
1

Optimization of P3HT-PCBM Polymer Solar
Cells Through Device Simulation and

Manufacturing

James Boom
Department of Computer Engineering

California Polytechnic State University, San Luis Obispo
June 14, 2010

2

Table of Contents

Title Page..1

Table of Contents..2

Table of Figures..3

Table of Tables..4

Abstract...5

I. Project Goals, Motivation, Context, Justification...6

II. Design and Specifications..6

III. Parts and Costs..6

IV. ABET Senior Project Analysis..7

V. Testing..9

VI. Simulation..10

VII. Conclusions...11

VIII. Acknowledgements..11

Appendix I: Tables and Figures..12

Appendix II: Simulator Source Code...15

References..33

3

Table of Figures

Figure 1: Simulator Flow Diagram...12

Figure 2: Old Parameter File..13

Figure 3: New Parameter File...13

4

Table of Tables

Table I: Marketing Requirements...6

Table II: Engineering Requirements...14

Table III: Cost of Labor For Project...6

Table IV: Selected Results From Device Run 1...9

Table V: Selected Results From Device Run 2...9

Table VI: Selected Results From Device Run 3...10

Table VII: Selected Results From Device Run 4..10

5

Abstract – Given a good model and implementation of that model, computer simulation can be used to reduce the
time and material costs of research. To this end I worked with other students to manufacture, test and simulate
the single layer P3HT-PCBM solar cell. Using the data collected from this project, future work can then be done
with the project's simulator to further optimize these types of solar cell devices.

6

I. PROJECT GOALS, MOTIVATION, CONTEXT AND JUSTIFICATION

The demand for affordable, reliable, and clean
power has increased over recent years and is expected to
continue to do so in the future. I am hopeful that organic
solar cells or organic photovoltiacs (OPVs) help to meet
this demand in the future [1]. The costs of power
generation potential for photovoltaics (PV) in general,
however, are not currently competitive with existing
power sources such as coal. In early 2009, First Solar
announced it had achieved a cost of $0.98 / Watt [2], twice
the cost of the $0.50 / Watt goal outlined in the PV
industry road map [1]. OPVs need more device
optimization research to advance the technology towards
competetitive device efficiencies.

With this need for optimized devices in mind, I
worked with three other students in continuing the
optimization work of an ongoing organic solar cell project
at Cal Poly. I took the project's existing current-voltage
simulator for polymer solar cells and made it a more user-
friendly application. I also worked in the polymer
electronics lab at Cal Poly to manufacture and test organic
solar cell devices, whose characteristics (thickness,
absorption, current-density, etc..) we input into the
program to obtain performance predictions of different
device thicknesses.

II. DESIGN REQUIREMENTS AND SPECIFICATIONS

In addition to the marketing requirements listed
below in table I, engineering requirements can be found in
table II of appendix I; table II details how each
engineering requirement meets one or more marketing
requirements that came out of my discussions with my
primary client Dr. Bob Echols.

Table I:
Marketing Requirements

Requirement Number Requirement

1 The simulator will be user
friendly.

2 The simulator will run multiple
simulations with one execution.

3 The simulator will produce
reasonable approximations.

4 Simulation results and lab
results will be compared.

To facilitate marketing requirements 1 and 2, I
changed the file format used by the simulator as discussed
in "Simulation." The simulator's previous authors wrote
the code for the charge generation and flow in an organic
polymer device. So given reasonable recombination and
dissassociation correction factors, r and B respectively,
one expects the simulator to generate reasonable current

density (J) vs. Voltage (V) characteristics and
subsequently power density (PD), which we calculate
using (1), sought in marketing requirement 3.

PD = J*V (1)

To satisfy marketing requirement 4, three other
students and I fabricated and tested several poly(3-
hexylthiophene) – phenyl-C61-butyric acid methyl ester
(P3HT – PCBM) solar cells. In order to perform the
comparison between the manufactured devices and the
simulator results as discussed in the "Testing" and
"Simulation" sections, we gathered J-V, thickness, and
optical density (OD) data.

III. PARTS AND COSTS

The project required the materials and
equipment, listed below in the "Required Materials"
section and the person hours in table III. I found it
difficult to pin down the total cost of materials, as some
materials were already in the lab and not all of the
materials purchased were used in the course of the
project. One of the biggest cost contributions for
materials comes from the active layer polymer P3HT.

P3HT Cost = # devices * (gP3HT / device) * ($ / gP3HT) (2)

We made a total of 48 devices, with an average
amount of 15mg of P3HT per device at a cost of about
$500 per gram of P3HT; using (2) we find the
approximate cost of the P3HT for the project to be $360.

The team completed four batches of solar cells
over the course of this portion of the project. This
component of the project took approximately 20 hours on
my part and would cost $300 for my time. Given an
appoximate cost of $1000 for materials plus the $750 cost
of labor, this project would come to a total investment of
$1750 and 50 person hours.

Table III:
Cost of Labor For Project

Units Cost / Unit Total Cost

Coding 20 hrs. $15.00/hr. $300.00

Lab 20 hrs. $15.00/hr. $300.00

Documentation 10 hrs. $15.00/hr. $150.00

Total Labor 50 hrs. $15.00/hr. $750.00

In addition to each lab hour that I commited, I
needed a lab partner as per the Department of Electrical
Engineering lab safety guidelines. Normally I would
include their time as well in calculating the project costs,
but since the material engineering students of the team
are turning in a separate project report for their work on
the TEM, AFM and in the lab, I did not factor in their
time for project costs.

7

Required Materials

1. Lab Coat: to provide a barrier between
workers and materials and/or equipment
2. Glove Liners: to absorb sweat from
wearing non-breathable gloves
3. Disposable Gloves: to provide a barrier
between workers and materials and/or
equipment. ~$8 / box
4. Fume Hood: to capture fumes from
chemicals used outside glove box
5. Cotton Swabs: to clean large particulates
from substrates
6. Sonic Baths: to vibrate loose smaller
contaminants from the substrates
7. UV Ozone Reactor to further clean
substrates after swabbing and sonic baths
8. Spin Coaters: to spin coat on polymer
blend and PEDOT
9. Glove Box: to protect the devices from
contamination through production and
testing, until they are packaged
10. Hot Plates: to anneal devices and heat
dissolved P3HT-PCBM blend
11. Clean Bottles: to hold polymer, solvent,
etc...
12. Filters: to filter P3HT polymer
13. Evaporator: to evaporate on Aluminum
electrode
14. Dolan Jenner MI-150 Spectrum Light
Source: to shine on the completed
devices for in box testing
15. Measurement Equipment (SourceMeter,
etc...): to test the device performance
16. Lab computer with labview: to run test
program and equipment
17. PEDOT:PSS: planarizes the surface for the active
layer, and provides a slightly larger work function for the
anode.
18. P3HT: an organic polymer which releases exitons
when struck by incident photons. ~$400 / gram
19. PCBM: a fullerene derivative which collects electrons
from disassociated exitons
20. Chlorobezene: to dissolve the P3HT-PCBM
mixture
21. Aluminum pellets: Evaporated onto the
top of device to form one electrode
22. ITO coated glass substrates: the ITO will
act as a transparent bottom electrode for
the device.

IV. ABET SENIOR PROJECT ANALYSIS

Ethical

The team's work in the Polymer Electronics Lab
for this project stemed from work already completed by
other Cal Poly students such as Chris France [3] and Erik
Everson [4]. Additionally some of the manufactoring
processes drew from techniques employed in Professor

Heeger's lab in Santa Barbra. The software portion of the
project also drew upon simulator source code work
completed by Tim Hider, Eric Everson, Chris France,
Robert Echols, Beat Ruhstaller, and Scott Cambell. All of
these people deserve credit for their indirect contribution
to the overall project.

Also since the devices created through out the
course of the project utilized harmful substances, the risks
associated with working with said materials, talked about
more in the "Health and Safety," as well as
"Environmental" sections below, were disclosed to the lab
technicians

Environmental

Using solar cells to capture sunlight, as intense
as 1000W / m2 on the Earth's surface [5] at certian times
of the day, may help to reduce the ongoing damage to the
environment which energy sources like coal and fossil
fuels inflict. Like the construction of coal fired plants,
however, the construction of solar cells and the plants to
manufacture them requires energy and some hazardous
materials.

Although low dosages of aluminum are a natural
occurrence, the aluminum used for the top electrode
(cathode) of the project's devices poses some health risk
if enough of it accumulates in ground water. In addition
to aluminum, the indium used in the bottom electrode
(anode) poses a risk to microbes in the soil according to
(cite).

While small amounts of the metals used in the
devices naturally occur in ground water and soil, we need
proper reclamation of worn out or unwanted devices to
prevent toxic concentrations of metals in the ground
water surrounding landfills.

Besides the metals used, the Safety Officer in
Physical Chemistry at Oxford University classifies our
polymer solvent, chlorobezene, as toxic and a possible
carigen [6]. While toxic, finished OPV devices contian
trace amounts, if any, of chlorobenzene and so then we
focus on proper handling during manufacturing and
disposale of unused polymer-fullerene-solvent solution.

Health and Safety

As with any endeavor involving potentially
hazardous materials such as solvents and lab equipment
such as the glove box and spin coaters, we must consider
any health and safety risks associated with them.

