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Abstract  

Accurate tissue stress predictions for the annulus fibrosus are essential for understanding the factors that cause or 
contribute to disc degeneration and mechanical failure. Current computational models used to predict in vivo disc 
stresses utilize material laws for annular tissue that are not rigorously validated against experimental data. 
Consequently, predictions of disc stress resulting from physical activities may be inaccurate and therefore 
unreliable as a basis for defining mechanical-biologic injury criteria. To address this need we present a model for 
the annulus as an isotropic ground substance reinforced with two families of collagen fibers, and an approach for 
determining the material constants by simultaneous consideration of multiple experimental data sets. Two strain 
energy functions for the annulus are proposed and used in the theory to derive the constitutive equations relating 
the stress to pure stretch deformations. These equations are applied to four distinct experimental protocols and the 
material constants are determined from a simultaneous, nonlinear regression analysis. Good agreement between 
theory and experiment is achieved when the invariants are included within multiple, separate exponentials in the 
strain energy function.  

1. Introduction  

Intervertebral disc degeneration is a common clinical finding and a primary etiologic factor for spinal instability 
and low back pain (Deyo et al., 1991; Vanharanta et al., 1988). The hallmarks of this condition are dehydration of 
the normally gelatinous nucleus pulposus and progressive disorganization of the annulus fibrosus. In health, the 
annulus is a composite tissue consisting of collagen fibers arranged in layered sheets (lamellae) with a structure 
similar to that of an angle-ply laminate (Marchand and Ahmed, 1990; Tsuji et al., 1993). This architecture is ideal 
for containing the pressurized nucleus pulposus that, in turn, supports spinal compressive loads. As disc 
degeneration progresses, the annulus loses its lamellar organization and develops clefts and proteoglycanous cysts 
within its midsubstance, leading to protrusion and potential compression of adjacent nerve roots and/or the spinal 
cord (Lipson, 1988; Yamada, 1970). The epidemiological association between excessive physical activity and 
disc degeneration suggests that improper tissue stress may potentiate injury. This can occur acutely by way of 
direct extracellular matrix disruption (Vernon-Roberts and Pirie, 1977; Yasuma, 1990), or chronically via cellular 
remodeling (Brickley-Parsons and Glimcher, 1984; Lotz et al., 1998). In either case, the pathomechanics of this 
process is not understood to the extent that it may serve as a basis for elective clinical interventions. Toward that 
goal, the foundation for improved understanding of disc degeneration requires the ability to precisely define the 
stress with the disc in vivo. Spatial and temporal correlations between tissue stress predictions and the biologic 
(and morphologic) changes observed in in vivo models of degeneration can be used to clarify the mechanisms of 
degeneration and the bounds of tissue injury tolerance.  

Because of the inherent difficulties associated with direct measurement of annular stresses in situ, engineering 
techniques are typically used to simulate the response of disc to physiologic loading,  thereby  predicting stresses. 
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Nomenclature 

� dyadic tensor product 
F deformation gradient tensor 
T Cauchy stress tensor 
= strain energy function 
C right Cauchy}Green deformation ten­

sor 
I determinant of C 
B	 left Cauchy}Green deformation ten­

sor 
J	 determinant of F 
P	 "rst non-symmetric Piola}Kirchho! 

stress tensor 
(a , b ), (a, b)	 "ber direction vectors in the reference 

and present con"gurations, respective­
ly 

(E
�
, E

�
, E )	 rectangular Cartesian basis vectors in 

the reference con"guration 
I
�
, (i"1,2,3,4,6,8,9,10,11), invariants in 

the "ber-reinforced theory 
2�	 angle between the two "ber families 
I	 identity tensor 
�
�
, (i"1,2,3), principal stretches of F 

n;� material constants in the strain energy 
function given by Eq. (9) 

�	 material constants in the strain energy 
function given by Eq. (11) 

