
A mixture of elastic materials with different constituent
temperatures and internal constraints

Stephen M. Klisch

Department of Mechanical Engineering, University of California at Berkeley, Berkeley, CA, USA

Abstract

A novel treatment of the 2nd Law of Thermodynamics and the development of general thermome-
chanical constraints are introduced for a mixture of two elastic materials in which the constituents may
have different temperatures. First, a homothermal quasi-static process at a common mixture temperature is
introduced. Part I of the 2nd Law of Thermodynamics is invoked to assert that the Clausius integrals are
path-independent, which leads to a prescription, or an identification, of the partial entropy functions. Then,
two assumptions are introduced that establish the values of the partial entropy functions for general
processes, including those for which the constituent temperatures are not equal. Constitutive restrictions
are derived for path-independent processes from the mixture energy equation, and further constitutive
restrictions are derived for general processes upon invoking the Clausius–Duhem inequality as a statement
of Part II of the 2nd Law of Thermodynamics. The complete set of constitutive restrictions are then shown
to equal those derived by other authors, a result which supports the adopted assumptions concerning the
partial entropy functions for general processes. Then, an internal constraint involving the deformation
gradient tensors and the constituent temperatures is represented by a constraint manifold, and an internally
constrained mixture of elastic materials is associated with each unique equivalence class of unconstrained
mixtures. The examples of a mixture constrained to have a common temperature and a mixture constrained
by temperature-dependent intrinsic compressibility are discussed.



1. Introduction

Theories for mixtures that allow different constituent temperatures were developed and studied
by various authors in the 1960s and 1970s, including Eringen and Ingram [1], Steel [2], Bowen and
Garcia [3], Dunwoody and M€uuller [4], and Craine et al. [5]. In [1–5], the constituent entropy was
introduced as a primitive variable and constitutive restrictions were derived from an entropy
inequality. Those treatments of the thermodynamics of mixtures follow the approach first pre-
sented by Coleman and Noll [6], which is widely used in many areas of continuum thermody-
namics. However, the validity of introducing the entropy as a primitive variable was questioned
by Rivlin [7,8] and Day [9], both of whom advocated the identification of a thermomechanical
process that leads to a prescription for the entropy. In a mathematically rigorous fashion,
Coleman and Owen [10] established the existence of the entropy function for several classes of
materials, but they did not study mixtures.

Krishnaswamy and Batra [11] were the first authors to extend the ideas of Rivlin [7,8] to
mixtures. In [11], a special process was identified that was assumed to be path-independent
and which led to a prescription for the partial entropy in a mixture of an elastic solid and an
viscous fluid at a common temperature. Using this approach, one obtains the identification of a
series of experiments that, if performed, allows the measurement of the partial entropy
function. Consequently, this approach is physically appealing for understanding the thermo-
dynamics of mixtures. In the first part of this paper I extend the theory of Krishnaswamy and
Batra [11] to a mixture of two elastic materials with different constituent temperatures. This is
done by using the framework for mixtures with different constituent temperatures presented by
Craine et al. [5], so that the results of this paper can be compared with theories that view the
partial entropy as a primitive variable. After the constitutive restrictions are obtained through
this new approach, it is shown that the constitutive restrictions are the same as those derived
in [5].

The form of the stress tensor in an internally constrained elastic material can be obtained only
after introducing additional assumptions beyond those inherent in the theory of unconstrained
elastic materials. The first general theory of internally constrained elastic materials with an ex-
plicitly stated assumption appears to have been presented by Adkins [12]. Adkins [12] assumed
that the stress could be expressed as an additive decomposition of two terms: a determinate stress
and a symmetric indeterminate stress, for which the stress power vanishes. This approach was
further developed by Truesdell and Noll [13] for simple materials. Green et al. [14] developed the
first general theory of thermomechanical constraints. Additional treatments of thermomechanical
constraints have appeared in many papers, e.g., see [15–18]. Casey and Krishnaswamy [19] de-
veloped a new approach to internally constrained thermoelastic materials; the method of Casey
and Krishnaswamy [19] was extended to mixtures of elastic materials at a common temperature
by Klisch [20]. A general internal constraint was introduced in [20]; this constraint involved both
deformation gradient tensors and the common mixture temperature. This approach was moti-
vated by the constraint of intrinsic incompressibility first proposed by Mills [21] and studied by
other authors, including Craine [22], Bowen [23], Rajagopal and Tao [24], and Atkin and Craine
[25]. As with incompressible elasticity, the introduction of this constraint makes it possible to
obtain solutions to a wider variety of boundary-value problems. In particular, the intrinsic in-
compressibility constraint has been used in mixture models of biological tissues including articular



cartilage [26,27] and the intervertebral disc [28]. In the second part of this paper, the approach of
[20] is extended to a mixture with different constituent temperatures.