The glass substrates in these devices poses little
health risk, but result in sharp edges which cut flesh and
glove box seals. Likewise if broken, the glass bottles used
to hold various solutions result in sharp edges and
uncontained chemicals.

According to a 2005 paper by a group of
Japanese researchers, fullerenes like PCBM pose no
significant health risk. Their research showed no
abnormal mutation rate and no noticable health
differences between the control group of mice and the
groups of mice administered 2000mg of C60 per kg of

8

body mass [7]. Chlorobezene, a possible carcogen, does
pose a health risk to those persons who might come in
contact with it, i.e. lab technicians. As such the we store
the container of chlorobezene in the glove box. Since we
mix and spin coat the P3HT-PCBM solution onto a
substrate on the chemical side of the glove box, we placed
the solvent container on the same side to provide ready
access to it and minimize the impact of any potential
spills.

According to material safety data sheets from
ScienceLab.com, isopropyl and acteone, used to clean
substrates, also pose a health risk if they come into contact
with skin or eyes or an open flame [8][9]. To mimize the
ignition risk and protect technicians, we only used the two
chemicals under the fume hood and then stored them in
the flammables locker in closed containers.

In addition to the materials used in the project,
care must be taken in operating the pumps for the glove
box equipment and in moving things into or out of the box
as to avoid a sudden change in pressure in any part of the
box or the pumps. Additionally the hot plates used in the
project easily burn human flesh or ignite flammable
materials, such isopropyl and acetone vapors, so it will be
important to be mindful of the placement of the plates and
any other objects.

Sustainability

Although solar energy provides humans with a
renewable energy resource of upto 1000 W/m2 of power
during daylight hours, over time the performance of
photovoltaic devices degrades and the packaging wears
down from exposure to the elements. So then the issue of
sustainability comes not from the energy source in this
case, but the devices used to harnass the energy.

The plastic packaging materials used in industry
OPVs may be recyclable and other groups are conducting
research into the feasibility of reusing the P3HT and
PCBM materials in the active layer. By recycling the
components of OPVs, manufacturers need fewer new
materials and fewer potentially toxic materials end up in
landfills.

Social

As this project involved working with two faculty
advisors and three other students, scheduling initially
slowed the progress of the project. Fortunately our
unofficial team leader Steve Hawks, took on much of the
lab schedule coordination and all the team members set
aside time regularly to meet for discussion and work.

Solar energy also impacts society at the national
and gloabal level. Widespread availability of inexpensive
solar modules allows people to produce some if not all the
power they need for electronic applications such as a
refrigirator or lighting at night. This effect might help to
bring fiscally poorer regions to a higher standard of living.

In today's industrialized countries, where cell
phones, computers, and other electronics prevade the
society, cheap power, especially power viewed as

sustainable to produce, may lead to an increase in power
consumption and perhaps even demand on existing power
generation like coal and nuclear plants.

Political

Politics deals with the guidelines for the
distribution and consumption of common resources. The
Department of Electrical Engineering at Cal Poly
operates one Polymer Electronics Laboratory for
everyone to share. Fortunately for this project, the
polymer electronics lab only meets once a week and the
rest of the time no other classes or projects needed the
lab; this made getting access to this common resource
much easier.

In a larger context, our nation's political body,
the U.S. Government, encourages consumers to use solar
energy to offset some of their consumption of grid
supplied power which typically comes from coal fired or
nuclear power plants. According to the U.S. Department
of Energy, "Consumers who install solar energy systems
(including solar water heating and solar electric systems),
small wind systems, geothermal heat pumps, and
residential fuel cell and microturbine systems can receive
a 30% tax credit for systems placed in service before
December 31, 2016" [10]. Such an ecomonic policy
serves to increase the diffusion of solar technology and
reduce the dependence on coal and nuclear fired power
plants which also create byproducts harmful to the
common resource of the earth.

Economic

Economics deals with the flow of goods and
services from one entity to another. In the context of this
project, we purchased polymer, syringes, and swabs
among other things to carry out our work. Some of the
manufacturing was delayed while we waited for
companies to process and ship our orders.

Another important economic component to our
work relates to the PV industry. Through innovation and
consumer investment, the PV industry supplies thousands
of workers with jobs, where the workers help to create a
more environmentally friendly world.

Manufacturability

The P3HT-PCBM blend used for the OPVs in
this project dissolves in chlorobenzene at near room
temperature, whereas silicon needs to be heated to 1414
degrees Celsius for liquification [11]. Due to the low
liquification temperature and solution based processing,
OPV manufacturers might use the roll-to-roll processing
technology used for newspapers. Due to the prohibitively
large investment of a roll-to-roll setup, however, for the
course of this project we stuck to spin coating our device
layers in the polymer electronics lab.

Organic polymers degrade in the presence of
contaminants such as water and oxygen. For this reason,
once we cleaned a substrate and applied the PEDOT layer

9

via spin coating, all further processing steps occured
inside the polymer electronics lab's glove box.

In order to clean the substrates, we first subjected
them to a distilled (DI) water and joy dish soap scrub.
Then we sonicated the substrates in three seperate baths:
DI water, acetone, and isopropyl alcohol. For our last
cleaning step, we put the substrates into a UV Ozone
reactor.

After thoroughly cleaning the substrates we spun
coated an approximately 40 nm layer of PEDOT, which
serves to reduce the flow of holes from the Indium Tin
Oxide (ITO) anode to the P3HT. To remove the excess
PEDOT around the edge of the device, we used swabs
dipped in DI water and then subjected the substrates to an
anneal at 140° C for 10 min to help evaporate the water
used to dissolve the PEDOT. The substrates then entered
the glove box for the rest of the processing steps as our
active layer utilizes an organic polymer, P3HT.

Unlike the PEDOT, we needed an organic solvent
to dissolve the P3HT-PCBM mixture; for our project we
used the solvent chlorobezene. We mixed a 1:1 ratio of
P3HT and PCBM with the solvent to obtain concentrations
of 12mg/ml and 17mg/ml, depending on the device run.
Using a magnetic stir bar, we mixed the solution for at
least 24 hours at 150° C. Once thoroughly mixed we spun
coated the blend on top of the PEDOT layer and again
wiped away the excess away from the edges, this time
using swabs dipped in chlorobezene.

After applying the polymer layers of the device,
we performed the final processing step, cathode
deposition. To accomplish this step, we moved the devices
to a vacuum chamber, where under low pressure and high
current conditions aluminum pellets heat to the point of
vaporation. The vaporized aluminum floated upward and
deposited itself on the devices in a pattern determined by
the mask used. With completed devices, we then tested
them as described below.

V. TESTING

In order to characterize the devices made in the
lab, we tested them under three different lighting
conditions. To make electrical contact with a device we
used an eight pin jig so that we could test all four pixels on
a device without having to move it. The jig connects to a
switch, which connects to a Keithly SourceMeter.

Using a computer running labview, we ran the
source-meter from -1 to 1 volt for each pixel under each
lighting condition. We collected the current and voltage
characteristics and used a custom program which
calculates from the data the current density, fill factor,
open circuit voltage and power conversion effiency.

First we tested the devices under dark conditions.
With the I-V data collected from this test we calculate the
leakage current of a particular pixel according to (3) as the
average current over the voltage interval -1 volt to 0 volts.
I have not included dark current data here, but for the
most part leakage current was small.

ILEAKAGE = IAVERAGE [-1 <= VBIAS <= 0] (3)

Under low light conditions or more precisely
with a 40 W/m2 Dolan Jener light source, we obtained the
seoncd set of I-V characteristics. Using the device's short
circuit current density (Jsc) and open circuit voltage
(Voc), we calculate its fill factor using (4), and power
conversion effiecency (PCE) using (5) under lab lighting
conditions.

Fill Factor = (PD / Jsc*Voc) * 100% (4)

PCE = (PD / I) * 100% (5)

The first device run the team completed yielded
solar cells with PCEs ranging from 0.0 - 0.9% before
annealing as shown in table IV. After the anneal step, we

Table IV:
Selected Results from Device Run 1

observed a marked, about 50%, degredation of effiency.
We hypothesised that the low effieciency may have been
due to too much aggregation of the PCBM.

Table V:
Selected Results from Device Run 2

With new PCBM, we manufactured a second
batch of devices which operated at about 0.0-0.4% power
conversion effiecency, as seen in table V. A decrease,
rather than increase. of performance with the younger
PCBM indicates that some other factor than the PCBM
contributed to low performance in the first device run.
Perhaps then the P3HT aggregated too much and not the
PCBM.

With a younger batch of P3HT, the team
produced devices with PCEs from 0.2 – 1.0% as

Pixel FF (%) Efficiency (%)
1A -12.890 0.366 35.549 0.195
1B -1.255 0.260 26.637 0.010
1C -1.225 0.331 31.592 0.015
1D -12.323 0.412 42.930 0.254
2A -14.709 0.466 43.516 0.347
2B -1.354 0.470 48.612 0.036
2C -1.648 0.482 46.965 0.043
2D -13.896 0.463 45.329 0.339

Jsc (A/m2) Voc (V)

Pixel FF (%) Efficiency (%)
7A -1.344 0.053 13.761 0.024
7B -1.659 0.457 44.042 0.834
7C -1.604 0.472 46.431 0.878
7D -1.244 0.338 33.770 0.355

10A -1.023 0.468 33.917 0.406
10B -1.503 0.122 24.397 0.111
10C -1.281 0.435 30.245 0.421
10D -1.002 0.426 30.256 0.323

Jsc (A/m2) Voc (V)

10

highlighted in table VI, with only a couple pixels near
0.0% and a single pixel at 1.4%. Perhaps then the older
P3HT in the glove box degraded over time.