¹�	 composite function for the simulta­
neous regression 

�	 Kroneker delta function 
¹	 stress versus stretch solution for the 

ith experiment 
��	 goodness of "t statistic 

 
To accomplish this, several analytic and "nite element 
models have been developed which build the anisotropic 
behavior of the annulus through discrete representation 
of the collagen "bers imbedded within a homogeneous 
matrix (Broberg, 1983; McNally and Arridge, 1995; 
Shirazi-Adl, 1989). However, these representations have 
only been validated at the level of the whole disc, and 
while being useful for modeling spinal movement, can 
result in inaccurate predictions of tissue-level stresses 
(Duncan and Lotz, 1998). Alternatively, orthotropic con­
tinuum constitutive theories have been proposed for the 
annulus (Klisch and Lotz, 1998a; Elliott et al., 1997; Wu 
and Yao, 1976). The continuum approach may be prefer­
able since the tissue properties could be de"ned directly 
by experimental data, as compared to the composite 
approach where the behavior of the individual constitu­

ents are needed but cannot be determined explicitly. 
Previous attempts at using the continuum approach were 
limited by: (1) the assumption of incompressibility (Wu 
and Yao, 1976) (annular tissue is now known to posses 
signi"cant compressibility (Iatridis et al., 1998)); (2) as­
sumption of linearity (Elliott et al., 1997) (the annulus 
demonstrates signi"cant nonlinearity under physiologic 
loads (Shirazi-Adl et al., 1986)); and (3) the use of data 
from only a single type of experiment (Galante, 1967; 
Fujita et al., 1997; Ebara et al., 1996; Iatridis et al., 1998). 

The objective of this study was to develop a nonlinear, 
orthotropic constitutive law for the solid phase of the 
annulus "brosus that, in the future, could be used to 
provide accurate predictions of the in vivo stresses within 
disc tissue. Further, because of the morphological com­
plexity of the annulus, we questioned whether su$cient 
information exists within individual experiments to ad­
equately de"ne the mechanical behavior. Alternatively, 
we sought to simultaneously consider data from multiple 
experimental deformations to prescribe the requisite ma­
terial constants. In developing our constitutive model, we 
utilized a theory for an isotropic continuum reinforced 
with two families of "bers (Spencer, 1984). 

2. Methods 

2.1. Fiber-reinforced continuum theory 

The constitutive equation for a Green elastic material 
takes the form 

T" 
2 

F 
�= 

FT ,	 (1)
�C�I

where T is the Cauchy stress, F is the deformation gradi­
ent tensor, a superscript T denotes the matrix transpose 
operator, I is the determinant of the right 
Cauchy}Green deformation tensor C"F�F, ="=(C) 
is the strain energy, and �=/�C"�

�
(�=/�C# 

(d=/dC)¹). Alternatively, using the "rst (nonsymmetric) 
Piola}Kirchho! stress tensor P de"ned by JT"PF� 
where J is the determinant of F, Eq. (1) can be written as 

P"2F 
�= 

.	 (2)
�C 

In the theory for a "ber-reinforced continuum, it is 
assumed that the anisotropic properties of the material 
are solely attributed to the presence of the families of 
"bers (Spencer, 1984). For two families of "bers, the 
directions of the "ber elements are represented by mater­
ial line elements in the reference con"guration, denoted 
by the vectors a and b . These material line elements are 
deformed into the vectors a and b in the present con"g­
uration. To model the annulus, we take the rectangular 
Cartesian basis vectors (E

�
, E

�
, E ) to be aligned in the 
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Fig. 1. Continuum idealization of the annulus "brosus in the reference 
con"guration. The basis vectors (E , E , E ) are aligned in the local 
radial, circumferential, and axial directions, respectively. The two 
familites of "bers are represented in this reference con"guration by the 
vectors a and b which lie in the E !E plane and are oriented at 
angles of plus and minus � degrees from the axial direction E . 

radial, circumferential, and axial directions of a local 
anatomical con"guration (Fig. 1). We de"ne 

a "sin � E #cos �E
�
, 

(3) 

b "!sin �E #cos �E

so that the two families of "bers are oriented at angles of 
plus and minus � degrees from the axial direction. It is 
assumed that = is an isotropic scalar function of the 
tensors (C, a �a , b �b ), and that the two "ber families 
are mechanically equivalent such that = is symmetric 
with respect to interchanging the "ber directions a and 
b
� 

(the dyadic product � is de"ned by (a�b)c"a(bzc) 
for all vectors a, b, and c and where z denotes the dot 
product of two vectors). With these assumptions, Spencer 
(1984) showed that = can be expressed as 

="=I (I
�
, I

�
, I

�
, I

�
, I

�
, I

��
, I

��
, cos� 2�), (4) 

where 

I
� 
"tr C, I

� 
"�

�
[(tr C)�!tr C�], I

� 
"det C, 

I
� 
"a

� 
) Ca

�
, I

� 
"a

� 
) C�a

�
, I

� 
"b

� 
) Cb

�
, (5) 

