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Abstract – Given a good model and implementation of that model, computer simulation can be used to reduce the 
time and material costs of research. To this end I worked with other students to manufacture, test and simulate 
the single layer P3HT-PCBM solar cell. Using the data collected from this project, future work can then be done 
with the project's simulator to further optimize these types of solar cell devices.  
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I. PROJECT GOALS, MOTIVATION, CONTEXT AND JUSTIFICATION 

The  demand  for  affordable,  reliable,  and  clean 
power has increased over recent years and is expected to 
continue to do so in the future. I am hopeful that organic 
solar cells or organic photovoltiacs (OPVs) help to meet 
this  demand  in  the  future  [1].  The  costs  of  power 
generation  potential  for  photovoltaics  (PV)  in  general, 
however,  are  not  currently  competitive  with  existing 
power  sources  such  as  coal.  In  early  2009,  First  Solar 
announced it had achieved a cost of $0.98 / Watt [2], twice 
the  cost  of  the  $0.50  /  Watt  goal  outlined  in  the  PV 
industry  road  map  [1].  OPVs  need  more  device 
optimization research to advance the technology towards 
competetitive device efficiencies. 

With this need for optimized devices in mind, I 
worked  with  three  other  students  in  continuing  the 
optimization work of an ongoing organic solar cell project 
at  Cal  Poly.  I  took the project's  existing current-voltage 
simulator for polymer solar cells and made it a more user-
friendly  application.  I  also  worked  in  the  polymer 
electronics lab at Cal Poly to manufacture and test organic 
solar  cell  devices,  whose  characteristics  (thickness, 
absorption,  current-density,  etc..)  we  input  into  the 
program  to  obtain  performance  predictions  of  different 
device thicknesses.

II. DESIGN REQUIREMENTS AND SPECIFICATIONS 

In  addition to the marketing requirements listed 
below in table I, engineering requirements can be found in 
table  II  of  appendix  I;  table   II  details  how  each 
engineering  requirement  meets  one  or  more  marketing 
requirements  that  came out  of  my discussions  with  my 
primary client Dr. Bob Echols.

Table I:
Marketing Requirements

Requirement Number Requirement

1 The simulator will be user 
friendly. 

2 The simulator will run multiple 
simulations with one execution. 

3 The simulator will produce 
reasonable approximations. 

4 Simulation results and lab 
results will be compared. 

To facilitate  marketing requirements  1 and  2,  I 
changed the file format used by the simulator as discussed 
in  "Simulation."  The simulator's  previous  authors  wrote 
the code for the charge generation and flow in an organic 
polymer device.  So given reasonable recombination and 
dissassociation correction factors,  r  and  B respectively, 
one expects the simulator to generate reasonable current 

density  (J)  vs.  Voltage  (V)  characteristics  and 
subsequently  power  density  (PD),  which  we  calculate 
using (1), sought in marketing requirement 3.

PD = J*V    (1)

To satisfy marketing requirement 4, three other 
students  and  I  fabricated  and  tested  several  poly(3-
hexylthiophene)  – phenyl-C61-butyric acid methyl ester 
(P3HT –  PCBM)  solar  cells.  In  order  to  perform  the 
comparison  between  the  manufactured  devices  and  the 
simulator  results  as  discussed  in  the  "Testing"  and 
"Simulation"  sections,  we  gathered  J-V,  thickness,  and 
optical density (OD) data.

III. PARTS AND COSTS

The project required the materials and 
equipment,  listed below in the "Required Materials" 
section and the person hours in table III. I found it 
difficult to pin down the total cost of materials, as some 
materials were already in the lab and not all of the 
materials purchased were used in the course of the 
project. One of the biggest cost contributions for 
materials comes from the active layer polymer P3HT. 

P3HT Cost = # devices * (gP3HT / device) * ($ / gP3HT)     (2)

We made a total of 48 devices, with an average 
amount of 15mg of P3HT per device at a cost of about 
$500 per gram of P3HT; using (2) we find the 
approximate cost of the P3HT for the project to be $360.

The team completed four batches of solar cells 
over the course of this portion of the project. This 
component of the project took approximately 20 hours on 
my part and would cost $300 for my time. Given an 
appoximate cost of $1000 for materials plus the $750 cost 
of labor, this project would come to a total investment of 
$1750 and 50 person hours. 

Table III: 
Cost of Labor For Project

Units Cost / Unit Total Cost

Coding 20 hrs. $15.00/hr. $300.00

Lab 20 hrs. $15.00/hr. $300.00

Documentation 10 hrs. $15.00/hr. $150.00

Total Labor 50 hrs. $15.00/hr. $750.00

In addition to each lab hour that I commited, I 
needed a lab partner as per the Department of Electrical 
Engineering lab safety guidelines. Normally I would 
include their time as well in calculating  the project costs, 
but since the material engineering students of the team 
are turning in a separate project report for their work on 
the TEM, AFM and in the lab, I did not factor in their 
time for project costs.
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Required Materials 

1. Lab Coat: to provide a barrier between 
workers and materials and/or equipment 
2. Glove Liners: to absorb sweat from 
wearing non-breathable gloves 
3. Disposable Gloves: to provide a barrier 
between workers and materials and/or 
equipment. ~$8 / box 
4. Fume Hood: to capture fumes from 
chemicals used outside glove box 
5. Cotton Swabs: to clean large particulates 
from substrates 
6. Sonic Baths: to vibrate loose smaller 
contaminants from the substrates 
7. UV Ozone Reactor to further clean 
substrates after swabbing and sonic baths 
8. Spin Coaters: to spin coat on polymer 
blend and PEDOT
9. Glove Box: to protect the devices from 
contamination through production and 
testing, until they are packaged 
10. Hot Plates: to anneal devices and heat 
dissolved P3HT-PCBM blend 
11. Clean Bottles: to hold polymer, solvent, 
etc... 
12. Filters: to filter P3HT polymer 
13. Evaporator: to evaporate on Aluminum 
electrode 
14. Dolan Jenner MI-150 Spectrum Light 
Source: to shine on the completed 
devices for in box testing 
15. Measurement Equipment (SourceMeter, 
etc...): to test the device performance 
16. Lab computer with labview: to run test 
program and equipment
17.  PEDOT:PSS:  planarizes  the  surface  for  the  active 
layer, and provides a slightly larger work function for the 
anode.
18.  P3HT:  an  organic  polymer  which  releases  exitons 
when struck by incident photons. ~$400 / gram 
19. PCBM: a fullerene derivative which collects electrons 
from disassociated exitons 
20. Chlorobezene: to dissolve the P3HT-PCBM 
mixture 
21. Aluminum pellets: Evaporated onto the 
top of device to form one electrode 
22. ITO coated glass substrates: the ITO will 
act as a transparent bottom electrode for 
the device.

IV. ABET SENIOR PROJECT ANALYSIS 

Ethical 

The team's work in the Polymer Electronics Lab 
for this project stemed from work already completed by 
other Cal Poly students such as Chris France [3] and Erik 
Everson  [4].  Additionally  some  of  the  manufactoring 
processes  drew  from  techniques  employed  in  Professor 

Heeger's lab in Santa Barbra. The software portion of the 
project  also  drew  upon  simulator  source  code  work 
completed  by  Tim  Hider,  Eric  Everson,  Chris  France, 
Robert Echols, Beat Ruhstaller, and Scott Cambell. All of 
these people deserve credit for their indirect contribution 
to the overall project.

Also since the devices  created through out the 
course of the project utilized harmful substances, the risks 
associated with working with said materials, talked about 
more  in  the  "Health  and  Safety,"  as  well  as 
"Environmental" sections below, were disclosed to the lab 
technicians

Environmental 

Using solar cells to capture sunlight, as intense 
as 1000W / m2  on the Earth's surface [5] at certian times 
of the day, may help to reduce the ongoing damage to the 
environment  which  energy sources  like  coal  and  fossil 
fuels  inflict.  Like  the  construction of  coal  fired  plants, 
however, the construction of solar cells and the plants to 
manufacture  them requires  energy and  some hazardous 
materials.

Although low dosages of aluminum are a natural 
occurrence,  the  aluminum  used  for  the  top  electrode 
(cathode) of the project's devices poses some health risk 
if enough of it accumulates in ground water. In addition 
to  aluminum,  the  indium used  in  the  bottom electrode 
(anode) poses a risk to microbes in the soil according to 
(cite). 

While small amounts of the metals used in the 
devices naturally occur in ground water and soil, we need 
proper reclamation of worn out or unwanted devices to 
prevent  toxic  concentrations  of  metals  in  the  ground 
water surrounding landfills. 

Besides  the  metals  used,  the  Safety Officer  in 
Physical  Chemistry at  Oxford  University  classifies  our 
polymer  solvent,  chlorobezene,  as  toxic  and  a  possible 
carigen [6].  While  toxic,  finished OPV devices  contian 
trace amounts, if any, of chlorobenzene and so then we 
focus  on  proper  handling  during  manufacturing  and 
disposale of unused polymer-fullerene-solvent solution.

Health and Safety 

As  with  any  endeavor  involving  potentially 
hazardous materials such as solvents and lab equipment 
such as the glove box and spin coaters, we must consider 
any health and safety risks associated with them. 

