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1. Introduction

Let A1, A2 be a sequence of measurable sets in a probability space
(X, A, P), let P P(Al) > 0, and, for n > 1, let Pn be the conditional
probability of A, given F._l (the r-field generated by A An_l). Let
x(A) denote the indicator function of the set A, and, for n > !, let

Sn x(Aj) and S pj.
j=l j=l

Let logk r denote the k-th iterated logarithm of r (for example,
log3r log log log r). The main objective of this paper is to prove:

THEOREM 1.

()

and

(2)

For any positive integer k, both

lim (S. s.)/[s, logl(Sn)"’" logk-l(S.) logZk(Sn)] 1/2 0

s.)/[S, lOgl(S,,) log,_ l(Sn) lOg2k(S.)] 1/2 0

a.s. on the set where Z pj

Theorem brings the classical Borel-Cantelli lemma much closer to the
central limit theorem and law of the iterated logarithm, without any additional
assumptions concerning the divergence of the sums of the variances of the
random variables in question, assumptions quite essential in both latter
results. It sharpens Levy’s conditional form of the Borel-Cantelli lemma
[5, Corollary 68, p. 249], and an improved version due to Dubins and
Freedman ([2, Theorem 1] or [6, Corollary VII-2-6, p. 152]) which is stated
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Let AI' A 2 , ••• be a sequence of measurable sets in a probability space 
(X, A, P), let PI = P(A 1) > 0, and, for n > 1, let Pn be the conditional 
probability of An given Fn- 1 (the a--field generated by AI' ... , An-I). Let 
X(A) denote the indicator function of the set A, and, for n ~ 1, let 

n n 

Sn = L X(Aj ) and Sn = L Pj· 
j=1 j=1 

Let logk r denote the k-th iterated logarithm of r (for example, 
log3r = log log log r). The main objective of this paper is to prove: 

THEOREM 1. For any positive integer k, both 

(1) 

n~oc 

and 

(2) 

n~oc 

a.s. on the set where L~ Pj = 00. 

Theorem 1 brings the classical Borel-Cantelli lemma much closer to the 
central limit theorem and law of the iterated logarithm, without any additional 
assumptions concerning the divergence of the sums of the variances of the 
random variables in question, assumptions quite essential in both latter 
results. It sharpens Levy's conditional form of the Borel-Cantelli lemma 
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here for ease of reference:

(3) limn_oo Sn/S < ot a.s., and equals a.s. where E] pj .
A rather different generalization of the Borel-Cantelli Lemma based on

the unconditional hypothesis lim sup(ESn)2/E(S2n) > 0 was given by Kochen
and Stone [4].

2. Proof of Theorem 1

The following result for infinite series, a simultaneous generalization of
[3, p. 293] and a theorem of Dini [3, p. 290], will be used in the proof of
Theorem 1.

LEMMA 1. Let dl, d2, be a sequence of positive numbers with

Z d , and let D , dj. For every positive integer k,

(4)

Z dn/[(Dn 1ogl(Dn) lOgk-l(Dn) 1og(Dn)] < for some N > 1.
n=N

DEFINITION. For each positive integer k, let qbk denote the function

Cbk(r) r logl(r) 1ogk_ l(r) log(r).

Proof of Lemma 1. Fix k > 1, and N so that logkDN-1 > O. Let
g: [1, ) R be the step function g(x) dn for all x [n, n + 1), and
let f(x) f g(t) dr. Then for all n > N, and all x In, n + 1),

dn/tk(On) g(x)/dpk(f(x)) f’(x)/dk(f(x))

(where f’ denotes the ordinary derivative of f). Since limn__.= D
follows that

, [d,/dpk(Dn)] < [f’(x)/dpk(f(x))] dx
n=N N

1/1ogk(DN_ 1) < .
Proof of Theorem 1. Fix k > 1. To establish (1), consider the set B

where Z] pj is infinite, and let Rn (x(An) Pn)/(tk(Sn))1/2. By Kronecker’s
lemma, in order to show that (Sn Sn)/(lk(Sn)) 1/2 converges to zero almost
surely on B, it is sufficient to show that the series g] R, converges a.s. on
B. By the well-known conditional form of Kolmogorov’s Three-Series Theo-
rem, the series E] R, converges almost surely on the set where the following
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DEFINITION. For each positive integer k, let cPk denote the function 

cPk(r) = r logt(r) ... logk-t(r) log~(r). 
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(where I' denotes the ordinary derivative of f). Since limn~oo Dn 00, it 
follows that 

i [dn/</>k(Dn)] 0:;; ![f'(X)/</>k(f(X))] dx = 1/1ogk(DN - t ) < 00, • 

n=N N 

Proof of Theorem 1. Fix k ~ 1. To establish (1), consider the set B 
where ~~ Pj is infinite, and let R n = (X(An) - Pn)/(cPk(Sn»t/2. By Kronecker's 
lemma, in order to show that (Sn - Sn)/(cPk(Sn»t/2 converges to zero almost 
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B. By the well-known conditional form of Kolmogorov's Three-Series Theo
rem, the series 2~ Rn converges almost surely on the set where the following 
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three series all converge"

(5) ,7[P(lgn] > liE 1);
(6) X] E[Rn" x([Rn[ < 1)[Fn_];
(7) Y{E[g2n x(lRn[ < 1)[Fn-1] E[Rn x(lRn[ < 1)]Fn_]}.

The series in (5) and (6) converge a.s. on B since on the set where log
Sn > 1, both

e(lRn[ > liEn-l) and E[Rn" x([Rn[ < 1)]Fn_l]

are almost surely zero. To establish (1), it therefore suffices to show that
the series X] E[R2n x(]Rn] < 1)[Fn_l] converges a.s. on B.
On the set where 1Ogk Sn > 1 it follows that

E[R2n x(lgn[ < 1)[fn-1] E[R2n[fn_l] (Pn p2n)/k(Sn)

almost surely. But Lemma 1 implies that the series X] pn/tk(Sn), and thus
the series ’7(Pn p2n)/fk(Sn), converges (almost surely) on B. This completes
the proof of (1).
To establish (2), observe that

lim(Sn- Sn)/(+k(Sn)) 1/2

lim[(Sn Sn)/(+k(Sn))l/2] [()k(Sn))l/2/(6k(Sn))l/2],

and recall that by (1) the first term converges to zero a.s. on B, and by (3)
the second converges to one.
For an alternative proof of the first part of Theorem 1, one could use

Lemma 1 and (in place of the basic Kronecker Lemma conditional three-
series theorem argument given above) a result of Chow on martingale
difference sequences [1].
The exponent of 1Ogk in both Theorem and Lemma may easily be

reduced from 2 to 1 + e for any e > 0, but the resulting conclusions
are seen to be no stronger. The denominator in (1) is close to being
sharp, for if the {Aj} happen to be independent and equiprobable with
0 < p P(Aj) < 1, the law of the iterated logarithm implies that
lim sup(Sn Sn)/(S log2Sn) 1/2 (2 2p)/ almost surely.

It is an easy exercise to extend Theorem to include uniformly bounded
random variables and increasing tr-fields F. (to which the p. are adapted).

Acknowledgment. I would like to thank Professor Lester Dubins for
suggesting the second part of Theorem 1.
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