Table VI:
Selected Results from Device Run 3

Data from the fourth batch of solar cells seen in
table VII shows no improvement with both younger P3HT
and PCBM and in fact the performance goes down. At this
time, we do not know why the old PCBM – new P3HT
blend for the active layer produced the best devices. The
tunneling electron microscope images taken at UCSB by
Steve Hawks do not appear to show significant differences
in topology.

Table VII:
Selected Results from Device Run 4

Using a mobile testing setup, we tested the
devices under our third and final lighting condition,
outside. Under these conditions, devices recieve as much
as 1000W/m2 of input power from the sun [5]. We only
tested select devices under this third lighting condition as
the 1000W/m2 intensity occurs only at two points during
the day and even then the light intensity flucated during
these times due to cloud cover and other amospheric
conditions. Of the devices tested under these conditions,
the best device achieved approximately 2% PCE, nearly
twice what it had achieved under the low light conditions
in the lab. Unfortunately once we removed a device from
the box, it began to degrade as it oxidized.

VI. SIMULATION

As the flow digram depicted in fig. 1 shows, the
simulator software has a primary loop which executes
code that satisfies marketing requirement 2 and a
secondary loop to carry out the multiple iterations of the
current at every bias voltage needed for each simulation.

The simulator previously read and wrote files as
raw numbers like the example input file shown in fig 2 of
the Appendix. This setup proved to be, even for
experienced users, cumbersome because users had to look
in the simulator source code to figure out which values
corresponded to what parameter. With the modifications I
made in Winter quarter 2010 as seen in fig. 3, the labels
in the files make it much easier for someone famaliar
with the basic physics of the P3HT-PCBM solar cell to
interpret the values. Implementing these changes required
modifying the Import_Values, Import_SweepParams, and
main functions found in the demo.c file of appendix II.

The JV simulator now also runs multiple
simulations from one device parameter file. The user
specifies a range for the active layer thickness (L) and the
recombination correction factor (ff_rec) with a starting
value, ending value and step size as highlighted in fig. 3.
To implement ranges for L and ff_rec, I wrote a function
called runsets which resides in demo.c of the code
appendix as well and added some glue code to the main
function to facilitate its use.

For each of the simulations the program
determines the PCE from the maximum PD and light
intensity (I) shone on the device as decribed in (4). To
find the maximum PD, the program calculates each J*V
pairing and selects the minimum, in other words the J-V
point where the device outputs the most power. Once the
program has simulated each device, it then determines the
simulation which had the highest PCE, i.e. the most
negative PCE since the PCE routine doesn't drop the
negative sign from the max power density value, and
reports this value to the terminal before exiting as seen in
mid left portion of the simulator flow in fig. 1.

Originally I purposed using the improved
simulator between device manufacturing runs to tune the
simulator's correction factors and provide a better guess
for optimal thickness. Due to large variation in device
performance in the lab however, this idea changed to
using the simulator to determine the correction factors for
recombination and dissassociation for the best reported
P3HT-PCBM OPVs to date, the 4.4% PCE devices from
Yang Yang Laboratories [12].

In order to simulate Yang Yang's
devices, I needed an absorptivity profile, a Voc, and a
thickness. The last two parameters came from [12] and
the first parameter came from Emily Robertson's work.
Emily calculated the absorptivity profile for our devices
using (6) with the absorption and thickness measurements
she took.

α(λ) = OD(λ) / Thickness (6)

Using an external quantum effiency (EQE) simulator with
this profile, a Voc of 0.6V, a thickness of 210nm, and zero

Pixel FF (%) Efficiency (%)
10A -0.757 0.462 36.590 0.319
10B -0.763 0.356 31.190 0.212
10C -0.753 0.419 38.098 0.300
10D -0.793 0.412 35.278 0.288
11A -0.797 0.258 28.380 0.146
11B -0.628 0.331 31.847 0.165
11C -0.602 0.376 45.013 0.255
11D -0.700 0.053 14.920 0.014

Jsc (A/m2) Voc (V)

Pixel FF (%) Efficiency (%)
1A -1.6208 0.4732 53.3063 1.0222
1B -1.9078 0.4560 45.1430 0.9818
1C -1.6435 0.4262 47.1602 0.8259
1D -1.4110 0.4401 51.8740 0.8054
2A -1.5238 0.4591 53.8706 0.9423
2B -1.8714 0.4480 34.0584 0.7138
2C -1.8850 0.4704 49.6131 1.0999
2D -1.4088 0.4597 56.2972 0.9114

Jsc (A/m2) Voc (V)

11

recombination under low light conditions, I varied beta
until the simulated EQE matched the EQE for Yang Yang's
devices. A beta of 0.82 produced this matched.

Running the JV simulator with our absorptivity
profile, the beta of 0.82, and a thickness of 210 nm yielded
a PCE of 2.6% and a Jsc of 106A/m2 at 0.00156
recombination correction, while Yang Yang reported a
PCE closer to 4.4% with the same Jsc. This sizable
difference in PCE suggests that simulator does not achieve
the 67% fill factor which Yang Yang reports for his best
devices. With the beta and r factors, I took advantage of
the new simulator capabilities and ran a range of
thicknesses to determine that the 210 nm thickness
reported for these devices achieved the maximum PCE.

r (beta) = beta * 6.061 – 1.697 (7)

Using the simulator with the Yang Yang beta of
0.82 requires a recombination factor of 3.23 to achieve the
Jsc of 2.058 A/m2 from our best pixel. Such a high r
seems unlikely, rather our pixel probably falls in the r <= 1
range. With a r of 1.00, the simulator requires a beta of
0.445 to match the the Jsc from our pixel. On the lower
end of the recombination spectrum, I assumed that our
pixel had an r of at least 0.00156, the Yang Yang
recombination. With this r, I found a beta of 0.28. Using
these two endpoints with three additional beta-r pairs in
this range lead to the linear realtionship of (7) for r and
beta.

VII. CONCLUSIONS

In CPE461 and CPE462 I labored about 50 hours
to manufacture, test and simulate single layer P3HT-
PCBM solar cells. For the software portion of the project,
I improved the user friendliness of the JV simulator by

adding value labels and enabling parameter ranges for the
thickness and recombination correction factor. I also
improved the coding-friendliness by removing uneeded
code and adding more comments about the function of
the code. Using the improved simulator I found that the
best P3HT-PCBM devices reported in the literature have
high exiton dissassociation (0.82) and low recombination
(0.00156) factors in the simulator. Our best devices on the
other hand need additional improvement to achieve
optimal performance to produce a relation similar to (7),
but with a higher slope.

Additonally obtaining EQE data from our
devices, rather than using EQE data from Yang Yang's
paper will lead to a better estimation of beta and
subsequently r for our devices.

For the harware portion of this project, I
manfacutured several P3HT-PCBM OPVs and collected
JV data, some of which I used in conjunction with the JV
simulator. I found that at least for this project, these OPVs
respond with large performance changes given small
changes in manufacuring conditions, making results
difficult to reproduce.

VIII. Acknowledgements

I acknowledge Dr. Robert Echols for his
advising on this project as well as the Department of
Physics at Cal Poly for funding. I also thank Dr. David
Braun for the use of the Polymer Electronics Lab at Cal
Poly. In addition to the faculty who helped make this
project possible, I acknowledge the contribution of the
other students on this project: Emily Robertson's work
with manufacturing, AFM and absorption measurements,
Steve Hawks's work with manufacturing and TEM, and
Tim Hider's work with manufacturing and coding.

12

Appendix I: Figures and Tables

Fig. 1: Flow diagram of the polymer solar cell JV simulator. The program simulates the JV characteristics of several
devices, each having a thickness-recombination correction factor pair calculated in the "Generate Simulation Sets". For
bias voltage applied to the simulated device (the lower right loop) multiple iterations of the current generation steps in
the program occur to find a steady state current. The bias voltages are specified in the sweep parameter file and the
maximum number of iterations is specified in the input parameter file.

13

2-9-Win3B
40
1e7
1000000
200e-9
300
4.3
4.7
5.3
3.4
1e-9
3e-009
100
5
100
2.5e28
880
600
1E-24
1.31261E-24
0.34
0.38
0.15
0.82
0

Fig. 2: Example of an unlabeled input file used by the old version of the JV simulator. Notice how the file is simply a
list of numbers, none of which contain a label indicating what the numbers mean. Users wanting to edit the parameters
must look up the parameter order in the source code of the program.