I
� 
"b

� 
) C�b

�
, I

� 
"cos 2�a

� 
) Cb

�
, I

� 
"I

�
#I

�
, 

I
�� 

"I
�
I
�
, I

�� 
"I

�
#I

� 

and 2� is the angle between the "ber families in the 
reference con"guration. The invariants I and I are 
equal to the stretches along the "ber directions a and b , 
respectively. Also, the invariants I , I , I , and I only 
appear in the combinations shown in (5) due to the 
assumption that the "ber families are mechanically 

equivalent. Using (1) and (4) we can derive the constitut­
ive equation for the Cauchy stress in terms of the left 
Cauchy}Green deformation tensor B"FF�: 

T" 
2 

�(I =I #I =I )I#=I B!I =I B�� 
I��� � � � � � � �

#(I =I #I =I )a�a#(I =I #I =I )b�b
� � �� �� � � �� ��

#�I���=I (a�b#b�a)#I =I (a�Ba#Ba�a)
� �� � � ��

#I
� 
=I 

��
(b�Bb#Bb�b)�, (6) 

where =I is the partial derivative of =I with respect to 
the ith invariant and I is the identity tensor. Finally, we 
specialize to the case of pure stretch deformations, which 
are the type of experimental deformations we are prop­
osing to study. A pure stretch deformation takes the form 

F"� E �E #� E �E #� E �E
�
. (7)

� � � � � � � �

Hence, using the deformation gradient tensor (7) we can 
calculate the invariants in (5) and, using (6), can write the 
Cauchy stress explicitly in terms of the principle stretches 
as 

T" 
2 

�[=I (����#����#����)#=I ������]
� � � � � � � � � � � � � �

�(E �E #E �E #E �E )
� � � � � �

#=I (��E �E #��E �E #��E �E )
� � � � � � � � � �

!(� � � )�=I (���E �E #���E �E
� � � � � � � � � �
 

#���E �E )#2[=I #(�� sin� �

� � � � �
 

#�� cos� �)=I ](�� sin� �E �E

� �� � � � 

#�� cos� �E �E )#=I (!�� sin� �E �E
� � � � � � � 

#�� cos� �E �E )#4=I (�� sin� �E �E
� � � �� � � � 

#�
�
� cos� �E

�
�E

�
)�. (8) 

Due to our assumptions, our "ber-reinforced continuum 
is orthotropic with planes of re#ectional symmetry which 
are normal to the basis vectors (E , E , E ). Hence, Eq. (6) 
for our "ber-reinforced continuum can be shown to be 
equivalent to an orthotropic representation. However, an 
advantage of using the "ber-reinforced continuum theory 
is that if two annular specimens are mechanically equiva­
lent and di!er only by the collagen "ber orientations, 
then a single constitutive Eq. (6) can be applied to gener­
ate the di!ering mechanical properties by changing only 
the "ber angle. 

2.2. Specixcation of the strain energy function 

Motivated by the approach of Almeida et al. (1995) for 
a transversely isotropic model, we "rst considered the 



�
 

� 

� � � �

� 
� � �

�� �� 

�� �� 

following = as an approximation to the strain energy 
function for use with the "ber-reinforced theory 

=" 
1 

� exp[� (I !3)#� (I !3)#� (I !3)� 
I� � � � � � � �

#�
�
(I

�
!2)#�

�
(I

�
!2)�
 

#� (I !3)(I !2)#� (I !2)
� � � � ��

#� (I !1)#� (I !cos� 2�)�
� �� � �


#�
��

(I
�
!3)(I

�
!cos� 2�)
 

#�
��

(I
�
!cos� 2�)(I

�
!2)], (9) 

where n and �
�
, i"(0,1,2,3,4,5,6,7,8,9,10,11) are material 

constants. The constant � has dimensions of stress while 
the remaining constants are dimensionless. By demand­
ing that there exists a stress free reference con"guration, 
we derived the following relationships: 

n"� #2�
�
, � "!(1/2)(� #� ) (10) 

so that we have eleven independent material constants 
(� , � , � , � , � , � , � , � , � , � , � ). The motiva­

� � � � � � � � � �� ��
tions for choosing the form (9) for = were: (1) by setting 
b
� 
"0 to recover a one-"ber family theory (i.e., trans­

verse isotropy), it reduces to that used by Almeida et al. 
(1995); (2) extra terms involving the invariants were ad­
ded so that it reduces to the most general quadratic 
expression suggested by Spencer (1984) for use in a linear 
theory; and (3) these extra terms were included in the 
single exponential as proposed by Almeida et al. (1995). 