Preliminaries for a mixture of two elastic materials with different constituent temperatures
using the basic equations of Craine et al. [5] are given in Section 2. The identification of a path-
independent process, a prescription for the partial entropy, and constitutive restrictions are ob-
tained in Section 3, which concludes with an analysis that shows that the results agree with those
derived in [5]. An internal constraint involving the deformation gradient tensors and the con-
stituent temperatures is represented by a constraint manifold in Section 4, and an equivalence
class of unconstrained mixtures is associated with the constraint. A definition of a constrained
mixture is presented in Section 5. Two important examples are presented in Section 6: a mixture
constrained to have a common mixture temperature and a mixture constrained by temperature-
dependent intrinsic compressibility.

2. Preliminaries

In this section, the basic definitions and equations presented by Craine et al. [5] are specialized
to a mixture of two elastic materials with different constituent temperatures. We consider a
mixture C of two elastic materials Ca, with the superscript a ¼ 1; 2 being used to designate each
constituent (the summation convention is not used on aÞ. A material particle of Ca occupies a
position Xa in a fixed reference configuration K0 and a position xa in a present configuration K.
It is assumed that there exists one particle of each Ca at each point x in the mixture such that
x ¼ x1 ¼ x2. The motion and temperature histories of Ca are defined by sufficiently smooth
mappings

xa ¼ vaðXa; tÞ; ha ¼ ĥhaðXa; tÞ: ð2:1Þ

The pair fva; ĥhag is referred to as a process for Ca. We will assume that h1 ¼ h2 in the reference
configuration K0.

The density qa of Ca is considered to be the average mass density of Ca over a small mixture
volume. The density of the mixture is defined as

q ¼
X2

a¼1

qa: ð2:2Þ

The velocity of Ca is

va ¼ da

dt
vaðXa; tÞ; ð2:3Þ

where the material time derivative dað�Þ=dt following the motion of Ca is given for scalar or vector
functions fðx; tÞ and wðx; tÞ by



daf
dt

¼ of
ot

þ ðgradfÞ � va;
daw

dt
¼ ow

ot
þ ðgradwÞva: ð2:4Þ

The material time derivative dð�Þ=dt following the mean mixture motion is defined as

df
dt

¼ of
ot

þ ðgradfÞ � v; dw

dt
¼ ow

ot
þ ðgradwÞv; ð2:5Þ

where the mean, or barycentric, velocity v is

qv ¼
X2

a¼1

qava: ð2:6Þ

The diffusion velocity ua and the relative velocity aa are

ua ¼ va � v; aa ¼ va � v2: ð2:7Þ

From (2.4), (2.5) and (2.7) we obtain the following useful relationships:

daf
dt

¼ dbf
dt

þ ðgradfÞ � ðva � vbÞ ¼ df
dt

þ ðgradfÞ � ua;

daw

dt
¼ dbw

dt
þ ðgradwÞðva � vbÞ ¼ dw

dt
þ ðgradwÞua:

ð2:8Þ

For each Ca, the deformation gradient tensor is

Fa ¼ ovaðXa; tÞ
oXa ; ð2:9Þ

where

Ja ¼ det Fa > 0: ð2:10Þ

The velocity gradient tensor, the rate of deformation tensor, and the spin tensor are

La ¼ ova

ox
; Da ¼ 1

2
ðLa þ LaTÞ; Wa ¼ 1

2
ðLa � LaTÞ; ð2:11Þ

respectively, where the superscript T denotes the transpose operator.
The spatial forms of the balance of mass, linear momentum, angular momentum, and energy

equations for Ca take the form 1

1 The balance equations in this section are obtained from [5] after omitting the terms due to mass exchange.



daqa

dt
þ qadivva ¼ 0; ð2:12Þ

qa dava

dt
¼ divTa � la þ qaba; ð2:13Þ

1

2
Ta
�

� TaT
�
¼ Ta

skew ¼ �ka; ð2:14Þ

qa daea

dt
¼ qara � divqa þ ba þ Ta �Da; ð2:15Þ

where Ta is the partial Cauchy stress tensor, la is the diffusive force, ba is the partial external body
force, ka is the internal body couple, ea is the partial internal energy, ra is the partial external heat
supply, qa is the partial heat flux, and ba is the internal energy supply. The energy equations (2.15)
will be used in Section 3 when invoking Part I of the 2nd Law of Thermodynamics.