The glass substrates in these devices poses little 
health risk, but result in sharp edges which cut flesh and 
glove box seals. Likewise if broken, the glass bottles used 
to  hold  various  solutions   result  in  sharp  edges  and 
uncontained chemicals.

According  to  a  2005  paper  by  a  group  of 
Japanese  researchers,  fullerenes  like  PCBM  pose  no 
significant  health  risk.  Their  research  showed  no 
abnormal  mutation  rate  and  no  noticable  health 
differences  between the  control  group of  mice  and  the 
groups of mice administered 2000mg of C60 per kg of 
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body mass [7]. Chlorobezene, a possible carcogen, does 
pose a health  risk to  those persons who might  come in 
contact with it, i.e. lab technicians. As such the we store 
the container of  chlorobezene in the glove box. Since we 
mix  and  spin  coat  the  P3HT-PCBM  solution  onto  a 
substrate on the chemical side of the glove box, we placed 
the solvent container on the same side to provide ready 
access  to  it  and  minimize  the  impact  of  any  potential 
spills.

According  to  material  safety  data  sheets  from 
ScienceLab.com,  isopropyl  and  acteone,  used  to  clean 
substrates, also pose a health risk if they come into contact 
with skin or eyes or an open flame [8][9]. To mimize the 
ignition risk and protect technicians, we only used the two 
chemicals under the fume hood and then stored them in 
the flammables locker in closed containers. 

In  addition to the materials used in the project, 
care must be taken in operating the pumps for the glove 
box equipment and in moving things into or out of the box 
as to avoid a sudden change in pressure in any part of the 
box or the pumps. Additionally the hot plates used in the 
project  easily  burn  human  flesh  or  ignite  flammable 
materials, such isopropyl and acetone vapors, so it will be 
important to be mindful of the placement of the plates and 
any other objects. 

Sustainability 

Although  solar  energy provides  humans  with  a 
renewable energy resource of upto 1000 W/m2 of power 
during  daylight  hours,  over  time  the  performance  of 
photovoltaic  devices  degrades  and  the  packaging  wears 
down from exposure to the elements. So then the issue of 
sustainability comes  not  from the  energy source  in  this 
case, but the devices used to harnass the energy. 

The plastic packaging materials used in industry 
OPVs may be recyclable and other groups are conducting 
research  into  the  feasibility  of  reusing  the  P3HT  and 
PCBM  materials  in  the  active  layer.  By  recycling  the 
components  of  OPVs,  manufacturers  need  fewer  new 
materials and fewer potentially toxic materials end up in 
landfills.

Social 

As this project involved working with two faculty 
advisors  and  three  other  students,  scheduling  initially 
slowed  the  progress  of  the  project.  Fortunately  our 
unofficial team leader Steve Hawks, took on much of the 
lab schedule coordination and all  the team members set 
aside time regularly to meet for discussion and work. 

Solar energy also impacts society at the national 
and gloabal level. Widespread availability of inexpensive 
solar modules allows people to produce some if not all the 
power  they  need  for  electronic  applications  such  as  a 
refrigirator or lighting at night. This effect might help to 
bring fiscally poorer regions to a higher standard of living.

In  today's  industrialized  countries,  where  cell 
phones,  computers,  and  other  electronics  prevade  the 
society,  cheap  power,  especially  power  viewed  as 

sustainable to produce, may lead to an increase in power 
consumption and perhaps even demand on existing power 
generation like coal and nuclear plants. 

Political 

Politics  deals  with  the  guidelines  for  the 
distribution and consumption of common resources. The 
Department  of  Electrical  Engineering  at  Cal  Poly 
operates  one  Polymer  Electronics  Laboratory  for 
everyone  to  share.  Fortunately  for  this  project,  the 
polymer electronics lab only meets once a week and the 
rest of the time no other classes or projects needed the 
lab;  this  made getting access  to  this  common resource 
much easier.

In  a  larger  context,  our  nation's political  body, 
the U.S. Government, encourages consumers to use solar 
energy  to  offset  some  of  their  consumption  of  grid 
supplied power which typically comes from coal fired or 
nuclear power plants.  According to the U.S. Department 
of Energy, "Consumers who install solar energy systems 
(including solar water heating and solar electric systems), 
small  wind  systems,  geothermal  heat  pumps,  and 
residential fuel cell and microturbine systems can receive 
a  30%  tax  credit  for  systems  placed  in  service  before 
December  31,  2016"  [10].  Such  an  ecomonic  policy 
serves to increase the diffusion of solar technology and 
reduce the dependence on coal and nuclear fired power 
plants  which  also  create  byproducts  harmful  to  the 
common resource of the earth.

Economic

Economics  deals  with  the  flow  of  goods  and 
services from one entity to another. In the context of this 
project,  we  purchased  polymer,  syringes,  and  swabs 
among other things to carry out our work. Some of the 
manufacturing  was  delayed  while  we  waited  for 
companies to process and ship our orders.

Another  important  economic component to our 
work relates to the PV industry. Through innovation and 
consumer investment, the PV industry supplies thousands 
of workers with jobs, where the workers help to create a 
more environmentally friendly world.

Manufacturability 

The P3HT-PCBM blend used for  the OPVs in 
this  project  dissolves  in  chlorobenzene  at  near  room 
temperature, whereas silicon needs to be heated to 1414 
degrees  Celsius  for  liquification  [11].  Due  to  the  low 
liquification temperature and solution based processing, 
OPV manufacturers might use the roll-to-roll processing 
technology used for newspapers. Due to the prohibitively 
large investment of a roll-to-roll setup, however, for the 
course of this project we stuck to spin coating our device 
layers in the polymer electronics lab. 

Organic  polymers  degrade  in  the  presence  of 
contaminants such as water and oxygen. For this reason, 
once we cleaned a substrate and applied the PEDOT layer 
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via  spin  coating,  all  further  processing  steps  occured 
inside the polymer electronics lab's glove box.

In order to clean the substrates, we first subjected 
them to a  distilled  (DI)  water  and  joy dish soap  scrub. 
Then we sonicated the substrates in three seperate baths: 
DI  water,  acetone,  and  isopropyl  alcohol.  For  our  last 
cleaning  step,  we  put  the  substrates  into  a  UV Ozone 
reactor.

After thoroughly cleaning the substrates we spun 
coated an approximately 40 nm layer of PEDOT, which 
serves to reduce the flow of holes  from the Indium Tin 
Oxide  (ITO) anode to  the P3HT. To remove the  excess 
PEDOT around the  edge of  the device,  we used swabs 
dipped in DI water and then subjected the substrates to an 
anneal at 140° C for 10 min to help evaporate the water 
used to dissolve the PEDOT. The substrates then entered 
the glove box for the rest of the processing steps as  our 
active layer utilizes an organic polymer, P3HT.

Unlike the PEDOT, we needed an organic solvent 
to dissolve the P3HT-PCBM mixture; for our project we 
used the solvent  chlorobezene. We mixed a 1:1 ratio of 
P3HT and PCBM with the solvent to obtain concentrations 
of 12mg/ml and 17mg/ml, depending on the device run. 
Using a magnetic stir  bar,  we mixed the solution for  at 
least 24 hours at 150° C. Once thoroughly mixed we spun 
coated the blend on top of  the PEDOT layer  and again 
wiped  away the excess  away from the  edges,  this  time 
using swabs dipped in chlorobezene.  

After applying the polymer layers of the device, 
we  performed  the  final  processing  step,  cathode 
deposition. To accomplish this step, we moved the devices 
to a vacuum chamber, where under low pressure and high 
current conditions aluminum pellets heat  to the point  of 
vaporation. The vaporized aluminum floated upward and 
deposited itself on the devices  in a pattern determined by 
the mask used.  With completed devices,  we then  tested 
them as described below.

V. TESTING

In order to characterize the devices made in the 
lab, we tested them under three different lighting 
conditions. To make electrical contact with a device we 
used an eight pin jig so that we could test all four pixels on 
a device without having to move it. The jig connects to a 
switch, which connects to a Keithly SourceMeter.

Using a computer running labview, we ran the 
source-meter from -1 to 1 volt for each pixel under each 
lighting condition. We collected the current and voltage 
characteristics and used a custom program which 
calculates from the data the current density, fill factor, 
open circuit voltage and power conversion effiency.

First we tested the devices under dark conditions. 
With the I-V data collected from this test we calculate the 
leakage current of a particular pixel according to (3) as the 
average current over the voltage interval -1 volt to 0 volts. 
I have not included dark current data here, but for  the 
most part leakage current was small.

ILEAKAGE = IAVERAGE [-1 <= VBIAS <= 0]                               (3)

Under low light conditions or more precisely 
with a 40 W/m2 Dolan Jener light source, we obtained the 
seoncd set of I-V characteristics. Using the device's short 
circuit current density (Jsc) and open circuit voltage 
(Voc), we calculate its fill factor using (4), and power 
conversion effiecency (PCE) using (5) under lab lighting 
conditions. 

Fill Factor = (PD / Jsc*Voc) * 100%                  (4)

PCE = (PD / I) * 100%                                 (5)

The first device run the team completed yielded 
solar cells with PCEs ranging from 0.0 - 0.9% before 
annealing as shown in table IV. After the anneal step, we 

Table IV: 
Selected Results from Device Run 1

observed a marked, about 50%, degredation of effiency. 
We hypothesised that the low effieciency may have been 
due to too much aggregation of the PCBM.