In a preliminary investigation we experienced di$culty 
using this formulation to specify the material parameters 
so as to obtain a reasonable "t to the stress vs. stretch 
data from four independent experiments. Hence, we 
chose another approximation to the strain energy func­
tion that places the dependence of the invariants in separ­
ate exponentials, instead of the same exponential as in (9). 
This second approximation to the strain energy function 
was 

="� �exp[� (I !3)]#exp[� (I !3)]
� � � � �


#exp[�
�
(I

�
!1)]#exp[�

�
(I

�
!2)]
 

#exp[� (I !cos� 2�)�]#exp[� (I !1)]
� � � ��

#exp[� (I !2)]#exp[� (I !3)(I !cos� 2�)]
� �� � � �


#exp[�
�
(I

�
!3)(I

�
!2)]
 

#exp[�
��

(I
�
!cos� 2�)(I

�
!2)]�, (11) 

where �
�
, i"(0,1,2,3,4,5,6,7,8,9,10) are material constants. 

The constant � has dimensions of stress while the re­
maining constants are dimensionless. By demanding 
a stress free reference con"guration, we derived 

� "!(� #2� ), � "!(1/2)(� #� ), (12)
� � � � � �

so that we have nine independent material constants 
(� , � , � , � , � , � , � ,� , � ) corresponding to Eq. (11). 

� � � � � � � � ��
The motivations for choosing the form in Eq. (11) for 
= were: (1) it contains the necessary terms involving the 
invariants so that it reduces to the most general quad­
ratic expression suggested by Spencer (1984) for use in 
a linear theory, resulting in 9 independent material con­
stants for a linear orthotropic material; and (2) the de­
pendence on the various invariants were expressed in 
separate exponentials which we believe allows for more 
#exibility in simultaneously matching data from several 
experimental protocols. We chose an exponential form 
instead of a polynomial for both strain energy functions 
as Fung et al. (1997) have shown that the exponential 
form results in smaller coe$cients of variation in mater­
ial constants determined from experimental data of bio­
logical tissues. 

2.3. Experimental data 

The experimental data to which we applied the strain 
energy functions (9) and (11) included: (A) con"ned com­
pression, radial stress vs. radial stretch, nondegenerate 
anterior outer (Iatridis et al., 1998); (B) con"ned compres­
sion, axial stress vs. axial stretch, nondegenerate anterior 
outer (Iatridis et al., 1998); (C) simple tension, radial 
stress vs. radial stretch, nondegenerate anterior middle 
(Fujita et al., 1998); (D) simple tension, circumferential 
stress vs. circumferential stretch, nondegenerate anterior 
outer and inner (Ebara et al., 1996) (Fig. 2). We assumed 
that this experimental data represents the equilibrium 
elastic (i.e., drained) response of the tissue in the context 

Fig. 2. Schematic reqresentation of the applied stresses for the four 
experimental protocols: A * radial con"ned compression; B * axial 
con"ned compression; C * radial tension; D * circumferential ten­
sion. The basis vectors (E , E , E ) are aligned in the local radial, 
circumferential, and axial directions, respectively. The traction-free 
boundary conditions in experiment C are satis"ed by setting the cir­
cumferential stress ¹ and the axial stress ¹ to zero. The traction-
free boundary conditions in experiment D are satis"ed by setting the 
radial stress ¹ and the axial stress ¹ to zero. 
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of the nonlinear biphasic theory proposed by Holmes 
and Mow (1990), and that the equilibrium response rep­
resents a homogeneous stress state. For (A) and (B), we 
set the principal stretches in the two directions that were 
normal to the loading direction equal to unity. For (C) 
and (D), we had to make assumptions concerning the 
principal stretches that were not directly measured. 
In using the data from (C), we estimated �

� 
" 

�
� 
"1.25!0.25�

�
, where the stretch in the radial direc­

tion, � , was measured. These relations were derived by 
using unpublished data gathered from our laboratory in 
which radial tension experiments were conducted while 
measuring the tissue stretches (i.e., contraction) on the 
free surfaces of the tissue. For (D), we estimated 
� "1; � "2!� , where the stretch in the circumferen­
tial direction, � , was measured. The relation for � was 

the radial direction (� ) would be substantially less than 
the contraction in the "ber direction (� ) and chose 
a constant value for � of 1.0. For (C) and (D), we 
converted (8) to the "rst Piola}Kirchho! stress P, since 
experimental stresses were calculated by dividing by the 
original cross sectional areas. For all experiments, we 
assumed a uniform "ber angle of �"603 from the axial 
direction. 