The balance of momentum for the mixture requires that

X2

a¼1

la ¼ 0: ð2:16Þ

The balance of angular momentum for the mixture requires that

X2

a¼1

ka ¼ 0; ð2:17Þ

so that the total stress in the mixture is symmetric, i.e.,

T ¼
X2

a¼1

Ta ¼ TT: ð2:18Þ

The balance of energy for the mixture requires that

X2

a¼1

bað � la � va þ ka �WaÞ ¼ 0; ð2:19Þ

which can be written in the form

X2

a¼1

Ha ¼ 0; ð2:20Þ

where

Ha ¼ ba � la � ðva � v2Þ � Ta
skew � ðWa �W2Þ: ð2:21Þ



We now derive an alternative expression for the mixture energy balance, which will be used for
studying the consequences of the 2nd Law. Using (2.20) and (2.21), we write the energy equation
for Ca (2.15) in the alternative form

qa daea

dt
¼ qara � divqa þ Ha þ la � ðva � v2Þ þ Ta �Da þ Ta

skew � ðWa �W2Þ: ð2:22Þ

Partial Helmholtz free energy functions wa are introduced as

wa ¼ ea � gaha; ð2:23Þ

where ga is the partial entropy, for which a prescription will be given in Section 3. The mixture
Helmholtz free energy function w is defined as

qw ¼
X2

a¼1

qawa

ha : ð2:24Þ

Without loss of generality, the partial stresses and diffusive forces can be written as

Ta ¼ ha/aIþ T
a
; la ¼ ha grad/a þ la; ð2:25Þ

where

/a ¼ qa wa

ha

�
� w

�
;
X2

a¼1

/a ¼ 0; ð2:26Þ

and the parts of the partial stresses and diffusive forces in which /a appears do not contribute to
the balance equations. Following [5] we make the additional definitions

g	a ¼ ga þ wa

ha ; q	a ¼ qa þ qahauag	a; ð2:27Þ

and

T a ¼ 1

ha ; D ¼ T 1 � T 2; ð2:28Þ

where T a is often called the coldness of Ca. The balance of energy for the mixture is obtained by
adding (2.22) for each Ca and using (2.7)2, (2.11), (2.20), and (2.23)–(2.28): 2

2 This is the only major equation presented in this section that does not appear in [5]. Note that the terms involving /a

in the partial stresses and diffusive forces (2.25) do not contribute to the mixture energy balance (2.29).



�q
dw
dt

þ
X2

a¼1

qag	a

T a

dT a

dt
þ H1D þ

X2

a¼1

qaT a

�
� 1

T a

daga

dt
þ ra

�
þ
X2

a¼1

T a la � aa
�

þ T
a � La

�

�
X2

a¼1

T adivq	a½ � div qauag	að Þ� ¼ 0: ð2:29Þ

The Clausius–Duhem inequality is

X2

a¼1

qa daga

dt

�
� qara

ha þ div
qa

ha

� �	
P 0: ð2:30Þ

Using (2.23), (2.24) and (2.27)–(2.29), (2.30) becomes 3

�q
dw
dt

þ
X2

a¼1

qag	a

T a

dT a

dt
þ H1D þ

X2

a¼1

T a la � aa
�

þ T
a � La

�
þ
X2

a¼1

q	a � gradT a P 0; ð2:31Þ

which will be invoked in Section 3 as a statement of Part II of the 2nd Law of Thermodynamics.
A superposed rigid-body motion of the mixture is defined by

vaþ Xa; tþð Þ ¼ QðtÞva Xa; tð Þ þ c tð Þ; tþ ¼ t þ c; ð2:32Þ

where QðtÞ is a proper-orthogonal second-order tensor, cðtÞ is a vector, and c is a constant. The
quantities ðQðtÞ; cðtÞ; cÞ for each Ca are equal. Under a superposed rigid-body motion of an
unconstrained mixture at fixed temperatures, it can be shown that the following kinematic
quantities transform as:

Faþ ¼ QFa; Jaþ ¼ Ja; Daþ ¼ QDaQT;

qaþ ¼ qa; aaþ ¼ aa; Waþ ¼ daQ

dt
QT þQWaQT;