Table V:
Selected Results from Device Run 2

With new PCBM, we manufactured a second 
batch of devices which operated at about 0.0-0.4% power 
conversion effiecency, as seen in table V. A decrease, 
rather than increase. of performance with the younger 
PCBM indicates that some other factor than the PCBM 
contributed to low performance in the first device run. 
Perhaps then the P3HT aggregated too much and not the 
PCBM.

With a younger batch of P3HT, the team 
produced devices with PCEs from 0.2 – 1.0% as 

Pixel FF (% ) Efficiency (% )
1A -12.890 0.366 35.549 0.195
1B -1.255 0.260 26.637 0.010
1C -1.225 0.331 31.592 0.015
1D -12.323 0.412 42.930 0.254
2A -14.709 0.466 43.516 0.347
2B -1.354 0.470 48.612 0.036
2C -1.648 0.482 46.965 0.043
2D -13.896 0.463 45.329 0.339

Jsc (A/m2) Voc (V)

Pixel FF (%) Efficiency (%)
7A -1.344 0.053 13.761 0.024
7B -1.659 0.457 44.042 0.834
7C -1.604 0.472 46.431 0.878
7D -1.244 0.338 33.770 0.355

10A -1.023 0.468 33.917 0.406
10B -1.503 0.122 24.397 0.111
10C -1.281 0.435 30.245 0.421
10D -1.002 0.426 30.256 0.323

Jsc (A/m2) Voc (V)
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highlighted in table VI, with only a couple pixels near 
0.0% and a single pixel at 1.4%. Perhaps then the older 
P3HT in the glove box degraded over time.

Table VI:
Selected Results from Device Run 3

Data from the fourth batch of solar cells seen in 
table VII shows no improvement with both younger P3HT 
and PCBM and in fact the performance goes down. At this 
time, we do not know why the old PCBM – new P3HT 
blend for the active layer produced the best devices. The 
tunneling electron microscope images taken at UCSB by 
Steve Hawks do not appear to show significant differences 
in topology. 

Table VII:
Selected Results from Device Run 4

Using a mobile testing setup, we tested the 
devices under our third and final lighting condition, 
outside. Under these conditions, devices recieve as much 
as 1000W/m2 of input power from the sun [5]. We only 
tested select devices under this third lighting condition as 
the 1000W/m2 intensity occurs only at two points during 
the day and even then the light intensity flucated during 
these times due to cloud cover and other amospheric 
conditions. Of the devices tested under these conditions, 
the best device achieved approximately 2% PCE, nearly 
twice what it had achieved under the low light conditions 
in the lab. Unfortunately once we removed a device from 
the box, it began to degrade as it oxidized.

VI. SIMULATION

As the flow digram depicted in fig. 1 shows, the 
simulator  software  has  a  primary  loop  which  executes 
code  that  satisfies  marketing  requirement  2  and  a 
secondary loop to carry out the multiple iterations of the 
current at every bias voltage needed for each simulation.

The simulator previously read and wrote files as 
raw numbers like the example input file shown in fig 2 of 
the  Appendix.  This  setup  proved  to  be,  even  for 
experienced users, cumbersome because users had to look 
in the simulator source code to figure out which values 
corresponded to what parameter. With the modifications I 
made in Winter quarter 2010 as seen in fig. 3, the labels 
in  the  files  make it  much easier  for  someone  famaliar 
with the basic physics of the P3HT-PCBM solar cell to 
interpret the values. Implementing these changes required 
modifying the Import_Values, Import_SweepParams, and 
main functions found in the demo.c file of appendix II.

The  JV  simulator  now  also  runs  multiple 
simulations  from  one  device  parameter  file.  The  user 
specifies a range for the active layer thickness (L) and the 
recombination correction factor  (ff_rec) with a starting 
value, ending value and step size as highlighted in fig. 3. 
To implement ranges for L and ff_rec, I wrote a function 
called  runsets  which  resides  in  demo.c  of  the  code 
appendix as well and added some glue code to the main 
function to facilitate its use.

For  each  of  the  simulations  the  program 
determines  the  PCE  from  the  maximum  PD  and  light 
intensity (I)  shone on the device as decribed in (4).  To 
find the maximum PD, the program calculates each J*V 
pairing and selects the minimum, in other words the J-V 
point where the device outputs the most power. Once the 
program has simulated each device, it then determines the 
simulation  which  had  the  highest  PCE,  i.e.  the  most 
negative  PCE  since  the  PCE  routine  doesn't  drop  the 
negative  sign  from  the  max  power  density  value,  and 
reports this value to the terminal before exiting as seen in 
mid  left  portion  of  the  simulator  flow  in  fig.  1.

Originally  I  purposed  using  the  improved 
simulator between device manufacturing runs to tune the 
simulator's correction factors and provide a better guess 
for  optimal  thickness.  Due to  large  variation in  device 
performance  in  the  lab  however,  this  idea  changed  to 
using the simulator to determine the correction factors for 
recombination and dissassociation for  the  best  reported 
P3HT-PCBM OPVs to date, the 4.4% PCE devices from 
Yang Yang Laboratories [12].

In  order  to  simulate  Yang  Yang's 
devices,  I  needed an  absorptivity profile,  a  Voc,  and  a 
thickness. The last  two parameters came from [12] and 
the first  parameter came from Emily Robertson's work. 
Emily calculated the absorptivity profile for our devices 
using (6) with the absorption and thickness measurements 
she took. 

α(λ) = OD(λ) / Thickness                                               (6)

Using an external quantum effiency (EQE) simulator with 
this profile, a Voc of 0.6V, a thickness of 210nm, and zero 

Pixel FF (% ) Efficiency (%)
10A -0.757 0.462 36.590 0.319
10B -0.763 0.356 31.190 0.212
10C -0.753 0.419 38.098 0.300
10D -0.793 0.412 35.278 0.288
11A -0.797 0.258 28.380 0.146
11B -0.628 0.331 31.847 0.165
11C -0.602 0.376 45.013 0.255
11D -0.700 0.053 14.920 0.014

Jsc (A/m2) Voc (V)

Pixel FF (%) Efficiency (% )
1A -1.6208 0.4732 53.3063 1.0222
1B -1.9078 0.4560 45.1430 0.9818
1C -1.6435 0.4262 47.1602 0.8259
1D -1.4110 0.4401 51.8740 0.8054
2A -1.5238 0.4591 53.8706 0.9423
2B -1.8714 0.4480 34.0584 0.7138
2C -1.8850 0.4704 49.6131 1.0999
2D -1.4088 0.4597 56.2972 0.9114

Jsc (A/m2) Voc (V)
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recombination  under  low light  conditions,  I  varied  beta 
until the simulated EQE matched the EQE for Yang Yang's 
devices. A beta of 0.82 produced this matched.

Running the JV simulator  with our absorptivity 
profile, the beta of 0.82, and a thickness of 210 nm yielded 
a  PCE  of  2.6%  and  a  Jsc  of  106A/m2  at  0.00156 
recombination  correction,  while  Yang  Yang  reported  a 
PCE  closer  to  4.4%  with  the  same  Jsc.  This  sizable 
difference in PCE suggests that simulator does not achieve 
the 67% fill factor which Yang Yang reports for his best 
devices. With the beta and r factors, I took advantage of 
the  new  simulator  capabilities  and  ran  a  range  of 
thicknesses  to  determine  that  the  210  nm  thickness 
reported for these devices achieved the maximum PCE.

r (beta) = beta * 6.061 – 1.697                                       (7)

Using the simulator with the Yang Yang beta of 
0.82 requires a recombination factor of 3.23 to achieve the 
Jsc  of  2.058  A/m2 from  our  best  pixel.  Such  a  high  r 
seems unlikely, rather our pixel probably falls in the r <= 1 
range. With a r of 1.00, the simulator requires a beta of 
0.445 to match the the Jsc from our pixel. On the lower 
end  of  the  recombination  spectrum,  I  assumed that  our 
pixel  had  an  r  of  at  least  0.00156,  the  Yang  Yang 
recombination. With this r, I found a beta of 0.28. Using 
these two endpoints with three additional  beta-r pairs in 
this range lead to the linear realtionship of (7) for r and 
beta.

VII. CONCLUSIONS

In CPE461 and CPE462 I labored about 50 hours 
to manufacture, test and simulate single layer P3HT-
PCBM solar cells. For the software portion of the project, 
I improved the user friendliness of the JV simulator by 

adding value labels and enabling parameter ranges for the 
thickness and recombination correction factor. I also 
improved the coding-friendliness by removing uneeded 
code and adding more comments about the function of 
the code. Using the improved simulator I found that the 
best P3HT-PCBM devices reported in the literature have 
high exiton dissassociation (0.82) and low recombination 
(0.00156) factors in the simulator. Our best devices on the 
other hand need additional improvement to achieve 
optimal performance to produce a relation similar to (7), 
but with a higher slope.

Additonally obtaining EQE data from our 
devices, rather than using EQE data from Yang Yang's 
paper will lead to a better estimation of beta and 
subsequently r for our devices. 