Output File: 2-9-Win3B
Illumination(W/m2): 40
Absorption(cu): 1e7
Iterations: 1000000
Thickness(m): 200e-9 230e-9 10e-9
Temperature(K): 300
Cathode Work Function(eV): 4.3
Anode Work Function(eV): 4.9
HOMO(eV): 5.3
LUMO(eV): 3.4
Zero Field n Mobility: 1e-9
Zero Field p Mobility: 3e-009
Number of Cells: 100
Accuracy: 5
Time Step: 100
Chargable Site Density: 2.5e28
Field Dependent n Mobility Temperature(K): 880
Field Dependent p Mobility Temperature(K): 600
Field Dependent n Mobility Constant: 1E-24
Field Dependent p Mobility Constant: 1.31261E-24
Zero Field n Mobility Delta: 0.34
Zero Field p Mobility Delta: 0.38
Recombination Rate Factor(r): 0.01 0.15 0.01
Exiton Recombination Factor(Beta): 0.82
Error Level: 0

Fig. 3: Example of a labeled input file used by the most recent working version of the JV simulator. The numbers in the
file now contain labels indicating the paramter name and units associated with the parameter. The thickness and
recombination rate factor now get entered as ranges, rather than single values.

14

Table II:
Engineering Requirements

Marketing Requirement(s) Engineering Requirement Justification

1 The simulator will utilize input files
which have parameters labeled.

The end user will likely want to change the input
parameters to the simulator and so the format for
the input files needs to clearly indicate which
numbers correspond to which parameters.

1 The simulator will output files which
have results labeled

The end user needs to know what the simulator
results indicate, i.e. the result 250 doesn't
provide any context, whereas the result Current
Density (mA/cm3): 250 does.

2 The simulator will accept parameter
ranges from the input files

In order to run multiple simulations using one
input file, the simulation must read in parameter
ranges, not just parameter values

1, 3 The simulator software will require
only one program be initialized for the
simulation to run.

Having the user run more than one program
could lead to out of order execution, which
would yield potentially erroneous simulation
results.

3 Lab results will be used to tune
simulator after each batch run

Using real world data, the “fudge” factors in the
simulator model can be tuned to better match the
operation of actual solar cells

4 Devices created in the lab will be
characterized using voltage,
illuminated current density, dark
current density, absorption, etc ...
measurements

In order to compare the simulated devices to the
real devices, we need performance data from the
real devices which has a simulated counterpart.

15

Appendix II: Simulator Source Code

File: jvsim.h

/***
 * Project: Polymer Photovoltaic Modeling Code
 * File: jvsim.h
 * Author: James Boom, engineer.jboom@gmail.com
 * Date: 2010-04-19
 * Overview: This file contains all the library includes, function prototypes,
 * #defines and other global variables needed for compilation of demo.c
 **/

//Needed Libraries
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
//Constant Definitions
#define e 1.602e-19 // Fundamental Charge in units of Columbs
#define pi 3.141593 // You better know what this is
#define eo 8.8542e-12 // Permativity of Free Space
#define kb 1.3807e-23 // Boltzman constant
#define hc 1240 // hc in units of eV*nm
#define toc_file "Xworking.toc" // file that stores filenames of parameters

/* For the irradiance spectrum and the absporption spectrum the file
 * standard is: wavelength in first column in ascending order with
 * units of nm target value in second column in SI units.
 */

//Global Variable Definitions
double wavelen[4002], illum[4002], photon[4002], photonbin[4002],

Generate[4002], *a;
int err;
char inf_swp[25], inf_par[25], inf_abs[25], inf_absx[25], inf_irr[25],

outfile[25];
int x, z=0, i, T, savestep, cells, accuracy, Emax;
char autostop, *filename, datfile[25] = "newinput.dat";
char label[25], ivfile[25], volt[25], infile[25];
double n[2002], p[2002], E[2002], Jn[2002], Jp[2002], mobp[2002], mobn[2002],

Ri[2002];
double dielec=3.5, V, L, dx, Temp, t, dt, c, dJn1, dJn2, dJp1, dJp2, Norm_E,

Jold;
double Lbot, Ltop, deltaL, rbot, rtop, deltar;
double totn, totp, Norm_f, Norm_inj, Norm_surf;
double V0, ksi, phi_c, phi_a, HOMO, LUMO, No, nc, ff_rec, ff_int;
double psi, y, corr1, corr2, corr3, corr4;
double Jave, dJ, Rave, m0n, m0p, mob[2], vmax;
double V1, V2, dV, bias[50], J[50], R[50];
// For calculating the field dep. mobility
double gam_n, gam_p, T0n, T0p, Bn, Bp, photoncheck;
FILE *f1, *f2;
double sum; //used for debugging generate spectrum term and photon count term
double phottot, illnorm;
double delp, deln, mSTp, mSTn;
double JscInterp[4001];
//coefficients in spline routines
double splineB[1][4001], splineC[1][4002], splineD[1][4002];
static int search_interval;
double Iwavelen[4002], Illum[4002];

16

double Awavelen[4002], Abs[4002], Abs1[4002];
int Inumbins=0, Anumbins=0;
double *thicknesses, *recombs;
char **outfiles;
//Function Prototypes
double Import_Spectrum();
double Count_Photons();
void Import_Files(char *);
void Import_SweepParams(char *);
void Import_Values(char *);
void Generate_Spect();
void Import_ChargeDistr(int);
int runsets(double, double, double, double, double, double);
int maxpower(double *, int, int);
void Run_Loop();
void Export_Values(int);
int maxi(double *, int, int);
double max(double *, int);
void SplineCL(int, double *, double *, double *, double *, double *);
double SplineValCL(int, double, double *, double *, double *, double *,

double *);
File: demo.c

/***
 * Project: Polymer Photovoltaic Modeling Code
 * File: demo.c
 * Author: James Boom, engineer.jboom@gmail.com
 * Previous Authors: Tim Hider, Eric Everson, Chris France, Robert Echols,
 * Beat Ruhstaller, Scott Cambell
 * Date: 2010-04-19
 * Overview: This code is appropriate for simulating JV characteristics of
 * blended materials such as M3EH-PPV with CN-ether-PPV when exiton
 * dissociation is assumed to be taking place throughout the bulk.
 * Notes: This version does not use non-dimensional quantities. It incorporates
 * the injection/recombination currents as spelled out in Campbell Scott
 * and George Malliaras's paper.
 **/

//Contains all other #include, #define, prototypes and gloable variables
#include "jvsim.h"
/***
 * Function: int main()
 *
 * Inputs: None
 *
 * Outputs: 0 if it exits successfully, nonzero otherwise
 *
 * Overview: Contains glue code and calls all functions needed to run simulation
 **/

int main(int argc, char **argv)
{
 int i, runindex; //Index variables for simulation number
 double *PCEs; //Array to store the PCEs of simulated devices
 int PCEi = 0; //Index in PCEs that has the maximum PCE
 double mPCE = 0; //Value of the maximum PCE found at PCEs[PCEi]
 int verbose=0; //Verbose flag

17

 //Check for verbose mode
 if(argv[1] != NULL){

if(argv[1][1] == 'v') verbose = 1;
 }

 printf("Simulating a polymer-blend solar cell.\n\n");
 //Prepare the simulator (import variables)
 Norm_E=e/dielec/eo;
 printf("Electric Field normalization=%1.2e\n",Norm_E);
 filename = malloc(sizeof(char)*25);
 a = malloc(sizeof(double)*4002);
 // Using TOC file to find location of input and output files
 Import_Files(toc_file);
 // Imports sweep parameters from file inf_swp
 Import_SweepParams(inf_swp);
 // Imports parameters from file inf_par
 Import_Values(inf_par);
 // Imports irradiance and absorptivity from inf_irr and inf_abs
 Inumbins = Import_Spectrum();
 // Counts the number of photons in a bin based on wavelen
 phottot = Count_Photons();
 // Array of unique parameters to use
 runindex = runsets(Lbot, Ltop, deltaL, rbot, rtop, deltar);
 // Allocate enough space to store all the PCE of all simulations
 PCEs = malloc(sizeof(double)*runindex);
 // Start Simulation
 for(i=0; i<runindex; i++)
 {

double PD[50]; // Holds power densities for each J-V pair
int PDi = 0; // Ends up with index in PD that has maximum power
double PCE = 0; // PCE for this run
if(verbose) printf("Running simulation %d...\n", i+1);
//Set our two variables thickness and recombination factor here
ff_rec = recombs[i];
L = thicknesses[i];
z=0;
//Recalculate slice size for each L
dx=L/cells;
// Initial n, p charge distribution. chosen
Import_ChargeDistr(cells);
// Generates the charge generation term based on the illum and abs
Generate_Spect();
// subsequent n,p distribution's are taken from previous bias
sprintf(label,"%s", outfiles[i]);
sprintf(ivfile,"data/%s.iv",label);
// opens file for storing current-density versus voltage info
f2=fopen(ivfile,"w");
V=V1;
fprintf(f2,"V(Volt)\tJ(A/m2)\n"); // Print header for JV File
// Fudge factor to z to solve rounding error when V2 is odd

 // When V2 was odd program stopped executing before iterating for V=V2
while ((float) (z-0.000001)<=(V2-V1)/dV)
{
 sprintf(volt, "%1.1lf",V);

 sprintf(filename,"%s%sV",label,volt);
 sprintf(datfile,"data/%s.dat",filename);
 printf("In process: %s...\n",filename);
 V=(V-(phi_a-phi_c)); // voltage across the device

18

 if (err > 0)
 {

printf("*1*\tVoltage across device (before run loop) = %1.3f\n", V);
 }
 Run_Loop(); // Solve for steady state results
 Export_Values(i); // Output results for run to file
 V=V+(phi_a-phi_c); // Applied voltage