ð2:33Þ

while it is assumed that

Taþ ¼ QTaQT; laþ ¼ Qla; qaþ ¼ Qqa; baþ ¼ ba; eaþ ¼ ea: ð2:34Þ

From (2.15), (2.21), (2.28)2, and (2.33) and (2.34) it can be concluded that

raþ ¼ ra; Haþ ¼ Ha; Dþ ¼ D: ð2:35Þ

3 This inequality is equal to a result (Eq. 5.23) in [5] with the mass exchange terms set to zero.



3. Entropy and restrictions on constitutive equations

The approach taken in this paper to develop a prescription for the partial entropy generalizes
that of Krishnaswamy and Batra [11] to a mixture with different constituent temperatures. In
particular, those authors applied an approach advocated for materials with memory [7–9] and
thermoelastic materials [19] to a mixture of an elastic solid and a viscous fluid with a common
temperature. In this paper, a homothermal quasi-static process at a common mixture temperature
is introduced and Part I of the 2nd Law of Thermodynamics is invoked. This assumption im-
mediately leads to a prescription for the partial entropy function for processes at a common
mixture temperature. In order to define the entropy function for general processes, e.g., when the
constituents have different temperatures, two important assumptions are made. Then, restrictions
on the constitutive equations are derived from the mixture energy equation for path-independent
processes. Further restrictions are derived for general processes from the Clausius–Duhem in-
equality, which is invoked as a statement of Part II of the 2nd Law of Thermodynamics. Finally,
the constitutive results are compared, and shown to equal, those derived by Craine et al. [5], which
lends support to the two assumptions made regarding the entropy function for general processes.

For a mixture of two elastic materials, we adopt the notation

X ¼ fF1;F2;G1;G2; T 2g; ð3:1Þ

where Ga ¼ GradFa; X can be considered to be a point in a 73-dimensional Euclidean space R73.
Without loss of generality, we take

ea ¼ êea X; a1;D
� �

¼ oêe
a Xð Þ þ eêe

a X; a1;D
� �

; ð3:2Þ

Ta ¼ T̂Ta X; a1;D
� �

¼ oT̂T
a Xð Þ þ eT̂T

a X; a1;D
� �

; ð3:3Þ

where

oêe
a Xð Þ ¼ êea X; 0; 0ð Þ; eêe

a X; 0; 0ð Þ ¼ 0; ð3:4Þ

oT̂T
a Xð Þ ¼ T̂Ta X; 0; 0ð Þ; eT̂T

a X; 0; 0ð Þ ¼ 0: ð3:5Þ

Further, it is assumed that

qa ¼ q̂qa X;D; g1; g2
� �

; q̂qa X; 0; 0; 0ð Þ ¼ 0; ð3:6Þ

where ga ¼ gradT a: We require that eaðI; I; 0; 0; T0; 0; 0Þ ¼ 0; where T0 is the common mixture
coldness in the reference configuration K0. A path P in the space R73 is parameterized by a real-
valued function dðtÞ as

PðdÞ ¼ fF1ðdÞ;F2ðdÞ;G1ðdÞ;G2ðdÞ; T 2ðdÞg; ð3:7Þ

where d1 6 d6 d2: A homothermal quasi-static process at a common mixture temperature is de-
fined to be the limit of homothermal processes at a common mixture temperature:



ga ¼ 0; D ¼ 0; _dd ¼ dd
dt

> 0; _dd ! 0: ð3:8Þ

By defining

va
	 ¼

da

dd
vaðXa; tÞ ð3:9Þ

and using va
	 in place of va in (2.6), (2.7) and (2.11) we obtain definitions for the quantities v	, u

a
	,

a1
	, L

a
	, and Da

	 so that

va ¼ va
	
_dd; v ¼ v	 _dd; ua ¼ ua

	
_dd; a1 ¼ a1

	
_dd; La ¼ La

	
_dd; Da ¼ Da

	
_dd: ð3:10Þ

Therefore, in a homothermal quasi-static process at a common mixture temperature va ! 0,
v ! 0, ua ! 0, a1 ! 0, La ! 0, and Da ! 0. Finally, for such processes it is assumed that

ba ! 0; ra ! 0 ð3:11Þ

and

ba= _dd ! 0; ra= _dd ! ra
lim; ð3:12Þ

where ra
lim remains finite. Hence, the energy equation (2.15) for Ca can be written in rate-inde-

pendent form for a homothermal quasi-static process at a common mixture temperature as

