaraDivorce$DurationCat) 

CompleteMedium = SantaBarbaraDivorce[CompleteMedium,] 

CompleteMeanMedium = mean(CompleteMedium$SeperationLength) 

CompleteLong = grep('Long', SantaBarbaraDivorce$DurationCat) 

CompleteLong = SantaBarbaraDivorce[CompleteLong,] 

CompleteMeanLong = mean(CompleteLong$SeperationLength) 

 

CensoredVeryShort = grep('VeryShort', Censored$DurationCat) 

CensoredVeryShort = Censored[CensoredVeryShort,] 

CensoredMeanVeryShort = mean(as.numeric(CensoredVeryShort$SeperationLength)) 

CensoredShort = grep("Short1", Censored$DurationCat) 

CensoredShort = Censored[CensoredShort,] 

CensoredMeanShort = mean(as.numeric(CensoredShort$SeperationLength)) 

CensoredMedium = grep('Medium', Censored$DurationCat) 

CensoredMedium = Censored[CensoredMedium,] 

CensoredMeanMedium = mean(as.numeric(CensoredMedium$SeperationLength)) 

CensoredLong = grep('Long', Censored$DurationCat) 

CensoredLong = Censored[CensoredLong,] 

CensoredMeanLong = mean(as.numeric(CensoredLong$SeperationLength)) 

 

NonCensoredVeryShort = grep('VeryShort', NonCensored$DurationCat) 

NonCensoredVeryShort = NonCensored[NonCensoredVeryShort,] 

NonCensoredMeanVeryShort = mean(as.numeric(NonCensoredVeryShort$SeperationLength)) 

NonCensoredShort = grep("Short1", NonCensored$DurationCat) 

NonCensoredShort = NonCensored[NonCensoredShort,] 

NonCensoredMeanShort = mean(as.numeric(NonCensoredShort$SeperationLength)) 
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NonCensoredMedium = grep('Medium', NonCensored$DurationCat) 

NonCensoredMedium = NonCensored[NonCensoredMedium,] 

NonCensoredMeanMedium = mean(as.numeric(NonCensoredMedium$SeperationLength)) 

NonCensoredLong = grep('Long', NonCensored$DurationCat) 

NonCensoredLong = NonCensored[NonCensoredLong,] 

NonCensoredMeanLong = mean(as.numeric(NonCensoredLong$SeperationLength)) 

 

##################################################################### 

##### Confidence Intervals for each of the Three Seperated Groups 

##################################################################### 

 

CICompleteVSLower  = (t.test(CompleteVeryShort$SeperationLength))$conf.int[1] 

CICompleteVSUpper = (t.test(CompleteVeryShort$SeperationLength))$conf.int[2] 

CICompleteVS = cbind(CICompleteVSLower , CICompleteVSUpper) 

CICompleteSLower  = (t.test(CompleteShort$SeperationLength))$conf.int[1] 

CICompleteSUpper = (t.test(CompleteShort$SeperationLength))$conf.int[2] 

CICompleteS = cbind(CICompleteSLower , CICompleteSUpper) 

CICompleteMLower  = (t.test(CompleteMedium$SeperationLength))$conf.int[1] 

CICompleteMUpper = (t.test(CompleteMedium$SeperationLength))$conf.int[2] 

CICompleteM = cbind(CICompleteMLower , CICompleteMUpper) 

CICompleteLLower  = (t.test(CompleteLong$SeperationLength))$conf.int[1] 

CICompleteLUpper = (t.test(CompleteLong$SeperationLength))$conf.int[2] 

CICompleteL = cbind(CICompleteLLower , CICompleteLUpper) 

CIComplete = rbind(CICompleteVS, CICompleteS, CICompleteM, CICompleteL) 

CICompleteUpper = CIComplete[,1] 

CICompleteLower = CIComplete[,2] 

 

CICensoredVSLower  = (t.test(as.numeric(CensoredVeryShort$SeperationLength)))$conf.int[1] 

CICensoredVSUpper  = (t.test(as.numeric(CensoredVeryShort$SeperationLength)))$conf.int[2] 

CICensoredVS = cbind(CICensoredVSLower, CICensoredVSUpper) 