 // Record V, J, R for later use
 bias[z]=V;
 J[z]=Jave;
 R[z]=Rave;
 fprintf(f2,"%e\t %e\n",bias[z],J[z]);
 printf("\tTotal Photons: %1.3e%%\n", phottot);
 printf("...done\n");
 z++;
 V+=dV;

 }
//Output Results Step
printf("Outputting results...\n");
printf("\tBias(V)\tJ(A/m2)\t\tPower Density(W/m2)\n");
z=0;

 sprintf(filename, "%sJV.dat", outfiles[i]); //Create JV output file name
f1=fopen(filename,"w"); //Open file to store the JV curve data

 fprintf(f1,"Bias(V)\tJ(A/m2)\tPower Density (W/m2)\n");
while ((float) (z-0.000001)<=(V2-V1)/dV)
{

 //If in the 4th quadrant J becomes more negative, its most likely an error
 if((z > 1) && (bias[z] > 0) && (J[z] < J[z-1])) PD[z] = 0;
 // Otherwise record the simulated power density
 else PD[z] = bias[z]*J[z];
 // Screen output: V, J, PD
 printf("\t%1.2f\t%2.4e\t\t%2.3f\n", bias[z], J[z], PD[z]);
 // File output: V, J, PD
 fprintf(f1,"%e\t %e\t %e\n",bias[z],J[z],PD[z]);
 z++;
}
//Find the minimum point in PD, i.e. the most power out per unit area
PDi = maxpower(PD,0,z);
//PCE = (PDout / PDin)*100 (in %) Note: this is a negative number since
//PDout is negative
PCE = (PD[PDi]/illnorm)*100;
//Store the PCE for each run in this array
PCEs[i]= PCE;
if(verbose){
 printf("\n\tMax Output Power Density: %1.3f W/m2\n", PD[PDi]);
 //-PCE, since the negative carries through from PDout
 printf("\tPower Conversion Efficiency: %1.3f%%\n", -PCE);
}

fclose(f1); //Close jv.dat
fclose(f2); //Close ivfile
printf("\n"
 "...done\n");

 }
 //Since PCEs are negative, we can reuse the maxpower or min function
 PCEi = maxpower(PCEs,0,runindex);
 //-PCE, since the negative carries through from PDout
 mPCE = -PCEs[PCEi];
 if(verbose){

19

for(i=0;i<runindex;i++){
 printf("Device %s had a PCE of %1.3f\n", outfiles[i], -PCEs[i]);
}

 }
 // Report the maximum PCE from simulations and which device label is
 // associated with it
 printf("\n"
 "Maximum PCE: %1.3f\n"

"From Device: %s\n"
"\n"
"Program Finished.\n", mPCE, outfiles[PCEi]);

 return 0;
}

/**
 * Function: void Import_Files(char *toc)
 *
 * Inputs: toc, file which holds the names of the other files to use for
 * simulation.
 *
 * Outputs: None
 *
 * Overview: Using the .toc file, imports the filenames for input and output of
 * data.
 ***/

void Import_Files(char *toc)
{

//Variable for reading used labels from files
 char *junk = malloc(60*sizeof(char));
 printf("Importing filenames...\n");
 sprintf(infile,"%s",toc);
 f1=fopen(infile, "r");
 // input sweep parameters filename
 fscanf(f1,"%s %s %s %s", junk, junk, junk, inf_swp);
 printf("\tSweep parameters filename is %s\n", inf_swp);
 // input parameters filename
 fscanf(f1,"%s %s %s %s",junk, junk, junk, inf_par);
 printf("\tGeneral parameters filename is %s\n", inf_par);
 // input AM 1.5 irradiance spectrum filename
 fscanf(f1,"%s %s %s %s",junk, junk, junk, inf_irr);
 printf("\tIrradiance spectrum filename is %s\n", inf_irr);
 // input absorptivity spectrum filename
 fscanf(f1,"%s %s %s %s",junk, junk, junk, inf_abs);
 printf("\tAbsorption spectrum filename is %s\n", inf_abs);
 printf("...done\n");
 free(junk);
}

/**
 * Function: void Import_SweepParams(char *swpfile)
 *
 * Inputs: swpfile, file which contains the sweep voltage information
 *
 * Outputs: None
 *
 * Overview: Function to import the three voltage sweep parameters: V start,
 * V end and V step.
 ***/

20

void Import_SweepParams(char *swpfile)
{
 //Variable for reading labels from files
 char *junk = malloc(60*sizeof(char));
 printf("Importing sweep parameters from %s...\n", swpfile);
 f1=fopen(swpfile,"r");
 fscanf(f1,"%s %s %lf",junk, junk, &V1);
 fscanf(f1,"%s %s %lf",junk, junk, &V2);
 fscanf(f1,"%s %s %lf",junk, junk, &dV);
 fclose(f1);
 printf("\tV1=%1.1lf\n\tV2=%1.1lf\n\tdV=%1.1lf\n",V1,V2,dV);
 printf("...done\n");
 free(junk);
}

/**
 * Function: void Import_Values(char *devfile)
 *
 * Inputs: devfile, file which contains the device parameters
 *
 * Outputs: None
 *
 * Overview: Function to import device parameters.
 **/

void Import_Values(char *devfile)
{
 //Variable for reading labels from files
 char *junk = malloc(60*sizeof(char));
 printf("Importing general parameters from %s...\n", devfile);
 f1=fopen(devfile,"r");
 fscanf(f1,"%s %s %s",junk,junk,filename); // output filename
 fscanf(f1,"%s %lf",junk,&illnorm); // illumination
 fscanf(f1,"%s %lf",junk,a); // absorption in c.u.=1e5 cm^-1
 fscanf(f1,"%s %d",junk,&T); // # of iterations
 fscanf(f1,"%s %lf %lf %lf",junk,&Lbot, &Ltop, &deltaL); // device thickness
 fscanf(f1,"%s %lf",junk,&Temp); // temperature
 fscanf(f1,"%s %s %s %lf",junk,junk,junk,&phi_c); // cathode work function
 fscanf(f1,"%s %s %s %lf",junk,junk,junk,&phi_a); // anode work function
 fscanf(f1,"%s %lf",junk,&HOMO); // highest occupied molecular level
 fscanf(f1,"%s %lf",junk,&LUMO); // lowest unoccupied molecular level
 // electron zero field mobility @ 300K
 fscanf(f1,"%s %s %s %s %lf",junk,junk,junk,junk,&m0n);
 // hole zero field mobility @ 300K
 fscanf(f1,"%s %s %s %s %lf",junk,junk,junk,junk,&m0p);
 fscanf(f1,"%s %s %s %d",junk,junk,junk,&cells); // number of cells
 fscanf(f1,"%s %d",junk,&accuracy); // accuracy
 fscanf(f1,"%s %s %lf",junk,junk,&nc); // time step factor
 // density of chargeable sites
 fscanf(f1,"%s %s %s %lf",junk,junk,junk,&No);
 // Temp. for calc. field dep. mob (elec)
 fscanf(f1,"%s %s %s %s %s %lf",junk,junk,junk,junk,junk,&T0n);
 // Temp. for calc. field dep. mob (hole)
 fscanf(f1,"%s %s %s %s %s %lf",junk,junk,junk,junk,junk,&T0p);
 // Const. term for calc field dep mob (elec)
 fscanf(f1,"%s %s %s %s %s %lf",junk,junk,junk,junk,junk,&Bn);
 // Const. term for calc field dep mob (hole)
 fscanf(f1,"%s %s %s %s %s %lf",junk,junk,junk,junk,junk,&Bp);

21

 // delta term used to find 0-field mob. at any temp
 fscanf(f1,"%s %s %s %s %s %lf",junk,junk,junk,junk,junk,&deln);
 // delta term used to find 0-field mob. at any temp
 fscanf(f1,"%s %s %s %s %s %lf",junk,junk,junk,junk,junk,&delp);
 // fudge factor (r-increases recombination rate)
 fscanf(f1,"%s %s %s %lf %lf %lf",junk,junk,junk,&rbot,&rtop,&deltar);
 // fudge factor (Beta-simulates the exiton recombination)
 fscanf(f1,"%s %s %s %lf",junk,junk,junk,&ff_int);
 // flag to indicate level of error checking: 0=none, 1=low, 3=high
 fscanf(f1, "%s %s %d",junk,junk,&err);
 fclose(f1);
 printf("...done\n");

 if (err == 1)
 printf("***Running code in error level 1***\n");
 else if (err == 2)
 printf("***Running code in error level 2***\n");

 printf("Calculating constants...\n");
 ksi=kb*Temp;
 printf("\t(diffusion coef./mobility) ksi=%1.2e\n",ksi);
 Norm_f=e*e*e/(4*pi*dielec*eo*ksi*ksi);
 printf("\tNorm_f=%1.3e\n",Norm_f);
 Norm_inj=16*pi*dielec*eo*No*ksi*ksi/e/e;
 printf("\tNorm_inj=%1.3e\n",Norm_inj);
 Norm_surf=16*pi*dielec*eo*ksi*ksi/e/e;
 printf("\tNorm_surf=%1.3e\n",Norm_surf);
 gam_n = Bn*(1/(kb*Temp)-1/(kb*T0n)); // gam_n = (E_0)^(-1/2)
 printf("\tgam_n=%1.3e\n",gam_n);
 gam_p = Bp*(1/(kb*Temp)-1/(kb*T0p)); // gam_p = (E_0)^(-1/2)
 printf("\tgam_p=%1.3e\n",gam_p);

 if (Temp != 300) {
 printf("\tMobilities @ 300K:\tm0n=%1.3e\tm0p=%1.3e\n", m0n, m0p);
 printf("\tChanging mobilities from 300K to %1.1fK\n", Temp);
 mSTn = m0n*exp(deln/(kb*300/e));
 mSTp = m0p*exp(delp/(kb*300/e));
 m0n = mSTn*exp(-deln/(kb*Temp/e));
 m0p = mSTp*exp(-delp/(kb*Temp/e));
 printf("\tMobilities @ %1.0fK:\tm0n=%1.3e\tm0p=%1.3e\n", Temp, m0n, m0p);
 }
 else printf("\tRunning at 300K, no mobility recalculation necessary.\n");
 printf("...done\n");
 free(junk);
}