qa daêea X; 0; 0ð Þ
dd

¼ qara
lim þ T̂Ta X; 0; 0ð Þ �Da

	 ð3:13Þ

or, using (3.4) and (3.5), as

T aqara
lim ¼ T a qa da

oêea

dd

 
� oT̂T

a �Da
	

!
; ð3:14Þ

when T 1 ¼ T 2.
Before invoking the 2nd Law of Thermodynamics, it is important to clarify how the paths PðdÞ

in the space R73 are defined. 4 The assumption of the existence of a path-independent process is
stated pointwise for some time interval ½t1; t2�; due to the presence of two material points X1 of C1

and X2 of C2 at each spatial point x in the mixture, this becomes non-trivial. For any process, the
vectors Xðdðt	ÞÞ, t	 2 ½t1; t2�, defined for the material points X1 and X2 may generate distinct paths
in the space R73. For example, following the material point X1, at each time t	 the vector Xðd1ðt	ÞÞ
is defined by evaluating F1 and G1 for the material point X1 that exists at the spatial point x at t	,
and evaluating F2 and G2 for the material point X2 that exists at the same spatial point x at t	.

4 Prashanth Vijalapura (U.C. Berkeley) offered this clarification upon reading an earlier version of this paper.



Thus, by evaluating Xðd1ðt	ÞÞ for all t	 2 ½t1; t2�, a path PX1ðd1Þ is generated by following X1.
Likewise, a path PX2ðd2Þ is generated by following X2.

Therefore, consider paths PX1ðd1Þ and PX2ðd2Þ corresponding to homothermal quasi-static
processes at a common mixture temperature for which the collection of vectors XðdaðtÞÞ are
defined for X1 and X2, respectively. Now, Part I of the 2nd Law of Thermodynamics is invoked to
assert that the Clausius integrals given by

Ia ¼
Z da

2

da
1

T aqara
lim dda ¼

Z da
2

da
1

T a qa da
oêea

dda

 
� oT̂T

a �Da
	

!
dda ð3:15Þ

are path-independent. This furnishes a partial entropy function ga ¼ ĝgaðF1;F2;G1;G2; T aÞ such
that for all homothermal quasi-static processes

daga

dda ¼ T ara
lim; ð3:16Þ

when T 1 ¼ T 2: The arbitrary constant of integration in the partial entropy is fixed by requiring
gaðI; I; 0; 0; T0Þ ¼ 0:

Finally, we make two additional assumptions for general processes, in which T 1 may not be
equal to T 2: 5

1. each partial entropy function ga ¼ ĝgaðF1;F2;G1;G2; T aÞ is independent of a1; ga, and D;
2. each partial entropy function ga ¼ ĝgaðF1;F2;G1;G2; T aÞ is defined through (3.16) for the corre-

sponding homothermal quasi-static process at a common mixture temperature equal to
ha ¼ 1=T a.

In other words, for a general process in which T 1 6¼ T 2, g1 ¼ ĝg1ðF1;F2;G1;G2; T 1Þ is prescribed by
considering a homothermal quasi-static process when the common mixture temperature is equal to
h1 ¼ 1=T 1 while g2 ¼ ĝg2 F1;F2;G1;G2; T 2

� �
is prescribed by considering a different homothermal

quasi-static process when the common mixture temperature is equal to h2 ¼ 1=T 2. Thus, we obtain

g1 ¼ ĝg1 F1;F2;G1;G2; T 1
� �

; g2 ¼ ĝg2 F1;F2;G1;G2; T 2
� �

ð3:17Þ

for all processes. From (2.27) and (3.17) we obtain 6

g	a ¼ ĝga F1;F2;G1;G2; T a
� �

þ T aŵwa F1;F2;G1;G2; T 2;D
� �

: ð3:18Þ

To develop restrictions on the constitutive equations, we recall (2.27), (3.6)2, and (3.10) and
write the mixture energy equation (2.29) as follows for a homothermal quasi-static process at a
common mixture temperature:

5 These two assumptions are the crucial generalization of the procedure outlined in [11] to a mixture with different

constituent temperatures. It will be seen that, with these assumptions, the final constitutive restrictions obtained from

the 2nd Law are the same as those derived in [5].
6 Thus, although the partial entropy functions (3.17) depend only on their respective temperatures, the modified

entropy functions (3.18) may depend on both temperatures.