We conducted simultaneous regressions to the four 
experimental data sets (A)}(D) with and without invok­
ing the traction-free boundary conditions for (C) and (D). 
In general, when solving the boundary value problem for 
the radial tension test (C) one must insure that the free 
surface stresses in the circumferential and axial direc­
tions, ¹ and ¹ , equal zero (Fig. 2). Hence, when 
invoking the traction-free boundary conditions for (C), 
we derived equations for the axial and circumferential 
stresses, ¹ and ¹ , in terms of the radial stretch, � ,

�� �� �
and set these equations equal to zero and included them 
in the set of equations used in the simultaneous regres­
sion. Similarly, when invoking the traction-free boundary 
conditions for (D), we derived equations for the axial and 
radial stresses, ¹ and ¹ , in terms of the circumferen­
tial stretch, � , which were set equal to zero (Fig. 2). 
Initially, regressions were performed without invoking 
the traction-free boundary conditions as this may be 
a better relative evaluation of the two proposed strain 
energy functions as considerable uncertainty in the free 
surface stretches, which were not directly measured in the 
tensile experiments, may introduce large errors in the 
predictions of the free surface stresses. 

The derivatives of = with respect to each of the invari­
ants were calculated from Eqs. (9) and (11) for our two 
choices of the strain energy function, and were introduc­
ed into Eq. (8) to derive the stress vs. stretch relationships 
using Mathematica (V. 2.2.1, Wolfram Research, Cham­

paign, IL). The resulting stress vs. stretch equations pre­
dicted by the theory and the speci"c choices of the strain 
energy function are too long to present here. 

2.4. Statistical analysis 

To prescribe the material coe$cients imbedded in 
our formulation, we conducted a simultaneous nonlinear 
regression to the mean response of the stress versus 
stretch data from the four experiments using a Leven­
berg}Marquardt nonlinear "tting algorithm (Mathe­
matica). This was accomplished by "rst creating a 
composite function, ¹�, that was the sum of the measured 
stress vs. stretch equations from the four experimental 
protocols 

derived using a Poisson's ratio of 1.0 as Acaroglu et al. 
¹ �" ¹ � (13)

(1995) reported a Poisson's ratio for this stretch of
 
1.0}1.25 for normal, anterior outer annulus in circum­
ferential tensile tests. We assumed that the contraction in
 

��� ���
 

where � is the Kroneker delta function and ¹ is the
 
stress versus stretch solution for the ith experiment. This 
composite function was then "t to the four data sets to 
determine the material coe$cients. In this manner, the 
goodness of "t statistic (��) calculated for ¹ � was 
a measure of how well the underlying constitutive formu­
lation simultaneously described the four experimental 
data sets. We "rst performed the simultaneous, nonlinear 
regression analysis to the mean experimental response 
corresponding to the stress versus stretch data which 
were directly measured in the loading direction of experi­
ments (A)}(D). We repeated the simultaneous, nonlinear 
regression using the four equations mentioned above 
plus four additional equations corresponding to the trac­
tion-free boundary conditions for experiments (C) and 
(D) to determine a new set of the material constants. We 
rejected any solutions for the material constants for 
either strain energy function that predicted non-mono­
tonic behavior for any of the measured stress-stretch 
relationships in the range of experimentally reported 
stretches. 

3. Results 

The strain energy given by (11) resulted in the lower 
�� value in the simultaneous regression to the four dir­
ectly measured stress}stretch relations. Using the strain 
energy given by Eq. (9), the best-"t values of 
(� , � , � , � , � , � , � , � , � , � , � ) were (0.204,

� � � � � � � � � �� ��
0.751, 0.075, !0.291, 0.647, 3.868, !0.399, 1.364, 
!0.084, 2.004, 1.045). With these values, the predicted 
stress versus stretch composite function (13) was corre­
lated to the experimental data with a �� value of 0.35 
(Fig. 3). Using the strain energy given by Eq. (11), the 
best-"t values of (� , � , � , � , � , � , � , � , � )