/**
 * Function: void Import_ChargeDistr(int numslices)
 *
 * Inputs: numslices, the number of slices to simulate at. Each slice is
 * L/numsilces thick.
 *
 * Outputs: None
 *
 * Overview: Function to generate the initial charge distribution. Currently
 * this is 0 everywhere
 ***/

22

void Import_ChargeDistr(int numslices)
{
 printf("Importing charge distribution (no charge)...");
 //0 out charge distribution
 for (x=0;x<=numslices;x++) {
 n[x]=0.0;
 p[x]=0.0;
 }

 printf("done\n");
}

/**
 * Function: void Import_Spectrum()
 *
 * Inputs: None
 *
 * Outputs: None
 *
 * Overview: Function to import the absorption and illumination spectrums.
 * Also normalizes the illumination according to the desired total
 * illumination
 ***/

double Import_Spectrum()
{
 int i=0;
 double IllumT=0.0;
 //Reading illumination spectrum
 printf("Reading irradiance spectrum from %s ", inf_irr);
 f1=fopen(inf_irr,"r");
 fscanf(f1, "%lf", &Iwavelen[i]);
 while (!feof(f1)) {
 fscanf(f1, "%lf", &Illum[i]);
 i++;
 fscanf(f1, "%lf", &Iwavelen[i]);
 }
 Inumbins=i-1; //counts the number of values in the illumination file
 fclose(f1);
 i=0;

 printf("done.\n");
 //Reading the absorption spectrum
 printf("Reading absorption spectrum from %s", inf_abs);
 f1=fopen(inf_abs,"r");
 fscanf(f1, "%lf", &Awavelen[i]);
 while (!feof(f1)) {
 fscanf(f1, "%lf", &Abs[i]);
 i++;
 fscanf(f1, "%lf", &Awavelen[i]);
 }
 Anumbins=i-1; //counts the number of values in the absorption file
 fclose(f1);
 printf("...done.\n");

23

 // Normalizing using the value specified in the parameter file
 // Finding total illumination of unnormalized spectrum

 printf("Normalizing irradiance to %1.0f W/m^2...", illnorm);
 for(i=1;i<Inumbins;i++) {
 IllumT += (Iwavelen[i+1]-Iwavelen[i-1])*Illum[i]/2;
 }
 printf("\nInumbins: %d\n", Inumbins);
 IllumT += (Iwavelen[1]-Iwavelen[0])*Illum[0];
 IllumT += (Iwavelen[Inumbins]-Iwavelen[Inumbins-1])*Illum[Inumbins];
 // Normalizing

 for(i=0;i<=Inumbins;i++) {
 Illum[i]=Illum[i]*illnorm/IllumT;

 }
 printf("IllumT: %1.2e\tIllumNorm: %1.2e\n", IllumT ,illnorm);
 printf("done.\n");

 SplineCL(Anumbins, Awavelen, Abs, splineB[0], splineC[0], splineD[0]);

 for (i=0;i<=Inumbins;i++)
 {

a[i] = SplineValCL(Anumbins, Iwavelen[i],Awavelen, Abs, splineB[0],
splineC[0], splineD[0]);

 }

 return Inumbins; //returns the number of entries in the abs and illum arrays.
}

/**
 * Function: double Count_Photons()
 *
 * Inputs: None
 *
 * Outputs: double tot - the total number of photons from all "bins"
 *
 * Overview: This routine counts the number of photons, find the photon density
 * and the photons per bin.
 ***/

double Count_Photons() {
 int i;
 double tot=0;
 printf("Counting photons...");
 // calculating for first boundary
 photon[0] = Illum[0]*Iwavelen[0]*1.0e-9/3.0e8/6.626e-34;
 photonbin[0]=photon[0]*(Iwavelen[1]-Iwavelen[0]);
 // calculating for bulk
 i=0;
 for(i=1;i<Inumbins;i++) {
 photon[i] = Illum[i]*Iwavelen[i]*1.0e-9/3.0e8/6.626e-34;
 photonbin[i]=photon[i]*(Iwavelen[i+1]-Iwavelen[i-1])/2;

 }

 // calculating for the second boundary
 photon[Inumbins] = Illum[Inumbins]*Iwavelen[Inumbins]*1.0e-9/3.0e8/6.626e-34;
 photonbin[Inumbins]=

 photon[Inumbins]*(Iwavelen[Inumbins]-Iwavelen[Inumbins-1]);

24

 i=0;

 printf("done.\n");
 fflush(stdout);
 if (err > 0)
 {
 printf("*1*\ti\tIwavelen\tphotonbin\ta\n");
 for (i=0;i<=Inumbins;i++) {

printf("*1*\t%d\t%1.0f\t%1.4e\t%1.4e\n",
i, Iwavelen[i], photonbin[i], Abs[i]);

 }
 printf("*1*\ttotal photons : %1.3e\n", tot);
 }
 for (i=0;i<=Inumbins;i++) {
 tot += photonbin[i];
 }
 return tot;
}
/**
 * Function: void Generate_Spect()
 *
 * Inputs: None
 *
 * Outputs: None
 *
 * Overview: This routine calculates the generation terms for each slice
 ***/

void Generate_Spect()
{

 printf("Creating charge generation term...");
 for (x=1;x<=cells;x++) {
 Generate[x]=0;
 for(i=0;i<Inumbins;i++) {
 Generate[x] =
 Generate[x]+ff_int*(a[i]*photonbin[i]*e*exp(-a[i]*L*x/cells)+

0.90*a[i]*photonbin[i]*e*exp(-a[i]*L)*exp(-a[i]*L*(cells-x)/cells));
 }
 }
 sprintf(filename, "data/absorbtion.dat"); //debugging print of absorbtion
 f1=fopen(filename,"w"); // absorbtion data
 for (x=1;x<=Anumbins-5;x++)
 fprintf(f1,"%d \t %lf\n",x, a[x]);
 fclose(f1);

 sprintf(filename, "data/absorbtion2.dat"); //debugging print of absorbtion
 f1=fopen(filename,"w"); // absorbtion data
 for (x=1;x<=Anumbins;x++)
 fprintf(f1,"%d \t %lf\n",x, photonbin[x]);
 fclose(f1);
 sum=0;
 for(i=0;i<Inumbins;i++){

 sum =+ sum+Generate[i];
 }

25

 printf("done\n");
 return;
}
/**
 * Function: void Run_Loop()
 *
 * Inputs: None
 *
 * Outputs: None
 *
 * Overview: Function that handles most calculation. This is called once for
 * each voltage value iterated through.
 ***/

void Run_Loop()
{
 t=0.00;
 i=0;
 Jave=Rave=0;
 savestep=100;
 autostop='n';
 while (autostop=='n') {
 if (i<30000) {
 c=nc*100.0;
 }
 else {
 c=nc;
 }

 // Calc. the electric field by integrating Poisson's Eq. and
 // satisfying the B.C. Calculate the mobilities
 ///Bulk of Device
 E[0]=0.00;
 for (x=1;x<=cells;x++) // Integrate
 E[x]=E[x-1]+dx*Norm_E*(p[x]-n[x]);
 V0=0.00;
 for (x=1;x<=cells;x++) // Find potenital
 V0=V0+E[x]*dx;
 E[0]=(V-V0)/L;
 for (x=1;x<=cells;x++) {
 // Adding constant to integral result
 E[x]=E[x]+E[0];
 // Calc. field dep. mobility
 mobp[x]=m0p*exp(gam_p*sqrt(fabs(E[x]+E[x-1])/2));
 mobn[x]=m0n*exp(gam_n*sqrt(fabs(E[x]+E[x-1])/2));
 // Calc. Recombination rate
 Ri[x]=Norm_E*(mobn[x]+mobp[x])*n[x]*p[x];
 }

 for (x=1;x<=cells-1;x++) {
 Jn[x]=e*(mobn[x]+mobn[x+1])*0.25*(n[x]+n[x+1])*
 E[x]+ksi*(mobn[x]+mobn[x+1])*0.5*(n[x+1]-n[x])/dx;
 Jp[x]=e*(mobp[x]+mobp[x+1])*0.25*(p[x]+p[x+1])*
 E[x]-ksi*(mobp[x]+mobp[x+1])*0.5*(p[x+1]-p[x])/dx;
 }

 ///Anode
 if (E[0]>0.0) {
 y=E[0]*Norm_f;