For the harware portion of this project,  I 
manfacutured several  P3HT-PCBM OPVs and collected 
JV data, some of which  I used in conjunction with the JV 
simulator. I found that at least for this project, these OPVs 
respond with large performance changes given small 
changes in manufacuring conditions, making results 
difficult to  reproduce.
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Appendix I: Figures and Tables

Fig. 1: Flow diagram of the polymer solar cell JV simulator. The program simulates the JV characteristics of several  
devices, each having a thickness-recombination correction factor pair calculated in the "Generate Simulation Sets".  For 
bias voltage applied to the simulated device (the lower right loop) multiple iterations of the current generation steps in 
the program occur to find a steady state current. The bias voltages are specified in the sweep parameter file and the  
maximum number of iterations is specified in the input parameter file.
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2-9-Win3B
40
1e7
1000000
200e-9
300
4.3
4.7
5.3
3.4
1e-9
3e-009 
100
5
100
2.5e28
880
600
1E-24
1.31261E-24
0.34
0.38
0.15
0.82
0

Fig. 2: Example of an unlabeled input file used by the old version of the JV simulator. Notice how the file is simply a  
list of numbers, none of which contain a label indicating what the numbers mean. Users wanting to edit the parameters  
must look up the parameter order in the source code of the program.

Output File:  2-9-Win3B
Illumination(W/m2): 40 
Absorption(cu): 1e7 
Iterations: 1000000
Thickness(m): 200e-9 230e-9 10e-9
Temperature(K): 300
Cathode Work Function(eV): 4.3
Anode Work Function(eV): 4.9
HOMO(eV): 5.3
LUMO(eV): 3.4
Zero Field n Mobility: 1e-9
Zero Field p Mobility: 3e-009 
Number of Cells: 100
Accuracy: 5
Time Step: 100
Chargable Site Density: 2.5e28
Field Dependent n Mobility Temperature(K): 880
Field Dependent p Mobility Temperature(K): 600
Field Dependent n Mobility Constant: 1E-24
Field Dependent p Mobility Constant: 1.31261E-24
Zero Field n Mobility Delta: 0.34
Zero Field p Mobility Delta: 0.38
Recombination Rate Factor(r): 0.01 0.15 0.01
Exiton Recombination Factor(Beta): 0.82 
Error Level: 0

Fig. 3: Example of a labeled input file used by the most recent working version of the JV simulator. The numbers in the  
file  now contain  labels  indicating the  paramter  name and  units  associated  with  the  parameter.  The thickness  and 
recombination rate factor now get entered as ranges, rather than single values.
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Table II: 
Engineering Requirements

Marketing Requirement(s) Engineering Requirement Justification

1 The simulator will utilize input files 
which have parameters labeled.

The end user will likely want to change the input 
parameters to the simulator and so the format for 
the input files needs to clearly indicate which 
numbers correspond to which parameters.

1 The simulator will output files which 
have results labeled

The end user needs to know what  the simulator 
results indicate, i.e.  the result 250 doesn't 
provide any context, whereas the result Current 
Density (mA/cm3): 250 does.

2 The simulator will accept parameter 
ranges from the input files

In order to run multiple simulations using one 
input file, the simulation must read in parameter 
ranges, not just parameter values

1, 3 The simulator software will require 
only one program be initialized for the 
simulation to run.

Having the user run more than one program 
could lead to out of order execution, which 
would yield potentially erroneous simulation 
results.

3 Lab results will be used to tune 
simulator after each batch run

Using real world data, the “fudge” factors in the 
simulator model can be tuned to better match the 
operation of actual solar cells

4 Devices created in the lab will be 
characterized using voltage, 
illuminated current density, dark 
current density, absorption, etc ... 
measurements 

In order to compare the simulated devices to the 
real devices, we need performance data from the 
real devices which has a simulated counterpart.
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Appendix II: Simulator Source Code

File: jvsim.h

/*******************************************************************************
 *  Project: Polymer Photovoltaic Modeling Code
 *  File: jvsim.h
 *  Author: James Boom, engineer.jboom@gmail.com
 *  Date: 2010-04-19
 *  Overview: This file contains all the library includes, function prototypes, 
 *  #defines and other global variables needed for compilation of demo.c
 ******************************************************************************/
 
//Needed Libraries
#include <stdlib.h>
#include <stdio.h>
#include <string.h>
#include <math.h>
//Constant Definitions
#define e 1.602e-19              // Fundamental Charge in units of Columbs
#define pi 3.141593              // You better know what this is
#define eo 8.8542e-12            // Permativity of Free Space
#define kb 1.3807e-23            // Boltzman constant
#define hc 1240                  // hc in units of eV*nm
#define toc_file "Xworking.toc"  // file that stores filenames of parameters

/* For the irradiance spectrum and the absporption spectrum the file 
 *   standard is: wavelength in first column in ascending order with 
 *   units of nm target value in second column in SI units.
 */

//Global Variable Definitions
double wavelen[4002], illum[4002], photon[4002], photonbin[4002], 

Generate[4002], *a;
int  err;
char inf_swp[25], inf_par[25], inf_abs[25], inf_absx[25], inf_irr[25], 

outfile[25];
int x, z=0, i, T, savestep, cells, accuracy, Emax;
char autostop, *filename, datfile[25] = "newinput.dat";
char label[25], ivfile[25], volt[25], infile[25];
double n[2002], p[2002], E[2002], Jn[2002], Jp[2002], mobp[2002], mobn[2002],

Ri[2002];
double dielec=3.5, V, L, dx, Temp, t, dt, c, dJn1, dJn2, dJp1, dJp2, Norm_E, 

Jold;
double Lbot, Ltop, deltaL, rbot, rtop, deltar;
double totn, totp, Norm_f, Norm_inj, Norm_surf;
double V0, ksi, phi_c, phi_a, HOMO, LUMO, No, nc, ff_rec, ff_int;
double psi, y, corr1, corr2, corr3, corr4;
double Jave, dJ, Rave, m0n, m0p, mob[2], vmax;
double V1, V2, dV,  bias[50], J[50], R[50];
// For calculating the field dep. mobility
double gam_n, gam_p, T0n, T0p, Bn, Bp, photoncheck;  
FILE *f1, *f2;
double sum;  //used for debugging generate spectrum term and photon count term
double phottot, illnorm;
double delp, deln, mSTp, mSTn;
double JscInterp[4001];
//coefficients in spline routines
double splineB[1][4001], splineC[1][4002], splineD[1][4002]; 
static int search_interval;
double Iwavelen[4002], Illum[4002];
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double Awavelen[4002], Abs[4002], Abs1[4002];
int Inumbins=0, Anumbins=0;
double *thicknesses, *recombs;
char **outfiles;
//Function Prototypes
double Import_Spectrum();
double Count_Photons();
void Import_Files(char *);
void Import_SweepParams(char *);
void Import_Values(char *);
void Generate_Spect();
void Import_ChargeDistr(int);
int runsets(double, double, double, double, double, double);
int maxpower(double *, int, int);
void Run_Loop();
void Export_Values(int);
int maxi(double *, int, int);
double max(double *, int);
void SplineCL(int, double *, double *, double *, double *, double *);
double SplineValCL(int, double, double *, double *, double *, double *, 

double *);
File: demo.c

/*******************************************************************************
 *  Project: Polymer Photovoltaic Modeling Code
 *  File: demo.c
 *  Author: James Boom, engineer.jboom@gmail.com
 *  Previous Authors: Tim Hider, Eric Everson, Chris France, Robert Echols,
 *  Beat Ruhstaller, Scott Cambell
 *  Date: 2010-04-19
 *  Overview: This code is appropriate for simulating JV characteristics of
 * blended materials such as M3EH-PPV with CN-ether-PPV when exiton
 * dissociation is assumed to be taking place throughout the bulk.
 *  Notes: This version does not use non-dimensional quantities. It incorporates
 * the injection/recombination currents as spelled out in Campbell Scott
 * and George Malliaras's paper.
 ******************************************************************************/