� � � � � � � � ��
were (0.001, !0.737, !3.289, !6.496, 0.4091, 17.713, 



Fig. 3. Simultaneous curve-"t results using the strain energy of Eq. (9) to match the four equations representing the measured stress}stretch data. The 
material constants (� , � , � , � , � , � , � , � , � , � , � ) equal to (0.204, 0.751, 0.075, !0.291, 0.647, 3.868, !0.399, 1.364, !0.084, 2.004, 1.045) 

� � � � � � � � � �� ��
resulted in a �� value of 0.35. A"radial con"ned compression (Iatridis et al., 1998); B"axial con"ned compression (Iatridis et al., 1998); C"radial 
tension (Fujita et al., 1997); D"circumferential tension (Ebara et al., 1996). Solid curves"mean experimental response $1 standard deviation; open 
circles"theoretical prediction of measured stress}stretch response. 

0.683, !2.615, 0.262). With these values, the predicted 
stress versus stretch composite function (13) was corre­
lated to the experimental data with a �� value of 0.08 
(Fig. 4). 

The strain energy given by Eq. (11) resulted in the 
lower �� value in the simultaneous regression to the four 
directly measured stress}stretch relations plus the four 
additional equations corresponding to the traction-free 
boundary conditions for experiments (C) and (D). Using 
the strain energy given by Eq. (9), the best-"t values of 
(�

�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

�
, �

�
, � ) were (!0.0004,

��
, �

��
7.399, !0.869, !3.702, !4.489, 10.163, 12.112, 871.94, 
!352.91, !71.83, 162.42). With these values, the pre­
dicted stress versus stretch composite function (13) was 
correlated to the experimental data with a �� value of 
1.15. Using the strain energy given by Eq. (11), the best-"t 
values of (� , � , � , � , � , � , � , � , � ) were (0.001,

� � � � � � � � ��
!1.716, !3.338, !4.574, 0.369, 12.955, 0.600, 
!2.911, 0.212). With these values, the predicted stress 
versus stretch composite function (13) was correlated to 
the experimental data with a �� value of 0.51 (Fig. 5). 

4. Discussion 

We have developed a nonlinear, orthotropic constitut­
ive theory for the annulus that matches current experi­
mental data representing the broad range of stresses 
anticipated in vivo. We utilized a conceptually novel 
technique of simultaneous regression to multiple data 
sets in order to determine the material constants. Using 
a theory for an isotropic continuum reinforced with two 
families of "bers, we were able to specify a formulation 
whose predictions simultaneously fell within one stan­
dard deviation of the mean response of the annulus when 
measured in four di!erent experimental deformations. 
Good approximation to the data was achieved by using 
a strain energy function (11) which expresses its depend­
ence on the invariants in separate, multiple exponentials 
instead of combining all of the invariant terms in a single 
exponential. This "nding is especially noteworthy as the 
single exponential form of the strain energy function (11) 
used two less material constants than that incorporating 
multiple exponentials (9). 



Fig. 4. Simultaneous curve-"t results using the strain energy of Eq. (11) to match the four equations representing the measured stress}stretch data. The 
material constants (� , � , � , � , � , � , � , � , � ) equal to (0.001, !0.737, !3.289, !6.496, 0.409, 17.713, 0.683, !2.615, 0.262) resulted in 

� � � � � � � � ��
a �� value of 0.08. A"radial con"ned compression (Iatridis et al., 1998); B"axial con"ned compression (Iatridis et al., 1998); C"radial tension 
(Fujita et al., 1997); D"circumferential tension (Ebara et al., 1996). Solid curves"mean experimental response $1 standard deviation; open 
circles"theoretical prediction of measured stress}stretch response. 

The theory proposed in the present paper is similar to 
that used by Wu and Yao (1976), who also investigated 
the mechanical properties of the annulus using Spencer's 
theoretical approach. They developed the theory for 
a material with two families of extensible "bers and used 
a polynomial form of the strain energy function. The 
primary di!erence between the work of the present paper 
and that of Wu and Yao (1976) is that the current model 
is compressible, which is compatible with current experi­
mental and theoretical observations (Iatridis et al., 1998; 
Holmes and Mow, 1990). Also, our proposed strain en­
ergy function is a combination of exponential functions 
instead of a polynomial and was "t to experimental data 
from four distinct protocols. Our strain energy function 
is consistent with that of Fung et al. (1979), who sugges­
ted that the exponential form has more #exibility in 
matching experimental data and thus may be used suc­
cessfully with fewer material coe$cients. The present 
study also demonstrates the need to simultaneously con­
sider the annular behavior under multiple deformations. 
In particular, when "tting the model independently to 