CICensoredSLower  = (t.test(as.numeric(CensoredShort$SeperationLength)))$conf.int[1] 

CICensoredSUpper  = (t.test(as.numeric(CensoredShort$SeperationLength)))$conf.int[2] 

CICensoredS = cbind(CICensoredSLower, CICensoredSUpper) 

CICensoredMLower  = (t.test(as.numeric(CensoredMedium$SeperationLength)))$conf.int[1] 

CICensoredMUpper  = (t.test(as.numeric(CensoredMedium$SeperationLength)))$conf.int[2] 

CICensoredM = cbind(CICensoredMLower, CICensoredMUpper) 

CICensoredLLower  = (t.test(as.numeric(CensoredLong$SeperationLength)))$conf.int[1] 

CICensoredLUpper  = (t.test(as.numeric(CensoredLong$SeperationLength)))$conf.int[2] 

CICensoredL = cbind(CICensoredLLower, CICensoredLUpper) 

CICensored = rbind(CICensoredVS, CICensoredS, CICensoredM, CICensoredL) 

CICensoredUpper = CICensored[,1] 

CICensoredLower = CICensored[,2] 

 

CINonCensoredVSLower  = (t.test(as.numeric(NonCensoredVeryShort$SeperationLength)))$conf.int[1] 

CINonCensoredVSUpper  = (t.test(as.numeric(NonCensoredVeryShort$SeperationLength)))$conf.int[2] 

CINonCensoredVS = cbind(CINonCensoredVSLower, CINonCensoredVSUpper) 

CINonCensoredSLower  = (t.test(as.numeric(NonCensoredShort$SeperationLength)))$conf.int[1] 

CINonCensoredSUpper  = (t.test(as.numeric(NonCensoredShort$SeperationLength)))$conf.int[2] 
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CINonCensoredS = cbind(CINonCensoredSLower, CINonCensoredSUpper) 

CINonCensoredMLower  = (t.test(as.numeric(NonCensoredMedium$SeperationLength)))$conf.int[1] 

CINonCensoredMUpper  = (t.test(as.numeric(NonCensoredMedium$SeperationLength)))$conf.int[2] 

CINonCensoredM = cbind(CINonCensoredMLower, CINonCensoredMUpper) 

CINonCensoredLLower  = (t.test(as.numeric(NonCensoredLong$SeperationLength)))$conf.int[1] 

CINonCensoredLUpper  = (t.test(as.numeric(NonCensoredLong$SeperationLength)))$conf.int[2] 

CINonCensoredL = cbind(CINonCensoredLLower, CINonCensoredLUpper) 

CINonCensored = rbind(CINonCensoredVS, CINonCensoredS, CINonCensoredM, CINonCensoredL) 

CINonCensoredUpper = CINonCensored[,1] 

CINonCensoredLower = CINonCensored[,2] 

 

####################################################################### 

### Kurtosis 

####################################################################### 

 

KurtosisCompleteVS = kurtosis(CompleteVeryShort$SeperationLength) 

KurtosisCompleteS = kurtosis(CompleteShort$SeperationLength) 

KurtosisCompleteM = kurtosis(CompleteMedium$SeperationLength) 

KurtosisCompleteL = kurtosis(CompleteLong$SeperationLength) 

KurtosisComplete = rbind(KurtosisCompleteVS, KurtosisCompleteS, KurtosisCompleteM, 

KurtosisCompleteL) 

 

par(mfrow=c(2,1)) 

hist(CompleteLong$SeperationLength, xlim = c(0,500), breaks = 50, main = "Complete/Long", xlab = 

"Time to Judgement (months)", col = "magenta") 

hist(CompleteShort$SeperationLength, xlim = c(0,500),  breaks = 15, main = "Complete/Very Short", xlab 

= "Time to Judgement (months)", col = "turquoise") 

par(mfrow=c(1,1)) 

 

KurtosisCensoredVS = kurtosis(as.numeric(CensoredVeryShort$SeperationLength)) 

KurtosisCensoredS = kurtosis(as.numeric(CensoredShort$SeperationLength)) 

KurtosisCensoredM = kurtosis(as.numeric(CensoredMedium$SeperationLength)) 

KurtosisCensoredL = kurtosis(as.numeric(CensoredLong$SeperationLength)) 