//Contains all other #include, #define, prototypes and gloable variables
#include "jvsim.h"
/*******************************************************************************
 * Function: int main()
 *
 * Inputs: None
 *
 * Outputs: 0 if it exits successfully, nonzero otherwise
 *
 * Overview: Contains glue code and calls all functions needed to run simulation
 ******************************************************************************/

int main(int argc, char **argv)
{
  int i, runindex;              //Index variables for simulation number
  double *PCEs;                 //Array to store the PCEs of simulated devices
  int PCEi = 0;                 //Index in PCEs that has the maximum PCE
  double mPCE = 0;              //Value of the maximum PCE found at PCEs[PCEi]
  int verbose=0;                //Verbose flag
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  //Check for verbose mode
  if(argv[1] != NULL){

if(argv[1][1] == 'v') verbose = 1;
  }

  printf("Simulating a polymer-blend solar cell.\n\n");
  //Prepare the simulator (import variables)
  Norm_E=e/dielec/eo;
  printf("Electric Field normalization=%1.2e\n",Norm_E);
  filename = malloc(sizeof(char)*25);
  a = malloc(sizeof(double)*4002);
  // Using TOC file to find location of input and output files
  Import_Files(toc_file);
  // Imports sweep parameters from file inf_swp
  Import_SweepParams(inf_swp);
  // Imports parameters from file inf_par
  Import_Values(inf_par);
  // Imports irradiance and absorptivity from inf_irr and inf_abs
  Inumbins = Import_Spectrum();
  // Counts the number of photons in a bin based on wavelen
  phottot = Count_Photons();
  // Array of unique parameters to use
  runindex = runsets(Lbot, Ltop, deltaL, rbot, rtop, deltar);
  // Allocate enough space to store all the PCE of all simulations
  PCEs = malloc(sizeof(double)*runindex);
  // Start Simulation
  for(i=0; i<runindex; i++)
  {

double PD[50];  // Holds power densities for each J-V pair
int PDi = 0;    // Ends up with index in PD that has maximum power
double PCE = 0; // PCE for this run
if(verbose) printf("Running simulation %d...\n", i+1);
//Set our two variables thickness and recombination factor here
ff_rec = recombs[i];
L = thicknesses[i];
z=0;
//Recalculate slice size for each L
dx=L/cells;
// Initial n, p charge distribution. chosen
Import_ChargeDistr(cells);
// Generates the charge generation term based on the illum and abs
Generate_Spect();
// subsequent n,p distribution's are taken from previous bias
sprintf(label,"%s", outfiles[i]);
sprintf(ivfile,"data/%s.iv",label);
// opens file for storing current-density versus voltage info
f2=fopen(ivfile,"w");
V=V1;
fprintf(f2,"V(Volt)\tJ(A/m2)\n"); // Print header for JV File
// Fudge factor to z to solve rounding error when V2 is odd

    // When V2 was odd program stopped executing before iterating for V=V2
while ((float) (z-0.000001)<=(V2-V1)/dV)
{
  sprintf(volt, "%1.1lf",V);

      sprintf(filename,"%s%sV",label,volt);
      sprintf(datfile,"data/%s.dat",filename);
      printf("In process: %s...\n",filename);
      V=(V-(phi_a-phi_c)); // voltage across the device
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  if (err > 0)
  {

printf("*1*\tVoltage across device (before run loop) = %1.3f\n", V);
  }
  Run_Loop();           // Solve for steady state results
  Export_Values(i);     // Output results for run to file
  V=V+(phi_a-phi_c); // Applied voltage

  // Record V, J, R for later use
  bias[z]=V;
  J[z]=Jave;
  R[z]=Rave;
  fprintf(f2,"%e\t %e\n",bias[z],J[z]);
  printf("\tTotal Photons: %1.3e%%\n", phottot);
  printf("...done\n");
  z++;
  V+=dV;

    }
//Output Results Step
printf("Outputting results...\n");
printf("\tBias(V)\tJ(A/m2)\t\tPower Density(W/m2)\n");
z=0;

    sprintf(filename, "%sJV.dat", outfiles[i]);   //Create JV output file name
f1=fopen(filename,"w");             //Open file to store the JV curve data

    fprintf(f1,"Bias(V)\tJ(A/m2)\tPower Density (W/m2)\n");
while ((float) (z-0.000001)<=(V2-V1)/dV) 
{

      //If in the 4th quadrant J becomes more negative, its most likely an error
  if((z > 1) && (bias[z] > 0) && (J[z] < J[z-1])) PD[z] = 0; 
  // Otherwise record the simulated power density
  else PD[z] = bias[z]*J[z];      
  // Screen output: V, J, PD
  printf("\t%1.2f\t%2.4e\t\t%2.3f\n", bias[z], J[z], PD[z]);
  // File output: V, J, PD
  fprintf(f1,"%e\t %e\t %e\n",bias[z],J[z],PD[z]);             
  z++;
}
//Find the minimum point in PD, i.e. the most power out per unit area
PDi = maxpower(PD,0,z); 
//PCE = (PDout / PDin)*100 (in %) Note: this is a negative number since 
//PDout is negative
PCE = (PD[PDi]/illnorm)*100; 
//Store the PCE for each run in this array
PCEs[i]= PCE;                         
if(verbose){
  printf("\n\tMax Output Power Density:    %1.3f W/m2\n", PD[PDi]);
  //-PCE, since the negative carries through from PDout
  printf(  "\tPower Conversion Efficiency: %1.3f%%\n", -PCE);     
}

fclose(f1);             //Close jv.dat
fclose(f2);             //Close ivfile
printf("\n"
  "...done\n");

  }
  //Since PCEs are negative, we can reuse the maxpower or min function
  PCEi = maxpower(PCEs,0,runindex);
  //-PCE, since the negative carries through from PDout
  mPCE = -PCEs[PCEi];           
  if(verbose){
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for(i=0;i<runindex;i++){
  printf("Device %s had a PCE of %1.3f\n", outfiles[i], -PCEs[i]);
}

  }
  // Report the maximum PCE from simulations and which device label is 
  // associated with it
  printf("\n"
    "Maximum PCE: %1.3f\n"

"From Device: %s\n"
"\n"
"Program Finished.\n", mPCE, outfiles[PCEi]);

  return 0;
}

/******************************************************************************
 * Function: void Import_Files(char *toc)
 *
 * Inputs: toc, file which holds the names of the other files to use for 
 * simulation.
 * 
 * Outputs: None
 *
 * Overview: Using the .toc file, imports the filenames for input and output of
 *  data.
 *****************************************************************************/

void Import_Files(char *toc)
{

//Variable for reading used labels from files
  char *junk = malloc(60*sizeof(char));
  printf("Importing filenames...\n");
  sprintf(infile,"%s",toc);
  f1=fopen(infile, "r");
  // input sweep parameters filename
  fscanf(f1,"%s %s %s %s", junk, junk, junk, inf_swp);  
  printf("\tSweep parameters filename is %s\n", inf_swp);
  // input parameters filename
  fscanf(f1,"%s %s %s %s",junk, junk, junk, inf_par);  
  printf("\tGeneral parameters filename is %s\n", inf_par);
  // input AM 1.5 irradiance spectrum filename
  fscanf(f1,"%s %s %s %s",junk, junk, junk, inf_irr);  
  printf("\tIrradiance spectrum filename is %s\n", inf_irr);
  // input absorptivity spectrum filename
  fscanf(f1,"%s %s %s %s",junk, junk, junk, inf_abs);  
  printf("\tAbsorption spectrum filename is %s\n", inf_abs);
  printf("...done\n");
  free(junk);
}

/******************************************************************************
 * Function: void Import_SweepParams(char *swpfile)
 *
 * Inputs: swpfile, file which contains the sweep voltage information
 *
 * Outputs: None
 *
 * Overview: Function to import the three voltage sweep parameters: V start, 
 * V end and V step.
 *****************************************************************************/
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void Import_SweepParams(char *swpfile)
{
  //Variable for reading labels from files
  char *junk = malloc(60*sizeof(char)); 
  printf("Importing sweep parameters from %s...\n", swpfile);
  f1=fopen(swpfile,"r");
  fscanf(f1,"%s %s %lf",junk, junk, &V1);
  fscanf(f1,"%s %s %lf",junk, junk, &V2);
  fscanf(f1,"%s %s %lf",junk, junk, &dV);
  fclose(f1);
  printf("\tV1=%1.1lf\n\tV2=%1.1lf\n\tdV=%1.1lf\n",V1,V2,dV);
  printf("...done\n");
  free(junk);
}

/******************************************************************************
 * Function: void Import_Values(char *devfile)
 *
 * Inputs: devfile, file which contains the device parameters
 *
 * Outputs: None
 *
 * Overview: Function to import device parameters.
 ******************************************************************************/

void Import_Values(char *devfile)
{
  //Variable for reading labels from files
  char *junk = malloc(60*sizeof(char));
  printf("Importing general parameters from %s...\n", devfile);
  f1=fopen(devfile,"r");
  fscanf(f1,"%s %s %s",junk,junk,filename); // output filename
  fscanf(f1,"%s %lf",junk,&illnorm);       // illumination
  fscanf(f1,"%s %lf",junk,a);           // absorption in c.u.=1e5 cm^-1
  fscanf(f1,"%s %d",junk,&T);           // # of iterations
  fscanf(f1,"%s %lf %lf %lf",junk,&Lbot, &Ltop, &deltaL); // device thickness
  fscanf(f1,"%s %lf",junk,&Temp);           // temperature
  fscanf(f1,"%s %s %s %lf",junk,junk,junk,&phi_c); // cathode work function
  fscanf(f1,"%s %s %s %lf",junk,junk,junk,&phi_a); // anode work function
  fscanf(f1,"%s %lf",junk,&HOMO);     // highest occupied molecular level
  fscanf(f1,"%s %lf",junk,&LUMO);     // lowest unoccupied molecular level
  // electron zero field mobility @ 300K
  fscanf(f1,"%s %s %s %s %lf",junk,junk,junk,junk,&m0n);
  // hole zero field mobility @ 300K
  fscanf(f1,"%s %s %s %s %lf",junk,junk,junk,junk,&m0p);
  fscanf(f1,"%s %s %s %d",junk,junk,junk,&cells); // number of cells
  fscanf(f1,"%s %d",junk,&accuracy); // accuracy
  fscanf(f1,"%s %s %lf",junk,junk,&nc); // time step factor
  // density of chargeable sites
  fscanf(f1,"%s %s %s %lf",junk,junk,junk,&No);
  // Temp. for calc. field dep. mob (elec)
  fscanf(f1,"%s %s %s %s %s %lf",junk,junk,junk,junk,junk,&T0n);
  // Temp. for calc. field dep. mob (hole)
  fscanf(f1,"%s %s %s %s %s %lf",junk,junk,junk,junk,junk,&T0p);
  // Const. term for calc field dep mob (elec)
  fscanf(f1,"%s %s %s %s %s %lf",junk,junk,junk,junk,junk,&Bn);
  // Const. term for calc field dep mob (hole)
  fscanf(f1,"%s %s %s %s %s %lf",junk,junk,junk,junk,junk,&Bp);
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  // delta term used to find 0-field mob. at any temp
  fscanf(f1,"%s %s %s %s %s %lf",junk,junk,junk,junk,junk,&deln);
  // delta term used to find 0-field mob. at any temp
  fscanf(f1,"%s %s %s %s %s %lf",junk,junk,junk,junk,junk,&delp);
  // fudge factor (r-increases recombination rate)
  fscanf(f1,"%s %s %s %lf %lf %lf",junk,junk,junk,&rbot,&rtop,&deltar);
  // fudge factor (Beta-simulates the exiton recombination)
  fscanf(f1,"%s %s %s %lf",junk,junk,junk,&ff_int);
  // flag to indicate level of error checking: 0=none, 1=low, 3=high
  fscanf(f1, "%s %s %d",junk,junk,&err);
  fclose(f1);
  printf("...done\n");
  