each of the stress}stretch curves in a preliminary study 
(Klisch and Lotz, 1998b), we obtained signi"cantly di!er­
ent material constants for each experimental data set. 
That is, a model based on one type of experiment could 
not predict the response of the same tissue under di!erent 
boundary conditions. These results demonstrate that sig­
ni"cant errors may be encountered when attempting to 
extrapolate the theoretical predictions beyond those ex­
plicitly included in the development of the material law. 
Also, there are fewer equations than unknown material 
constants in both regressions that were performed in the 
present paper and which indicates that the solutions 
obtained are not unique. Thus, equations gained from 
modeling additional deformations would be useful in 
identifying unique solutions for the material constants of 
the strain energy function. 

We have not invoked an a priori constitutive inequal­
ity to obtain restrictions on the material constants which 
appear in the proposed strain energy functions. A few 
constitutive inequalities which have been proposed in the 
past include the Baker}Ericksen inequalities, convexity, 



Fig. 5. Simultaneous curve-"t results using the strain energy of Eq. (11) to match the four equations representing the measured stress}stretch data and 
the additional four equations representing the traction-free boundary conditions for experiments C and D. The material constants 
(� , � , � , � , � , � , � , � , � ) equal to (0.001, !1.716, !3.338, !4.574, 0.369, 12.955, 0.600, !2.911, 0.212) resulted in a �� value of 0.51. 

� � � � � � � � ��
A"radial con"ned compression (Iatridis et al., 1998); B"axial con"ned compression (Iatridis et al., 1998); C"radial tension (Fujita et al., 1997); 
D"circumferential tension (Ebara et al., 1996). Solid curves"mean experimental response $1 standard deviation; open circles"theoretical 
prediction of measured stress}stretch response; "lled squares"theoretical prediction of &traction-free' stress}stretch response for experiments C 
and D. 

the generalized Coleman}Noll condition (Truesdell and 
Noll, 1965), and the requirement that the strain energy 
becomes unbounded as the Jacobian of the deformation 
gradient approaches zero (Holmes and Mow, 1990; 
Kwan et al., 1990). Apart from the last condition men­
tioned above, it is not clear that these inequalities 
are appropriate for anisotropic continua, as the Baker} 
Ericksen inequalities are only postulated for isotropic 
continua and both convexity and the generalized Cole­
man}Noll condition are regarded as too restrictive (Mar­
sden and Hughes, 1983). Nevertheless, we investigated 
whether the stress vs. stretch response predicted when 
using our proposed strain energy function (11) remained 
convex over a physiologic range of elastic stretches. The 
predicted stress}stretch relations remained convex to 
stretches of 0.3 in the con"ned compression protocols, 
which would be the maximum allowed stretch based on 
an initial solid content of 0.3 (Best et al., 1994) and the 
biphasic constraint of intrinsic incompressibility (Holmes 

and Mow, 1990). In addition, convexity was predicted in 
tensile tests beyond the reported failure stretches of 1.8 
for a radial tension protocol (Fujita et al., 1997) and 1.15 
for a circumferential tension protocol (Ebara et al., 1996). 
Since strict convexity is a su$cient condition for in­
cremental stability and uniqueness (Ogden, 1997), we 
regard the proposed strain energy function (11), along 
with the reported material constants, as being physically 
plausible for the range of deformations studied. 

The inclusion of the traction-free boundary conditions 
in the simultaneous regression resulted in a poorer over­
all "t to the experimental data. The likely reason for this 
is that we needed to assume the principal stretches in the 
o!-axis directions for the tension experiments (C and D) 
since these were neither measured nor reported in the 
literature. For example, when studying the radial tension 
response, the traction-free stress components lie in the 
axial and circumferential directions of the tissue which 
are much sti!er than the radial direction of applied 



loading due to the collagen "ber orientation. As a result, 
small errors in the estimates of the axial and circumferen­
tial stretches will lead to large relative errors in the 
predicted stresses in these directions as compared to the 
measured stresses in the radial direction. This is the 
primary reason we chose to also conduct regressions 
without invoking the traction-free boundary conditions. 
Other sources of error include the lack of explicit data 
regarding the initial "ber orientations and the assump­
tion that the "ber angle was constant throughout the 
specimens. 