26

 psi=1.0/y+pow(y,-0.5)-pow(1.0+2.0*pow(y,0.5),0.5)/y;
 corr1=exp(pow(y,0.5));
 corr2=(pow(psi,-2.0) - y)/4.0;
 corr3=1.0; // corr3 and 4 not used
 corr4=1.0;
 Jp[0]= Norm_inj*mobp[1]*exp(-(HOMO-phi_a)*e/ksi)*corr1-

Norm_surf*mobp[1]*p[1]*corr2;
 Jn[0]=e*E[0]*n[1]*mobn[1];
 }
 else if (E[0]==0) {
 corr1=1.0;
 corr2=1.0;
 corr3=1.0;
 corr4=1.0;
 Jp[0]= Norm_inj*mobp[1]*exp(-(HOMO-phi_a)*e/ksi)*corr1-

Norm_surf*mobp[1]*p[1]*corr2;
 Jn[0]= -Norm_inj*mobn[1]*exp(-(phi_a-LUMO)*e/ksi)*corr3+

Norm_surf*mobn[1]*n[1]*corr4;
 }
 else {
 corr1=1.0; // corr1 and 2 not used
 corr2=1.0;
 y=-E[0]*Norm_f;
 psi=1.0/y+pow(y,-0.5)-pow(1.0+2.0*pow(y,0.5),0.5)/y;
 corr3=exp(pow(y,0.5));
 corr4=(pow(psi,-2.0) - y)/4.0;
 Jp[0]=e*E[0]*p[1]*mobp[1];
 Jn[0]= -Norm_inj*mobn[1]*exp(-(phi_a-LUMO)*e/ksi)*corr3+

Norm_surf*mobn[1]*n[1]*corr4;

 }
 if (corr2<=0||corr4<=0)
 printf("alert: psi^(-2)-f < 0 at anode \n");

 ///Cathode
 if (E[cells]>0.0) {
 y=E[cells]*Norm_f;
 psi=1.0/y+pow(y,-0.5)-pow(1.0+2.0*pow(y,0.5),0.5)/y;
 corr1=exp(pow(y,0.5));
 corr2=(pow(psi,-2.0) - y)/4.0;
 corr3=1.0; // corr3 and 4 not used
 corr4=1.0;
 Jn[cells]= Norm_inj*mobn[cells]*exp(-(phi_c-LUMO)*e/ksi)*corr1-

Norm_surf*mobn[cells]*n[cells]*corr2;
 Jp[cells]=e*E[cells]*p[cells]*mobp[cells];
 }
 else if (E[cells]==0) {
 corr1=1.0;
 corr2=1.0;
 corr3=1.0;
 corr4=1.0;
 Jn[cells]=Norm_inj*mobn[cells]*exp(-(phi_c-LUMO)*e/ksi)*corr1-

Norm_surf*mobn[cells]*n[cells]*corr2;
 Jp[cells]=-Norm_inj*mobp[cells]*exp(-(HOMO-phi_c)*e/ksi)*corr3+

Norm_surf*mobp[cells]*p[cells]*corr4;
 }
 else {
 corr1=1.0; // corr1 and 2 not used
 corr2=1.0;
 y=-E[cells]*Norm_f;
 psi=1.0/y+pow(y,-0.5)-pow(1.0+2.0*pow(y,0.5),0.5)/y;

27

 corr3=exp(pow(y,0.5));
 corr4=(pow(psi,-2.0) - y)/4.0;
 Jn[cells]=e*E[cells]*n[cells]*mobn[cells]; // careful E < 0
 Jp[cells]=-Norm_inj*mobp[cells]*exp(-(HOMO-phi_c)*e/ksi)*corr3+

Norm_surf*mobp[cells]*p[cells]*corr4;
 }

 // choose dt=max_cell_transit_time/c
 ///Bulk of Device cont.
 Emax=maxi(E,0,cells);
 mob[0]=m0n;
 mob[1]=m0p;
 vmax=max(mob,2)*E[Emax];
 dt=fabs(dx/c/vmax);
 // Calculate new charge densities
 for (x=1;x<=cells;x++) {
 dJn1=(Jn[x]-Jn[x-1])/dx;
 dJp1=(Jp[x-1]-Jp[x])/dx;
 dJn2=dJp2=ff_rec*e*Ri[x];
 // do not allow negative number densities
 n[x]=n[x]+(dJn1+Generate[x]-dJn2)*dt/e;
 p[x]=p[x]+(dJp1+Generate[x]-dJp2)*dt/e;
 }
 ///////////BCs with injection

 // Calculate averages, check autostop and transient
 if (i+1>=savestep) {
 if (err > 2)

{
 printf("*1*\tJavg = %1.3e\n", Jave);
}

 Jold=Jave;
 Jave=Jn[0]+Jp[0];
 Rave=0.0;
 dJ=fabs(Jn[0]+Jp[0]-Jold);
 for (x=1;x<=cells;x++) {

Jave=Jave+Jn[x]+Jp[x];
Rave=Rave+Ri[x];
dJ=dJ+fabs(Jn[x]+Jp[x]-Jold);

 }
 Jave=Jave/(cells+1);
 dJ=dJ/(cells+1);
 Rave=Rave/cells;
 if (Jave!=0){

if (fabs(dJ/Jave)<pow(10.0,-accuracy)) {
 autostop='y';
 printf("\tsuccessful convergence after %f (sec) and %d iterations !\n",

 t,i);
 printf("\tconvergence criteria dJ/J: %f \n",dJ/Jave);
}
else if (i>=T) {
 autostop='y';
 printf("\tNO convergence after %f (sec) and %d iterations!\n",t,i);
 printf("\tconvergence criteria dJ/J: %f \t final value %f \n",

 pow(10,-accuracy), dJ/Jave);
}
else if (Jave!=Jave) {
 autostop='y';

28

 printf("\tnumerical error after %1.3e (usec) and %d
iterations !\n",t,i);

}
 }
 }
 t=t+dt;
 // debugging purposes (printing itteration)
 i++;
 }
 printf("\t(last) dt = %e, total time= %e\n",dt,t);
 return;
}
/**
 * Function: void Export_Values(int)
 *
 * Inputs: index - int that represents the simulation number
 *
 * Outputs: None
 *
 * Overview: Function to output the results to data files. This is called for
 * each itteration through the applied voltage
 ***/

void Export_Values(int index)
{
 sprintf(filename, "data/%sgenerate.dat", outfiles[index]);
 f1=fopen(filename,"w"); // recombination data
 for (x=1;x<=cells;x++)
 fprintf(f1,"%e %e\n",L*x/cells, Generate[x]);
 fclose(f1);
 sprintf(filename, "data/recomb%s%s.dat",outfiles[index],volt);
 f1=fopen(filename,"w"); // recombination data
 for (x=1;x<=cells;x++)
 fprintf(f1,"%e %e\n",L*x/cells,Ri[x]);
 fclose(f1);
 sprintf(filename, "data/pdensity%s%s.dat",outfiles[index],volt);
 f1=fopen(filename,"w"); // pos. charge density
 for (x=1;x<=cells;x++)
 fprintf(f1,"%e %e\n",L*x/cells,p[x]);
 fclose(f1);
 sprintf(filename, "data/ndensity%s%s.dat",outfiles[index],volt);
 f1=fopen(filename,"w"); // neg. charge density
 for (x=1;x<=cells;x++)
 fprintf(f1,"%e %e\n",L*x/cells,n[x]);
 fclose(f1);
 sprintf(filename, "data/electric%s%s.dat",outfiles[index],volt);
 f1=fopen(filename,"w"); // electric field data
 for (x=0;x<=cells;x++)
 fprintf(f1,"%e %e\n",L*x/cells,E[x]);
 fclose(f1);
 sprintf(filename, "data/pcurrent%s%s.dat",outfiles[index],volt);
 f1=fopen(filename,"w"); // pos. current data
 for (x=0;x<=cells;x++)
 fprintf(f1,"%e %e\n",L*x/cells,Jp[x]);
 fclose(f1);
 sprintf(filename, "data/ncurrent%s%s.dat",outfiles[index],volt);
 f1=fopen(filename,"w"); // neg. current data
 for (x=0;x<=cells;x++)
 fprintf(f1,"%e %e\n",L*x/cells,Jn[x]);
 fclose(f1);
 sprintf(filename, "data/tcurrent%s%s.dat",outfiles[index],volt);

29

 f1=fopen(filename,"w"); // total current data
 for (x=0;x<=cells;x++)
 fprintf(f1,"%e %e\n",L*x/cells,Jn[x]+Jp[x]);
 fclose(f1);
 sprintf(filename, "data/n-p%s%s.dat",outfiles[index],volt);
 f1=fopen(filename,"w"); // difference in charge
 for (x=0;x<=cells;x++)
 fprintf(f1,"%e %e\n",L*x/cells,n[x]-p[x]);
 fclose(f1);
}

/* Finds the location of the last value in an array between positions l and n
 where the value of the array is greater than it is at the l^th position. */
int maxi(double a[], int l, int n)
{
 int j,index=l;
 double m=fabs(a[l]);
 for (j=l+1;j<=n;j++)
 if (m<fabs(a[j])) {
 index=j;
 m = a[j];
 }
 return index;
}