� q
dw
dd

_ddþ
X2

a¼1

qag	a

T 2

dT 2

dd
_ddþ
X2

a¼1

�
� qa daga

dd
_ddþ qaraT 2

�
þ T 2

ol
1 � a1

	

�
þ oT

1 �L1
	 þ oT

2 �L2
	

�
_dd

�
X2

a¼1

T adiv
qaua

	
_ddg	a

T a

 !"
� divðqaua

	
_ddg	aÞ

#
¼ 0: ð3:19Þ

It is apparent that the last summation term in (3.19) vanishes because, for a homothermal process,
gradT a vanishes. We define, as in (3.2)–(3.5),

w ¼ ŵw X; a1;D
� �

¼ oŵw Xð Þ þ eŵw X; a1;D
� �

; ð3:20Þ

la ¼ la X; a1;D
� �

¼ ol
a Xð Þ þ el

a X; a1;D
� �

; ð3:21Þ

T
a ¼ T

a
X; a1;D
� �

¼ oT
a

Xð Þ þ eT
a

X; a1;D
� �

; ð3:22Þ

H ¼ ĤH X; a1;D
� �

¼ oĤH Xð Þ þ eĤH X; a1;D
� �

: ð3:23Þ

From (2.14), (2.19), (2.21), and (3.11)1 we obtain

oĤH Xð Þ ¼ 0 ) H ¼ ĤH X; a1;D
� �

¼ eĤH X; a1;D
� �

: ð3:24Þ

Using (3.12)2 and (3.16), the mixture energy equation (3.19) can be written for a homothermal
quasi-static process at a common mixture temperature as

�q
doŵw
dd

þ qðg þ oŵwÞ
T 2

dT 2

dd
þ T 2

ol
1 � a1

	

�
þ oT

1 � L1
	 þ oT

2 � L2
	

�
¼ 0; ð3:25Þ

where the second term in (3.25) was obtained by recalling (2.24), (2.27)1, (3.20), and defining

qg ¼
X2

a¼1

qaga: ð3:26Þ

Eq. (3.25) will be referred to as the Gibbs equation for a mixture of elastic materials. Because the
partial internal energies and the partial entropies vanish in the reference configuration K0, (2.23)
and (2.24) lead to the result wðI; I; 0; 0; T0; 0; 0Þ ¼ 0: Using (3.1), (3.20), and the chain rule, (3.25)
can be written as

qðg þ oŵwÞ
T 2

 
� q

o oŵw
oT 2

!
dT 2

dd
þ T 2

ol
1 � a1

	 þ
X2

a¼1

q
o oŵw
oFa gradFa � ua

	

 !

þ
X2

a¼1

T 2
oT

a

 
� q

o oŵw
oFa F

aT

!
� La

	 �
X2

a¼1

q
ooŵw
oGa �

daGa

dd

�
� gradGa½ua

	�
�

¼ 0; ð3:27Þ



where the notation ðo oŵw=oF
aÞgradFa has the component form ðo oŵw=oF a

jAÞF a
jA;i and gradGa½ua

	� has
the component form Ga

iAB;ju
a
	j. Using arguments that have become standard, the following con-

stitutive results are deduced from (3.27):

qðg þ oŵwÞ
T 2

¼ q
o oŵw
oT 2

; ð3:28Þ

oT
a ¼ q

T 2

o oŵw
oFa F

aT

; ð3:29Þ

ol
1 ¼ 1

T 2

 
� q2 o oŵw

oF1
gradF1 þ q1 o oŵw

oF2
gradF2

!
; ð3:30Þ

o oŵw
oGa ¼ 0: ð3:31Þ

These equations also hold for arbitrary processes because none of the variables that appear in
(3.28)–(3.31) depend on either a1, D, or ga. We remark that (3.29) and (3.30) agree with Eqs. (6.12)
and (6.13) of [5] while (3.31) agrees with a result that is discussed in p. 180 of [5]. It will be shown
from (3.28) and a result obtained below that our partial entropy restriction agrees with Eq. (6.9)
of [5].

Also, the partial stresses (3.29) and diffusive forces (3.30) can be written in terms of the con-
stituent free energy functions. To do this, we introduce the additive decomposition for each partial
free energy function

wa ¼ ŵwa X; a1;D
� �

¼ oŵw
a Xð Þ þ eŵw

a X; a1;D
� �

: ð3:32Þ

From (2.24), (3.20), and (3.32) the mixture free energy function for path-independent processes
becomes

qoŵw ¼ T 2
X2

a¼1

qa
oŵw

a: ð3:33Þ

Consequently, (3.29) and (3.30) may be expressed as

oT
a ¼

X2

b¼1

qb o oŵw
b

oFa FaT

; ð3:34Þ

ol
1 ¼ q1 o oŵw

1

oF2
gradF2 � q2 o oŵw

2

oF1
gradF1; ð3:35Þ

which agree with (6.16) and (6.17) of [5].