KurtosisCensored = rbind(KurtosisCensoredVS, KurtosisCensoredS, KurtosisCensoredM, 

KurtosisCensoredL) 

 

KurtosisNonCensoredVS = kurtosis(as.numeric(NonCensoredVeryShort$SeperationLength)) 

KurtosisNonCensoredS = kurtosis(as.numeric(NonCensoredShort$SeperationLength)) 

KurtosisNonCensoredM = kurtosis(as.numeric(NonCensoredMedium$SeperationLength)) 

KurtosisNonCensoredL = kurtosis(as.numeric(NonCensoredLong$SeperationLength)) 

KurtosisNonCensored = rbind(KurtosisNonCensoredVS, KurtosisNonCensoredS, KurtosisNonCensoredM, 

KurtosisNonCensoredL) 

 

par(mfrow=c(2,1)) 

hist(CompleteLong$SeperationLength, xlim = c(0,500), breaks = 50, main = "Complete/Long", xlab = 

"Time to Judgement (months)", col = "magenta") 

hist(CompleteShort$SeperationLength, xlim = c(0,500),  breaks = 15, main = "Complete/Short", xlab = 

"Time to Judgement (months)", col = "turquoise") 
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par(mfrow=c(1,1)) 

 

CompleteLongSD = sd(CompleteLong$SeperationLength) 

Complete81Omit = c(CompleteLong$SeperationLength[1:80], CompleteLong$SeperationLength[82:92])  

Complete81OmitSD = sd(Complete81Omit) 

Complete81OmitLower = t.test(Complete81Omit)$conf.int[1] 

Complete81OmitUpper = t.test(Complete81Omit)$conf.int[2] 

Complete81OmitCI = cbind(Complete81OmitLower, Complete81OmitUpper)  

Complete81OmitKurtosis = kurtosis(Complete81Omit) 

 

####################################################################### 

### Plots 

####################################################################### 

plot.default(SantaBarbaraDivorce$SeperationLength ~ as.factor(SantaBarbaraDivorce$DurationCat),  

 main = "Full Data Set",xlab = "Marriage Duration", ylab = "Time to Judgement", ylim = c(0,500),  

axes = FALSE) 

axis(1, at=1:4, lab=c("Very Short", "Short", "Medium", "Long")) 

axis(2, at =c(0,100,200,300,400, 500), lab=c(0,100,200,300,400,500)) 

CompleteMeans = rbind(CompleteMeanVeryShort, CompleteMeanShort, CompleteMeanMedium,  

CompleteMeanLong) 

lines(CompleteMeans, col = "red", type = "l") 

plot(CompleteMeans, type = 'l', col = "green", main = "Complete (n=287)", ylab="Time to Judgement 

(months)", ylim = c(0,170),xlab = "Marriage Duration", axes = FALSE) 

lines(CICompleteUpper, lty = 2, col = "red") 

lines(CICompleteLower, lty = 2, col = "red") 

axis(1, at = 1:4, lab=c("Very Short", "Short", "Medium", "Long")) 

axis(2, at = c(0,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160, 170), lab =  

c(0,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160, 170)) 

CompleteMean = mean(CompleteMeans) 

abline(h=CompleteMean, col = 'black', lty = 3) 

legend(x=2.5, y=22,legend = c("Point Estimate", "Mean", "95% Confidence Interval"),lty = c(1,3,2),col =  

c("green","black","red")) 

 

plot.default(Censored$SeperationLength ~ as.factor(Censored$DurationCat), main = "Censored Data 

Set" ,xlab = "Marriage Duration", ylab = "Time to Judgement", ylim = c(0,500), axes = FALSE) 

axis(1, at=1:4, lab=c("Very Short", "Short", "Medium", "Long")) 

axis(2, at =c(0,100,200,300,400, 500), lab=c(0,100,200,300,400,500)) 

CensoredMeans = rbind(CensoredMeanVeryShort, CensoredMeanShort, CensoredMeanMedium,  

CensoredMeanLong) 

lines(CensoredMeans, col = "red", type = "l") 

plot(CensoredMeans, col = "green", type = 'l', main = "Censored (n=48)", ylab="Time to Judgement  