Another limitation of the present study is the large 
variation in the available experimental data for the an­
nulus. As a result, some di!erences observed for the stress 
vs. stretch responses between the four experimental pro­
tocols may be attributed to specimen-speci"c variability 
as opposed to tissue anisotropy. While this may be true, 
the stress required to produce a stretch of 1.1 for the 
circumferential tension experiment was two orders of 
magnitude higher than that for the radial tension experi­
ment, indicating a strong anisotropic response of the 
annulus. Also, in the future the in#uence of specimen­
speci"c variability may be reduced by including addi­
tional parameters (donor, disc level, and disc region) into 
the statistical regression. Despite these limitations, the 
work of the present paper is unique in that it is the "rst 
time that a nonlinear anisotropic continuum theory for 
the annulus "brosus has been simultaneously applied to 
multiple experimental protocols. The success of this ap­
proach is encouraging and demonstrates both the need 
and feasibility of combining data from multiple experi­
ments to de"ne a constitutive theory for annular tissue. 
In order to improve the predictive capability of the "ber­
reinforced theory, we plan on conducting additional ex­
perimental and theoretical studies including biaxial ten­
sion experiments (Bass and Lotz, 1999) and including 
shear deformations in the regression (Wagner et al., 1999; 
Fujita et al., 1996). 

Another approach to modeling the nonlinear, anisot­
ropic behavior of the annulus may be to develop a con­
tinuum mixture model by representing the ground 
substance and collagen "bers as individual solids (Atkin 
and Craine, 1976) or by employing homogenization tech­
niques (Suquet, 1985). These approaches may provide 
a better prediction of the stresses acting on the ground 
substance, the individual collagen "bers, and the cells, 
and should ultimately be sought to explore the relation­
ship between applied stresses and the cellular biosyn­
thetic response. However, such nonlinear theories are 
substantially more complex than the anisotropic model 
proposed in the present paper. In particular, they pose 
the di$culty of experimentally determining the material 
properties of the matrix constituents, specifying the ap­
plied experimental tractions to each of the constituents 
(i.e., the ground substance and the collagen "bers), and 
require additional constitutive equations related to the 

microstructure (i.e., matrix}"ber interactions). The the­
ory which we have proposed appears to be su$cient for 
realizing our goal of developing an anisotropic con­
tinuum model of the annulus capable of simultaneously 
predicting the macroscopic stresses measured in multiple 
experimental protocols. Yet, the question of how precise 
tissue stress predictions need to be, and consequently the 
appropriate method to be used, can only be answered 
within the context of speci"c research questions raised in 
studies where these theoretical techniques are applied. 
Nonetheless, our results demonstrate that regardless of 
the theoretical approach utilized, validation with data 
from a variety of experimental deformations is crucial for 
accurately modeling the behavior of tissues with strong 
anisotropy such as the annulus "brosus. 

Another advantage of the "ber-reinforced continuum 
theory over standard orthotropy is that once a constitut­
ive equation is obtained for a specimen, then the consti­
tutive equation for another specimen which only di!ers 
by the orientation of the collagen "bers can be obtained 
by adjusting a single parameter, the "ber angle. Since it 
has been shown that the "ber angle from the axial direc­
tion varies from $603 at the periphery to $453 at the 
innermost layers (Cassidy et al., 1989), the "ber-rein­
forced theory has the potential for separating the e!ects 
of heterogeneous collagen "ber orientation from other 
microstructural parameters (e.g., collagen "ber density 
and proteoglycan content). We expect that the material 
constants used in the present theory would depend 
strongly on collagen content, proteoglycan content, and 
degeneration grade of the disc. For these reasons, we 
believe that the proposed "ber-reinforced continuum the­
ory is a logical "rst step in characterizing the strongly 
anisotropic behavior of the annulus, and future studies 
should include data from other deformations (such as 
shear), the precise measurement of all three stretches in 
tensile experiments, and specimen-speci"c regressions. 

In summary, we have developed a "ber-reinforced 
continuum model of the annulus "brosus and simulta­
neously applied the theory to the mean response mea­
sured in four distinct experimental protocols undergoing 
large deformations. In doing so we have identi"ed a new 
exponential form for the annular strain energy function 
that is dependent on nine material coe$cients. We anti­
cipate that the utilization of the proposed constitutive 
law will result in more accurate predictions of the anisot­
ropic stresses and strains developed within the annulus in 
vivo in both health and disease and ultimately will lead 
to a better understanding of the mechanisms of degen­
erative disc disease. 
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