/* Finds the maximum value in the first n elements of an array */
double max(double a[], int n)
{
 int j;
 double m=fabs(a[0]);

 for (j=0;j<n;j++)
 if (m<fabs(a[j]))
 m=fabs(a[j]);
 return m;
}

/**
 * Function: double runsets(double Ll, double Lh, double dL, double rl,
 * double rh, double dr)
 *
 * Inputs: Ll - the lower bound of the thickness range
 * Lh - the upper bound of the thickness range
 * dL - the thickness step size
 * rl - the lower bound of the recombination range
 * rh - the upper bound of the recombination range
 * dr - the recombination step size
 *
 * Outputs: int product, the number of runsets to simulate
 *
 * Overview: Function to create all permutations of L and r given their ranges
 * and step sizes
 ***/
int runsets(double Ll, double Lh, double dL, double rl, double rh, double dr)
{

int i, j;
int l, R, product;
double nL, nr;
nL = (Lh - Ll) / dL;

30

l = ((int)nL) + 1;
printf("Number of thicknesses to simulate: %d\n", l);
nr = (rh - rl) / dr;
R = ((int)nr) + 1;
printf("Number of recombination factors to simulate: %d\n", R);
product = R*l;
printf("Total number of simulations: %d\n", product);
outfiles = malloc(product*sizeof(char *));
for(i=0; i<product; i++)
{

outfiles[i] = (char *)malloc(24*sizeof(char));
}
thicknesses = malloc(product*sizeof(double));
recombs = malloc(product*sizeof(double));
for(i=0; i<l; i++)
{

for(j=0; j<R; j++)
{

recombs[(i*R)+j] = rl + j*dr;
thicknesses[(i*R)+j] = Ll + i*dL;
sprintf(outfiles[(i*R)+j],"%3.0fnm%1.2lfrec",

thicknesses[(i*R)+j]*1e9,recombs[(i*R)+j]);
}

}
return product;

}

/**
 * Function: int maxpower(double[], int)
 *
 * Inputs: P - double [] of J*V values
 * start - int which represents the index of P to start at
 * n - int which represents the index+1 of P to stop at
 *
 * Outputs: index - the index of the maximum power point (i.e. the most
 * negative power density) in the range
 *
 * Overview: compare each of the elements from index start to n-1 in P and
 * report the index of the most negative one
 ***/
int maxpower(double P[], int start, int n)
{

int i;
double max;
int index = start;
max = P[index];
for(i=start; i<n; i++)
{

if(P[i] < max){
index = i;
max = P[index];

}
}
return index;

}

/*** The following two spline interpolation routines are taken from the
C CATAM Software Library (CCATSL). These functions are freely available

31

under the GNU General Public License. Visit
http://www.maths.cam.ac.uk/undergrad/tripos/catam/ccatsl/
for more information ***/

void SplineCL(int n, double *x, double *y, double *b, double *c, double *d)
{
 int i;
 double t;
 /* tri-diagonal coefficients : b[] diagonal, d[] off-d, c[] RHS ... */

 d[0] = x[1] - x[0];
 if (d[0] <= 0.0) { /*'x[i+1] not > x[i] for some i'*/
 return;
 }
 c[1] = (y[1] - y[0]) / d[0];
 for (i = 2; i < n; i++) {
 d[i - 1] = x[i] - x[i - 1];
 if (d[i - 1] <= 0.0) { /*'x[i+1] not > x[i] for some i'*/
 return;
 }
 b[i - 1] = 2 * (d[i - 2] + d[i - 1]);
 c[i] = (y[i] - y[i - 1]) / d[i - 1];
 c[i - 1] = c[i] - c[i - 1];
 }

 /* end condition ... */

 b[0] = -d[0];
 b[n - 1] = -d[n - 2];

 if (n == 3) {
 c[0] = 0.0;
 c[n - 1] = 0.0;
 } else {
 c[0] = c[2] / (x[3] - x[1]) - c[1] / (x[2] - x[0]);
 c[n - 1] = c[n-2] / (x[n-1] - x[n-3]) - c[n - 3] / (x[n-2] - x[n-4]);
 c[0] = c[0] * d[0] * d[0] / (x[3] - x[0]);
 c[n - 1] = c[n-1] * d[n-2] * d[n-2] / (x[n-4] - x[n-1]);
 }

 /* forward elimination ... */

 for (i = 1; i < n; i++) {
 t = d[i - 1] / b[i - 1];
 b[i] -= t * d[i - 1];
 c[i] -= t * c[i - 1];
 }

 /* back substitution ... */

 c[n - 1] /= b[n - 1];
 for (i = n - 2; i >= 0; i--)
 c[i] = (c[i] - d[i] * c[i + 1]) / b[i];

 /* ... now find polynomial coefficients ... */

 b[n - 1] = (y[n - 1] - y[n - 2]) / d[n - 2] +
 d[n - 2] * (c[n - 2] + 2 * c[n - 1]);

32

 for (i = 0; i <= n - 2; i++) {
 b[i] = (y[i + 1] - y[i]) / d[i] - d[i] * (c[i + 1] + 2 * c[i]);
 d[i] = (c[i + 1] - c[i]) / d[i];
 c[i] = 3 * c[i];
 }
 c[n - 1] = 3 * c[n - 1];
 d[n - 1] = d[n - 2];

 search_interval = 1;

 /* no errors */

} /*of spline*/

double SplineValCL(int n, double xx, double *x, double *y, double *b,
double *c, double *d)

{
 double Result;
 int i, j, k;
 double t;

 /* add this to prevent C compilation warnings*/

// Result = 0.0;

 i = search_interval;
 if (i < 1 || i > n)
 i = 1;

 /* find interval ... */

 if (xx <= x[i - 1] || xx > x[i]) {
 i = 1;
 j = n;
 do {
 k = (i + j) / 2;
 if (xx < x[k - 1])
 j = k;
 else
 i = k;
 } while (j != i + 1);
 }

 t = xx - x[i - 1];
 search_interval = i;
 Result = y[i - 1] + t * (b[i - 1] + t * (c[i - 1] + t * d[i - 1]));

 /* no errors */
 return Result;
} /*of seval*/

33

REFERENCES

[1] Author Unknown, "Solar Electric Power: The U.S. Photovoltaic Industry Roadmap," Sandia National Labrotories,
May 2001. [Online] Available: http://photovoltaics.sandia.gov/docs/PDF/PV_Road_Map.pdf [Accessed: June 8, 2010].

[2] Author Unknown, "First Solar Passes $1 Per Watt Industry Milestone: Company Cuts Manufacturing Cost to 98
Cents Per Watt in Fourth Quarter," First Solar News Release, Februaury 24, 2009.[Online] Available:
http://phx.corporate-ir.net/phoenix.zhtml?c=201491&p=irol-newsArticle&ID=1259614 [Accessed: June 8, 2010].

[3] Chris France, "Numerical Modeling of Polymer-based Bulk Heterojunction Photovoltaics," Cal Poly 2005.

[4] Erik Everson, "Numerical Simulation of ITO/P3HT:PCBM/Au Devices to Determine Electron and Hole Mobility,"
Cal Poly 2006.

[5] Author Unknown, "Insolation," Wikipedia, The Free Encyclopedia. [Online] Available:
http://en.wikipedia.org/wiki/Insolation. [Accessed June 8, 2010].

[6] Author Unknown, "Safety data for chlorobenzene," The Physical and Theoretical Chemistry Laboratory Oxford
University, October 30, 2009. [Online] Available: http://msds.chem.ox.ac.uk/CH/chlorobenzene.html. [Accessed:
January 19, 2009].

[7] Tomohisa Mori, Hiroya Takada, Shinobu Ito, Kenji Matsubayashi, Nobuhiko Miwa, Toshiko Sawaguchi,
"Preclinical studies on safety of fullerene upon acute oral administration and evaluation for no mutagenesis,"
Toxicology, Volume 225, Issue 1, 1 August 2006, Pages 48-54. [Online]. Available:
http://www.sciencedirect.com/science/article/B6TCN-4JXXR7C-1/2/8f596933ed3c37ff3ecda6c55bbe355d . [Accessed:
January 14, 2009].

[8] Author Unknown, "Isopropyl alcohol MSDS," ScienceLab.com, May 22, 2009. [Online] Available:
http://www.sciencelab.com/xMSDS-Isopropyl_alcohol-9924412. [Accessed: March 11, 2010].

[9] Author Unknown, "Acetone MSDS," ScienceLab.com, November 6, 2008. [Online] Available:
http://www.sciencelab.com/xMSDS-Acetone-9927062. [Accessed: March 11, 2010].

[10] Author Unknown, "Consumer Energy Tax Incentives," U.S. Department of Energy, 2008. [Online] Available:
http://www.energy.gov/taxbreaks.htm. [Accessed: January 14, 2009].

[11] Author Unknown, "Silicon," Wikipedia, The Free Encyclopedia. [Online] Available:
http://en.wikipedia.org/wiki/Silicon#Alloys. [Accessed: March 2, 2010].

[12] Gang Li, Vishal Shrotriya, Jinsong Huang, Yan Yao, Tommoriarty, Keith Emery, Yang Yang, "High-efficiency
solution processable polymer photovoltaic cells by self-organization of polymer blends," Yang Yang Laboratory.
October 9, 2005. [Online] Available: http://yylab.seas.ucla.edu/papers/YY-PV-7-Slow%20Growth-NM-05.pdf.
[Accessed January 11, 2010].