  if (err == 1)
    printf("***Running code in error level 1***\n");
  else if (err == 2)
    printf("***Running code in error level 2***\n");
  

  printf("Calculating constants...\n");
  ksi=kb*Temp;
  printf("\t(diffusion coef./mobility) ksi=%1.2e\n",ksi); 
  Norm_f=e*e*e/(4*pi*dielec*eo*ksi*ksi);
  printf("\tNorm_f=%1.3e\n",Norm_f);
  Norm_inj=16*pi*dielec*eo*No*ksi*ksi/e/e; 
  printf("\tNorm_inj=%1.3e\n",Norm_inj);
  Norm_surf=16*pi*dielec*eo*ksi*ksi/e/e; 
  printf("\tNorm_surf=%1.3e\n",Norm_surf);
  gam_n = Bn*(1/(kb*Temp)-1/(kb*T0n)); // gam_n = (E_0)^(-1/2)
  printf("\tgam_n=%1.3e\n",gam_n);
  gam_p = Bp*(1/(kb*Temp)-1/(kb*T0p)); // gam_p = (E_0)^(-1/2)
  printf("\tgam_p=%1.3e\n",gam_p);
  
  if (Temp != 300) {
    printf("\tMobilities @ 300K:\tm0n=%1.3e\tm0p=%1.3e\n",  m0n, m0p);
    printf("\tChanging mobilities from 300K to %1.1fK\n", Temp);
    mSTn = m0n*exp(deln/(kb*300/e));
    mSTp = m0p*exp(delp/(kb*300/e));
    m0n = mSTn*exp(-deln/(kb*Temp/e));
    m0p = mSTp*exp(-delp/(kb*Temp/e));
    printf("\tMobilities @ %1.0fK:\tm0n=%1.3e\tm0p=%1.3e\n", Temp, m0n, m0p);
  }
  else printf("\tRunning at 300K, no mobility recalculation necessary.\n");
  printf("...done\n");
  free(junk);
}

/******************************************************************************
 * Function: void Import_ChargeDistr(int numslices)
 *
 * Inputs: numslices, the number of slices to simulate at. Each slice is 
 * L/numsilces thick.
 *
 * Outputs: None
 *
 * Overview: Function to generate the initial charge distribution. Currently 
 * this is 0 everywhere
 *****************************************************************************/
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void Import_ChargeDistr(int numslices)
{
  printf("Importing charge distribution (no charge)...");
  //0 out charge distribution
  for (x=0;x<=numslices;x++) {
       n[x]=0.0;
       p[x]=0.0;
  }

  printf("done\n");
}

/******************************************************************************
 * Function: void Import_Spectrum()
 *
 * Inputs: None
 *
 * Outputs: None
 *
 * Overview: Function to import the absorption and illumination spectrums. 
 * Also normalizes the illumination according to the desired total 
 * illumination
 *****************************************************************************/

double Import_Spectrum()
{
  int i=0;
  double IllumT=0.0;
  //Reading illumination spectrum
  printf("Reading irradiance spectrum from %s ", inf_irr);
  f1=fopen(inf_irr,"r");
  fscanf(f1, "%lf", &Iwavelen[i]);
  while (!feof(f1)) {
    fscanf(f1, "%lf", &Illum[i]);
    i++;
    fscanf(f1, "%lf", &Iwavelen[i]);
  }
  Inumbins=i-1;  //counts the number of values in the illumination file
  fclose(f1);
  i=0;

  printf("done.\n");
  //Reading the absorption spectrum
  printf("Reading absorption spectrum from %s", inf_abs);
  f1=fopen(inf_abs,"r");
  fscanf(f1, "%lf", &Awavelen[i]);
  while (!feof(f1)) {
    fscanf(f1, "%lf", &Abs[i]);
    i++;
    fscanf(f1, "%lf", &Awavelen[i]);
  }
  Anumbins=i-1; //counts the number of values in the absorption file
  fclose(f1);
  printf("...done.\n");
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  // Normalizing using the value specified in the parameter file
  // Finding total illumination of unnormalized spectrum
  
  printf("Normalizing irradiance to %1.0f W/m^2...", illnorm);
  for(i=1;i<Inumbins;i++) {
    IllumT += (Iwavelen[i+1]-Iwavelen[i-1])*Illum[i]/2;
  }
  printf("\nInumbins: %d\n", Inumbins);
  IllumT += (Iwavelen[1]-Iwavelen[0])*Illum[0];
  IllumT += (Iwavelen[Inumbins]-Iwavelen[Inumbins-1])*Illum[Inumbins];
  // Normalizing
  
  for(i=0;i<=Inumbins;i++) {
    Illum[i]=Illum[i]*illnorm/IllumT;
      
  }
  printf("IllumT: %1.2e\tIllumNorm: %1.2e\n", IllumT ,illnorm);
  printf("done.\n");
  
  SplineCL(Anumbins, Awavelen, Abs, splineB[0], splineC[0], splineD[0]);
    
  for (i=0;i<=Inumbins;i++)
  {

a[i] = SplineValCL(Anumbins, Iwavelen[i],Awavelen, Abs, splineB[0], 
splineC[0], splineD[0]);

  }

  return Inumbins; //returns the number of entries in the abs and illum arrays. 
}

/******************************************************************************
 * Function: double Count_Photons()
 *
 * Inputs: None
 *
 * Outputs: double tot - the total number of photons from all "bins"
 *
 * Overview: This routine counts the number of photons, find the photon density 
 * and the photons per bin.
 *****************************************************************************/

double Count_Photons() {
  int i;
  double tot=0;
  printf("Counting photons...");
  // calculating for first boundary
  photon[0] = Illum[0]*Iwavelen[0]*1.0e-9/3.0e8/6.626e-34;
  photonbin[0]=photon[0]*(Iwavelen[1]-Iwavelen[0]);
  // calculating for bulk
  i=0;
  for(i=1;i<Inumbins;i++) {
    photon[i] = Illum[i]*Iwavelen[i]*1.0e-9/3.0e8/6.626e-34;
    photonbin[i]=photon[i]*(Iwavelen[i+1]-Iwavelen[i-1])/2;

  }

  // calculating for the second boundary
  photon[Inumbins] = Illum[Inumbins]*Iwavelen[Inumbins]*1.0e-9/3.0e8/6.626e-34;
  photonbin[Inumbins]=

  photon[Inumbins]*(Iwavelen[Inumbins]-Iwavelen[Inumbins-1]);
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  i=0;

  printf("done.\n");
  fflush(stdout);
  if (err > 0)
    {
      printf("*1*\ti\tIwavelen\tphotonbin\ta\n");
      for (i=0;i<=Inumbins;i++) {

printf("*1*\t%d\t%1.0f\t%1.4e\t%1.4e\n", 
i, Iwavelen[i], photonbin[i], Abs[i]);

      }
      printf("*1*\ttotal photons : %1.3e\n", tot);
    }
  for (i=0;i<=Inumbins;i++) {
    tot += photonbin[i];
  }  
  return tot;
}
/******************************************************************************
 * Function: void Generate_Spect()
 *
 * Inputs: None
 *
 * Outputs: None
 *
 * Overview: This routine calculates the generation terms for each slice
 *****************************************************************************/

void Generate_Spect()
{

  printf("Creating charge generation term...");
  for (x=1;x<=cells;x++) {
    Generate[x]=0;
    for(i=0;i<Inumbins;i++) {
      Generate[x] = 
      Generate[x]+ff_int*(a[i]*photonbin[i]*e*exp(-a[i]*L*x/cells)+