To obtain further restrictions on the constitutive equations, the Clausius–Duhem inequality is
invoked as a statement of Part II of the 2nd Law of Thermodynamics for general processes.
Recalling (2.8), (3.1), (3.20)–(3.24), and (3.28)–(3.31) the Clausius–Duhem inequality (2.31) be-
comes

 
� q

o eŵw

oF1
F1T þ T 2

eT
1 þ D oT

1 þ D eT
1

!
� L1 þ

 
� q

o eŵw

oF2
F2T þ T 2

eT
2

!
� L2

þ q2 o eŵw

oF1
gradF1

 
� q1 o eŵw

oF2
gradF2 þ T 2

el
1 þ D ol

1 þ D el
1

!
� a1

þ
P2

a¼1 qaT a
eŵw

a

T 2

 
� q1g	1

T 2
� q

o eŵw
oT 2

þ q1g	1

T 1

!
dT 2

dt
þ q1g	1

T 1

 
� q

o eŵw
oD

!
dD
dt

þ eH
1D

� q
o eŵw
oa1

da1

dt
� q

X2

a¼1

o eŵw
oGa �

daGa

dt

�
� gradGa½ua�

�
þ
X2

a¼1

q	a � gradT a P 0: ð3:36Þ

Using arguments that have become standard, we obtain from (3.36) the additional restric-
tions

� q1g	1

T 2
þ q1g	1

T 1
þ
P2

a¼1 qaT a
eŵw

a

T 2
¼ q

o eŵw
oT 2

; ð3:37Þ

q1g	1

T 1
¼ q

o eŵw
oD

; ð3:38Þ

o eŵw
oa1

¼ 0; ð3:39Þ

o eŵw
oGa ¼ 0; ð3:40Þ

and the residual inequality

RP 0; ð3:41Þ

where 7

7 This residual inequality does not appear in [5].



R¼
 
� q

o eŵw

oF1
F1T þ T 2

eT
1 þDoT

1 þD eT
1

!
�L1 þ

 
� q

o eŵw

oF2
F2T þ T 2

eT
2

!
�L2

þ q2 o eŵw

oF1
gradF1

 
� q1 o eŵw

oF2
gradF2 þ T 2

el
1 þDol

1 þD el
1

!
� a1 þ eH

1Dþ
X2

a¼1

q	a � gradT a:

ð3:42Þ

This residual inequality reduces to that presented in [11] when the possible processes are re-
stricted to those for which there exist a common mixture temperature, since eŵw ¼ 0 when
D ¼ 0.

Using (3.20), (3.31), (3.39), and (3.40), the Helmholtz free energy function becomes

w ¼ ŵw F1;F2; T 2;D
� �

¼ oŵw F1;F2; T 2
� �

þ eŵw F1;F2; T 2;D
� �

: ð3:43Þ

Upon adding (3.37) and (3.38) we obtain

q1g	1

T 2
¼ q

 
� o eŵw

oT 2
þ o eŵw

oD

!
þ
P2

a¼1 qaT a
eŵw

a

T 2
: ð3:44Þ

The results (3.39) and (3.40) (and consequently (3.43)) agree with those derived in [5]; thus, it
remains to show that the restrictions (3.28), (3.37), and (3.38) for the partial entropies agree with
those presented in [5]. To see this, we first define

w ¼ w F1;F2; T 1; T 2
� �

¼ ow F1;F2; T 2
� �

þ ew F1;F2; T 1; T 2
� �

: ð3:45Þ

Comparison of (3.45) with (3.43) shows that

ow F1;F2; T 2
� �

¼ oŵw F1;F2; T 2
� �

; ew F1;F2; T 1; T 2
� �

¼ eŵw F1;F2; T 2; T 1
�

� T 2
�
: ð3:46Þ

From (3.44)–(3.46), we obtain

o ow
oT 2

¼ o oŵw
oT 2

; ð3:47Þ

oŵw
oT 2

¼ o oŵw
oT 2

þ o eŵw
oT 2

; ð3:48Þ

o ew
oT 2

¼ o eŵw
oT 2

þ o eŵw
oD

oD
oT 2

¼ o eŵw
oT 2

� o eŵw
oD

; ð3:49Þ

o ew
oT 1

¼ o eŵw
oD

oD
oT 1

¼ o eŵw
oD

: ð3:50Þ



From (2.24), (2.27)1, (3.26), and (3.28) we have

qðg þ oŵwÞ
T 2

¼
P2

a¼1ðqag	a � qaT a
eŵw

aÞ
T 2

¼ q
o oŵw
oT 2

: ð3:51Þ

Using (3.44) and (3.47)–(3.50) we obtain from (3.51)