(months)", xlab = "Marriage Duration", ylim = c(0,170), axes = FALSE) 

lines(CICensoredUpper, lty = 2, col = "red") 

lines(CICensoredLower, lty = 2, col = "red") 

axis(1, at = 1:4, lab=c("Very Short", "Short", "Medium", "Long")) 

axis(2, at = c(0,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160, 170), lab =  

c(0,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160, 170))  

CensoredMean = mean(CensoredMeans) 
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abline(h=CensoredMean, col = "black", lty = 3) 

legend(x=2.5, y=22,legend = c("Point Estimate", "Mean", "95% Confidence Interval"),lty = c(1,3,2),col =  

c("green","black","red")) 

 

str(NonCensored) 

table(NonCensored$DurationCat) 

plot.default(NonCensored$SeperationLength ~ as.factor(NonCensored$DurationCat), main =

 "NonCensored Data Set" ,xlab = "Marriage Duration", ylab = "Time to Judgement", ylim = c(0,  

500), axes = FALSE) 

axis(1, at=1:4, lab=c("Very Short", "Short", "Medium", "Long")) 

axis(2, at =c(0,100,200,300,400, 500), lab=c(0,100,200,300,400,500)) 

NonCensoredMeans = rbind(NonCensoredMeanVeryShort, NonCensoredMeanShort,  

NonCensoredMeanMedium, NonCensoredMeanLong) 

lines(NonCensoredMeans, col = "red", type = "l") 

plot(NonCensoredMeans, col = "green", type = 'l', main = "Non Censored (n=245)", ylab="Time to  

Judgement (months)", xlab = "Marriage Duration", ylim = c(0,170), axes = FALSE) 

lines(CINonCensoredUpper, lty = 2, col = "red") 

lines(CINonCensoredLower, lty = 2, col = "red") 

axis(1, at = 1:4, lab=c("Very Short", "Short", "Medium", "Long")) 

axis(2, at = c(0,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160, 170), lab =  

c(0,10,20,30,40,50,60,70,80,90,100,110,120,130,140,150,160, 170)) 

NonCensoredMean = mean(NonCensoredMeans) 

abline(h=NonCensoredMean, col = "black", lty =3) 

legend(x=2.5, y=22,legend = c("Point Estimate", "Mean", "95% Confidence Interval"),lty = c(1,3,2),col =  

c("green","black","red")) 

 

##################################################################### 

##### Comparison of the Complete, Censored, and NonCensored data sets 

##################################################################### 

plot(CompleteMeans, col = "red", type = 'l', ylim = c(0, 120), ylab= "Time to Judgement (months)", xlab =  

"Marriage Duration", main = "Means Seperated Into Three Groups", axes = FALSE) 

lines(CensoredMeans, col = "blue", type = 'l') 

lines(NonCensoredMeans, col = "green", type = 'l') 

axis(1, at = 1:4, lab=c("Very Short", "Short", "Medium", "Long")) 

axis(2, at = c(0,10,20,30,40,50,60,70,80,90,100,110,120), lab =  

c(0,10,20,30,40,50,60,70,80,90,100,110,120)) 

legend(x=3.0,y=20,legend=c("Complete","Censored", "NonCensored"),lty=c(1,1,1),col=c("red", "blue",  

"green")) 

 

####################################################################### 

### Cross-Validation 

####################################################################### 

 

NonCensored$SeperationLength = as.numeric(NonCensored$SeperationLength) 

DataSet = SantaBarbaraDivorce 

N = nrow(DataSet) 

PredictedSepLength = NULL 

for (i in 1:N) 
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{ 

 TestData = DataSet[i,] 

 TrainData = DataSet[-i,] 

 ModelTemp = lm(as.numeric(DataSet$SeperationLength) ~as.factor(DataSet$DurationCat) * 

as.factor(DataSet$Children)) 

 PredictionTemp = predict.lm(ModelTemp, newdata = TestData) 

 PredictedSepLength[i] = PredictionTemp 

} 

CVE = sum((DataSet$SeperationLength-PredictedSepLength)^2) 

CVE 

 

################################################################ 

## Using the survreg function for the  

################################################################ 

library(survival) 

 

SurvRegModel1 = survreg(Surv(SeperationLength, CensorIndicator)~ Children, dist = "lognormal", data =  