0.90*a[i]*photonbin[i]*e*exp(-a[i]*L)*exp(-a[i]*L*(cells-x)/cells)); 
    }
  } 
  sprintf(filename, "data/absorbtion.dat");  //debugging print of absorbtion
  f1=fopen(filename,"w");      // absorbtion data
  for (x=1;x<=Anumbins-5;x++)
    fprintf(f1,"%d \t %lf\n",x, a[x]);
  fclose(f1);

  sprintf(filename, "data/absorbtion2.dat");  //debugging print of absorbtion
  f1=fopen(filename,"w");      // absorbtion data
  for (x=1;x<=Anumbins;x++)
    fprintf(f1,"%d \t %lf\n",x, photonbin[x]);
  fclose(f1);
  sum=0;
  for(i=0;i<Inumbins;i++){

  sum =+ sum+Generate[i];
  }



25

  printf("done\n");
  return;
}
/******************************************************************************
 * Function: void Run_Loop()
 *
 * Inputs: None
 *
 * Outputs: None
 *
 * Overview: Function that handles most calculation. This is called once for 
 * each voltage value iterated through.
 *****************************************************************************/

void Run_Loop()
{
  t=0.00;
  i=0;
  Jave=Rave=0;
  savestep=100;
  autostop='n';
  while (autostop=='n') {
    if (i<30000) {
      c=nc*100.0;
    }
    else {
      c=nc;                                   
    }

    // Calc. the electric field by integrating Poisson's Eq. and 
    // satisfying the B.C. Calculate the mobilities
    ///Bulk of Device
    E[0]=0.00;
    for (x=1;x<=cells;x++)  // Integrate
      E[x]=E[x-1]+dx*Norm_E*(p[x]-n[x]);
    V0=0.00;
    for (x=1;x<=cells;x++)  // Find potenital
      V0=V0+E[x]*dx;
    E[0]=(V-V0)/L;
    for (x=1;x<=cells;x++) { 
      // Adding constant to integral result
      E[x]=E[x]+E[0];               
      // Calc. field dep. mobility
      mobp[x]=m0p*exp(gam_p*sqrt(fabs(E[x]+E[x-1])/2));    
      mobn[x]=m0n*exp(gam_n*sqrt(fabs(E[x]+E[x-1])/2));
      // Calc. Recombination rate 
      Ri[x]=Norm_E*(mobn[x]+mobp[x])*n[x]*p[x]; 
    }

 for (x=1;x<=cells-1;x++) {
      Jn[x]=e*(mobn[x]+mobn[x+1])*0.25*(n[x]+n[x+1])*
      E[x]+ksi*(mobn[x]+mobn[x+1])*0.5*(n[x+1]-n[x])/dx;
      Jp[x]=e*(mobp[x]+mobp[x+1])*0.25*(p[x]+p[x+1])*
      E[x]-ksi*(mobp[x]+mobp[x+1])*0.5*(p[x+1]-p[x])/dx;
    }

    ///Anode
    if (E[0]>0.0) {
      y=E[0]*Norm_f;
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      psi=1.0/y+pow(y,-0.5)-pow(1.0+2.0*pow(y,0.5),0.5)/y;
      corr1=exp(pow(y,0.5));
      corr2=(pow(psi,-2.0) - y)/4.0;
      corr3=1.0;  // corr3 and 4 not used
      corr4=1.0;
      Jp[0]= Norm_inj*mobp[1]*exp(-(HOMO-phi_a)*e/ksi)*corr1-

Norm_surf*mobp[1]*p[1]*corr2;
      Jn[0]=e*E[0]*n[1]*mobn[1];
    }
    else if (E[0]==0) {
      corr1=1.0;
      corr2=1.0;
      corr3=1.0;
      corr4=1.0;
      Jp[0]= Norm_inj*mobp[1]*exp(-(HOMO-phi_a)*e/ksi)*corr1-

Norm_surf*mobp[1]*p[1]*corr2;
      Jn[0]= -Norm_inj*mobn[1]*exp(-(phi_a-LUMO)*e/ksi)*corr3+

Norm_surf*mobn[1]*n[1]*corr4;
    }
    else {
      corr1=1.0;  // corr1 and 2 not used
      corr2=1.0;
      y=-E[0]*Norm_f;
      psi=1.0/y+pow(y,-0.5)-pow(1.0+2.0*pow(y,0.5),0.5)/y;
      corr3=exp(pow(y,0.5));
      corr4=(pow(psi,-2.0) - y)/4.0;
      Jp[0]=e*E[0]*p[1]*mobp[1]; 
      Jn[0]= -Norm_inj*mobn[1]*exp(-(phi_a-LUMO)*e/ksi)*corr3+

Norm_surf*mobn[1]*n[1]*corr4;

    }    
    if (corr2<=0||corr4<=0)
      printf("alert: psi^(-2)-f < 0 at anode \n");
    
    ///Cathode
    if (E[cells]>0.0) {
      y=E[cells]*Norm_f;
      psi=1.0/y+pow(y,-0.5)-pow(1.0+2.0*pow(y,0.5),0.5)/y;
      corr1=exp(pow(y,0.5));
      corr2=(pow(psi,-2.0) - y)/4.0;
      corr3=1.0;  // corr3 and 4 not used
      corr4=1.0;
      Jn[cells]= Norm_inj*mobn[cells]*exp(-(phi_c-LUMO)*e/ksi)*corr1-

Norm_surf*mobn[cells]*n[cells]*corr2;
      Jp[cells]=e*E[cells]*p[cells]*mobp[cells];
    }
    else if (E[cells]==0) {
      corr1=1.0;
      corr2=1.0;
      corr3=1.0;
      corr4=1.0;
      Jn[cells]=Norm_inj*mobn[cells]*exp(-(phi_c-LUMO)*e/ksi)*corr1-

Norm_surf*mobn[cells]*n[cells]*corr2;
      Jp[cells]=-Norm_inj*mobp[cells]*exp(-(HOMO-phi_c)*e/ksi)*corr3+

Norm_surf*mobp[cells]*p[cells]*corr4;
      }
    else {
      corr1=1.0;  // corr1 and 2 not used
      corr2=1.0;
      y=-E[cells]*Norm_f;
      psi=1.0/y+pow(y,-0.5)-pow(1.0+2.0*pow(y,0.5),0.5)/y;



27

      corr3=exp(pow(y,0.5));
      corr4=(pow(psi,-2.0) - y)/4.0;
      Jn[cells]=e*E[cells]*n[cells]*mobn[cells]; // careful E < 0
      Jp[cells]=-Norm_inj*mobp[cells]*exp(-(HOMO-phi_c)*e/ksi)*corr3+

Norm_surf*mobp[cells]*p[cells]*corr4;
    }    
    
    // choose dt=max_cell_transit_time/c
    ///Bulk of Device cont.
    Emax=maxi(E,0,cells);
    mob[0]=m0n;
    mob[1]=m0p;     
    vmax=max(mob,2)*E[Emax];
    dt=fabs(dx/c/vmax);           
    // Calculate new charge densities
    for (x=1;x<=cells;x++) {
      dJn1=(Jn[x]-Jn[x-1])/dx; 
      dJp1=(Jp[x-1]-Jp[x])/dx;
      dJn2=dJp2=ff_rec*e*Ri[x];
      // do not allow negative number densities
      n[x]=n[x]+(dJn1+Generate[x]-dJn2)*dt/e;
      p[x]=p[x]+(dJp1+Generate[x]-dJp2)*dt/e;
    }
    ///////////BCs with injection

    // Calculate averages, check autostop and transient
    if (i+1>=savestep) {  
      if (err > 2)

{
  printf("*1*\tJavg = %1.3e\n", Jave);
}

      
      Jold=Jave;
      Jave=Jn[0]+Jp[0];
      Rave=0.0;
      dJ=fabs(Jn[0]+Jp[0]-Jold);
      for (x=1;x<=cells;x++) {

Jave=Jave+Jn[x]+Jp[x];
Rave=Rave+Ri[x];
dJ=dJ+fabs(Jn[x]+Jp[x]-Jold);

      }
      Jave=Jave/(cells+1); 
      dJ=dJ/(cells+1);
      Rave=Rave/cells;
      if (Jave!=0){ 

if (fabs(dJ/Jave)<pow(10.0,-accuracy)) {
  autostop='y';
  printf("\tsuccessful convergence after %f (sec) and %d iterations !\n",

  t,i);
  printf("\tconvergence criteria dJ/J:  %f \n",dJ/Jave);
}
else if (i>=T) {
  autostop='y';
  printf("\tNO convergence after %f (sec) and %d iterations!\n",t,i);
  printf("\tconvergence criteria dJ/J: %f \t final value %f \n",

  pow(10,-accuracy), dJ/Jave);
}
else if (Jave!=Jave) {
  autostop='y';
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  printf("\tnumerical error after %1.3e (usec) and %d 
iterations !\n",t,i);