SantaBarbaraDivorce) 

summary(SurvRegModel1) 

SurvRegModel2 = survreg(Surv(SeperationLength, CensorIndicator)~ DurationCat, dist = "lognormal",  

data = SantaBarbaraDivorce) 

summary(SurvRegModel2) 

SurvRegModel3 = survreg(Surv(SeperationLength, CensorIndicator)~ Children + DurationCat, dist =  

"lognormal",data = SantaBarbaraDivorce) 

summary(SurvRegModel3) 

SurvRegModel4 = survreg(Surv(SeperationLength, CensorIndicator)~ Children*DurationCat, dist =  

"lognormal",data = SantaBarbaraDivorce) 

summary(SurvRegModel4) 

 

SLOData = read.csv("SLOData.csv", header = TRUE) 

SLOSurvivalRegression1 = survreg(Surv(LOS,Censor) ~ Kids, dist = "lognormal", data = SLOData) 

summary(SLOSurvivalRegression1)  

SLOSurvivalRegression2= survreg(Surv(LOS,Censor) ~ SLOData$LOMInt, dist = "lognormal", data = 

SLOData) 

summary(SLOSurvivalRegression2) 

SLOSurvivalRegression3= survreg(Surv(LOS,Censor) ~ Kids + LOMInt, dist = "lognormal", data = SLOData) 

summary(SLOSurvivalRegression3) 

SLOSurvivalRegression4= survreg(Surv(LOS,Censor) ~ Kids * LOMInt, dist = "lognormal", data = SLOData) 

summary(SLOSurvivalRegression4) 

 

DurationCat1 = c('VeryShort', 'Short1', 'Medium', 'Long') 

DurationCat2 = c('VeryShort', 'Short1', 'Medium', 'Long') 

Children1 = c("No", "No", "No", "No") 

Children2 = c("Yes", "Yes", "Yes", "Yes") 

explanatory1 = data.frame(DurationCat = DurationCat1, Children = Children1) 

explanatory2 = data.frame(DurationCat = DurationCat2, Children = Children2) 

SurvRegPredictions1 = predict(SurvRegModel3, newdata = data.frame(explanatory1), type = 'response') 

SurvRegPredictions2 = predict(SurvRegModel3, newdata = data.frame(explanatory2), type = 'response') 
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plot(SurvRegPredictions1, ylim  = c(0,60), axes = FALSE, xlab = "Marriage Duration Group", ylab = "Time  

to Judgment (in months)", main = "Santa Barbara County Time to Judgment Predictions",type  =  

'l', col = "black") 

lines(SurvRegPredictions2, pch = 19, col = "Blue") 

axis(1, at = 1:4, lab = c("Very Short", "Short", "Medium", "Long")) 

axis(2, at = c(0,10,20,30,40,50,60), lab = c(0,10,20,30,40,50,60)) 

legend(x = 3, y=10, legend = c("Chidren", "No Children"), lty = c(1,1), col = c("blue", "black")) 

 

Duration3 = c('avery_short','short','medium','long') 

Duration4 = c('avery_short','short','medium','long') 

Children3 = c(1,1,1,1) 

Children4 = c(0,0,0,0) 

predictors1 = data.frame(LOMInt = Duration3, Kids = Children3) 

predictors2 = data.frame(LOMInt = Duration4, Kids = Children4) 

SloSurvPreds1 = predict(SLOSurvivalRegression3, newdata = data.frame(predictors1), type = 'response') 

SloSurvPreds2 = predict(SLOSurvivalRegression3, newdata = data.frame(predictors2), type = 'response') 

 

plot(SloSurvPreds1, ylim =c(0,6), axes = FALSE, xlab = "Marriage Duration Group", ylab = "Time to  

Judgment (in months)", main = " San Luis Obispo County Time to Judgment Prections", type = 'l', 

col = "black") 

lines(SloSurvPreds2, type = 'l', col = "blue") 

axis(1, at = 1:4, lab = c("Very Short", "Short", "Medium", "Long")) 

axis(2, at = 0:6, lab = 0:6) 

legend(x = 3, y=1, legend = c("Chidren", "No Children"), lty = c(1,1), col = c("blue", "black")) 

 