}
      }
    }
    t=t+dt;  
    // debugging purposes (printing itteration)
    i++;
  }
  printf("\t(last) dt = %e, total time= %e\n",dt,t);
  return;
}
/******************************************************************************
 * Function: void Export_Values(int)
 *
 * Inputs: index - int that represents the simulation number
 *
 * Outputs: None
 *
 * Overview: Function to output the results to data files. This is called for 
 * each itteration through the applied voltage
 *****************************************************************************/

void Export_Values(int index)
{
  sprintf(filename, "data/%sgenerate.dat", outfiles[index]);
  f1=fopen(filename,"w");      // recombination data
  for (x=1;x<=cells;x++)
    fprintf(f1,"%e %e\n",L*x/cells, Generate[x]);
  fclose(f1);
  sprintf(filename, "data/recomb%s%s.dat",outfiles[index],volt);
  f1=fopen(filename,"w");      // recombination data
  for (x=1;x<=cells;x++)
    fprintf(f1,"%e %e\n",L*x/cells,Ri[x]);
  fclose(f1);
  sprintf(filename, "data/pdensity%s%s.dat",outfiles[index],volt);
  f1=fopen(filename,"w");    // pos. charge density
  for (x=1;x<=cells;x++)
    fprintf(f1,"%e %e\n",L*x/cells,p[x]);
  fclose(f1);
  sprintf(filename, "data/ndensity%s%s.dat",outfiles[index],volt);
  f1=fopen(filename,"w");    // neg. charge density
  for (x=1;x<=cells;x++)
    fprintf(f1,"%e %e\n",L*x/cells,n[x]);
  fclose(f1);
  sprintf(filename, "data/electric%s%s.dat",outfiles[index],volt);
  f1=fopen(filename,"w");    // electric field data
  for (x=0;x<=cells;x++)
    fprintf(f1,"%e %e\n",L*x/cells,E[x]);
  fclose(f1);
  sprintf(filename, "data/pcurrent%s%s.dat",outfiles[index],volt);
  f1=fopen(filename,"w");    // pos. current data
  for (x=0;x<=cells;x++)
    fprintf(f1,"%e %e\n",L*x/cells,Jp[x]);
  fclose(f1);
  sprintf(filename, "data/ncurrent%s%s.dat",outfiles[index],volt);
  f1=fopen(filename,"w");    // neg. current data
  for (x=0;x<=cells;x++)
    fprintf(f1,"%e %e\n",L*x/cells,Jn[x]);
  fclose(f1);
  sprintf(filename, "data/tcurrent%s%s.dat",outfiles[index],volt);
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  f1=fopen(filename,"w");    // total current data
  for (x=0;x<=cells;x++)
    fprintf(f1,"%e %e\n",L*x/cells,Jn[x]+Jp[x]);
  fclose(f1);
  sprintf(filename, "data/n-p%s%s.dat",outfiles[index],volt);
  f1=fopen(filename,"w");         // difference in charge
  for (x=0;x<=cells;x++)
    fprintf(f1,"%e %e\n",L*x/cells,n[x]-p[x]);
  fclose(f1);
}

/* Finds the location of the last value in an array between positions l and n
   where the value of the array is greater than it is at the l^th position. */
int maxi(double a[], int l, int n)
{
  int j,index=l;
  double m=fabs(a[l]);
  for (j=l+1;j<=n;j++)
    if (m<fabs(a[j])) {
      index=j;
      m = a[j];
    }
  return index;
}

/* Finds the maximum value in the first n elements of an array */
double max(double a[], int n)
{
  int j;
  double m=fabs(a[0]);
  
  for (j=0;j<n;j++)
    if (m<fabs(a[j]))
      m=fabs(a[j]);
  return m;
}

/******************************************************************************
 * Function: double runsets(double Ll, double Lh, double dL, double rl, 
 * double rh, double dr)
 *
 * Inputs: Ll - the lower bound of the thickness range
 *    Lh - the upper bound of the thickness range
 *    dL - the thickness step size
 *    rl - the lower bound of the recombination range
 *    rh - the upper bound of the recombination range
 *    dr - the recombination step size
 *
 * Outputs: int product, the number of runsets to simulate
 *
 * Overview: Function to create all permutations of L and r given their ranges 
 * and step sizes
 *****************************************************************************/
int runsets(double Ll, double Lh, double dL, double rl, double rh, double dr)
{

int i, j;
int l, R, product;
double nL, nr;
nL = (Lh - Ll) / dL;
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l = ((int)nL) + 1;
printf("Number of thicknesses to simulate: %d\n", l);
nr = (rh - rl) / dr;
R = ((int)nr) + 1;
printf("Number of recombination factors to simulate: %d\n", R);
product = R*l;
printf("Total number of simulations: %d\n", product);
outfiles = malloc(product*sizeof(char *));
for(i=0; i<product; i++)
{

outfiles[i] = (char *)malloc(24*sizeof(char));
}
thicknesses = malloc(product*sizeof(double));
recombs = malloc(product*sizeof(double));
for(i=0; i<l; i++)
{

for(j=0; j<R; j++)
{

recombs[(i*R)+j] = rl + j*dr;
thicknesses[(i*R)+j] = Ll + i*dL;
sprintf(outfiles[(i*R)+j],"%3.0fnm%1.2lfrec",

thicknesses[(i*R)+j]*1e9,recombs[(i*R)+j]);
}

}
return product;

}

/******************************************************************************
 * Function: int maxpower(double[], int)
 *
 * Inputs:  P - double [] of J*V values
 * start - int which represents the index of P to start at
 * n - int which represents the index+1 of P to stop at
 *
 * Outputs: index - the index of the maximum power point (i.e. the most 
 * negative power density) in the range
 *
 * Overview: compare each of the elements from index start to n-1 in P and 
 * report the index of the most negative one
 *****************************************************************************/
int maxpower(double P[], int start, int n)
{

int i;
double max;
int index = start;
max = P[index];
for(i=start; i<n; i++)
{

if(P[i] < max){
index = i;
max = P[index];

}
}
return index;

}

/*** The following two spline interpolation routines are taken from the
C CATAM Software Library (CCATSL). These functions are freely available
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under the GNU General Public License. Visit
http://www.maths.cam.ac.uk/undergrad/tripos/catam/ccatsl/
for more information ***/

void SplineCL(int n, double *x, double *y, double *b, double *c, double *d)
{
 int i;
 double t;
 /* tri-diagonal coefficients : b[] diagonal, d[] off-d, c[] RHS ... */

 d[0] = x[1] - x[0];
 if (d[0] <= 0.0) {   /*'x[i+1] not > x[i] for some i'*/
   return;
 }
 c[1] = (y[1] - y[0]) / d[0];
 for (i = 2; i < n; i++) {
   d[i - 1] = x[i] - x[i - 1];
   if (d[i - 1] <= 0.0) {   /*'x[i+1] not > x[i] for some i'*/
     return;
   }
   b[i - 1] = 2 * (d[i - 2] + d[i - 1]);
   c[i] = (y[i] - y[i - 1]) / d[i - 1];
   c[i - 1] = c[i] - c[i - 1];
 }

 /* end condition ... */

 b[0] = -d[0];
 b[n - 1] = -d[n - 2];

 if (n == 3) {
   c[0] = 0.0;
   c[n - 1] = 0.0;
 } else {
   c[0] = c[2] / (x[3] - x[1]) - c[1] / (x[2] - x[0]);
   c[n - 1] = c[n-2] / (x[n-1] - x[n-3]) - c[n - 3] / (x[n-2] - x[n-4]);
   c[0] = c[0] * d[0] * d[0] / (x[3] - x[0]);
   c[n - 1] = c[n-1] * d[n-2] * d[n-2] / (x[n-4] - x[n-1]);
 }

 /* forward elimination ... */

 for (i = 1; i < n; i++) {
   t = d[i - 1] / b[i - 1];
   b[i] -= t * d[i - 1];
   c[i] -= t * c[i - 1];
 }

 /* back substitution ... */

 c[n - 1] /= b[n - 1];
 for (i = n - 2; i >= 0; i--)
   c[i] = (c[i] - d[i] * c[i + 1]) / b[i];

 /* ... now find polynomial coefficients ... */

 b[n - 1] = (y[n - 1] - y[n - 2]) / d[n - 2] +
            d[n - 2] * (c[n - 2] + 2 * c[n - 1]);
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 for (i = 0; i <= n - 2; i++) {
   b[i] = (y[i + 1] - y[i]) / d[i] - d[i] * (c[i + 1] + 2 * c[i]);
   d[i] = (c[i + 1] - c[i]) / d[i];
   c[i] = 3 * c[i];
 }
 c[n - 1] = 3 * c[n - 1];
 d[n - 1] = d[n - 2];

 search_interval = 1;

 /* no errors */

}  /*of spline*/

double SplineValCL(int n, double xx, double *x, double *y, double *b, 
double *c, double *d)

{
 double Result;
 int i, j, k;
 double t;

 /* add this to prevent C compilation warnings*/
 
// Result = 0.0;

 i = search_interval;
 if (i < 1 || i > n)
   i = 1;

 /* find interval ... */
 
 if (xx <= x[i - 1] || xx > x[i]) {
   i = 1;
   j = n;
   do {
     k = (i + j) / 2;
     if (xx < x[k - 1])
       j = k;
     else
       i = k;
   } while (j != i + 1);
 }

 t = xx - x[i - 1];
 search_interval = i;
 Result = y[i - 1] + t * (b[i - 1] + t * (c[i - 1] + t * d[i - 1]));

 /* no errors */ 
 return Result;
}  /*of seval*/
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