q2g	2 ¼ �q1g	1 þ qT 2 oŵw
oT 2

 
� o eŵw

oT 2

!
þ
X2

a¼1

qaT a
eŵw

a

¼ �qT 2

 
� o eŵw

oT 2
þ o eŵw

oD

!
�
X2

a¼1

qaT a
eŵw

a þ qT 2 oŵw
oT 2

 
� o eŵw

oT 2

!
þ
X2

a¼1

qaT a
eŵw

a

¼ �qT 2

 
� o ew

oT 2
� o eŵw

oD
þ o eŵw

oD

!
þ qT 2 oŵw

oT 2

 
� o eŵw

oT 2

!

¼ qT 2 oŵw
oT 2

 
þ o ew

oT 2
� o eŵw

oT 2

!
¼ qT 2 o oŵw

oT 2

 
þ o eŵw

oT 2
þ o ew

oT 2
� o eŵw

oT 2

!

¼ qT 2 o oŵw
oT 2

 
þ o ew

oT 2

!
ð3:52Þ

so that, using (3.45) and (3.47),

q2g	2 ¼ qT 2 ow
oT 2

: ð3:53Þ

Finally, using (3.38) and (3.50) we obtain

q1g	1

T 1
¼ q

o eŵw
oD

¼ q
o ew
oT 1

; ð3:54Þ

so that, using (3.45),

q1g	1 ¼ qT 1 ow
oT 1

: ð3:55Þ

Eqs. (3.53) and (3.55) are equal to (6.9) of [5].
In summary, the constitutive restrictions were first obtained from the mixture energy equation

for path-independent processes, and further restrictions were obtained from the Clausius–Duhem
inequality for general processes. These constitutive restrictions equal those of Craine et al. [5] even
though in [5] all restrictions were obtained from the Clausius–Duhem inequality after introduc-
ing the partial entropy as a primitive variable. There is one important difference between the
results of the present paper and those of [5]: even though the modified entropy functions (3.53)
and (3.55) may depend on both temperatures and agree with those of [5], we have the additional



‘‘restriction’’ that the partial entropy functions ga depend only on their respective constituent
temperatures, due to the nature of the entropy prescriptions (3.17).

4. Equivalence classes

In mixture theory, Mills [21] and other authors [22–25] have studied the special constraint of
intrinsic incompressibility, which simultaneously restricts the possible values of the constituent
densities. For a mixture of two elastic materials, this mechanical constraint can be expressed in
terms of the deformation gradient tensors of both constituents. Here, we wish to consider more
general thermomechanical constraints, so that the constraint of Mills [21] can be extended to
include temperature-dependent incompressibility, as proposed by Trapp [29] for thermoelastic
materials. Furthermore, the results obtained for a mixture constrained to have a common tem-
perature will be compared to those obtained for the special case of a common mixture temper-
ature.

Consider a thermomechanical internal constraint of the form

/ F1;F2; T 2;D
� �

¼ 0; ð4:1Þ

where / is a sufficiently smooth scalar-valued function defined for the subset of the 20-dimen-
sional space E for which det Fa > 0, T 2 > 0, and T 1 ¼ D þ T 2 > 0. We assume that the 20-di-
mensional vector

o/

oF1
;
o/

oF2
;
o/
oT 2

;
o/
oD

� �
6¼ 0

so that (4.1) defines a fixed 19-dimensional hypersurface S � E referred to as the constraint
manifold. Furthermore, we assume that / remains invariant under superposed rigid-body motions
of the mixture at fixed constituent temperatures so that (4.1) can be written in the objective form

/̂/ C1;F1T

F2; T 2;D
� �

¼ 0; ð4:2Þ

where Ca ¼ FaTFa. Although (4.2) may be more convenient for representing some types of internal
constraints, in the present paper the development will proceed with the more primitive form given
by (4.1).

Klisch [20] has discussed how a mixture process that satisfies (4.1) may generate different paths
on S. In particular, the vectors (F1ðtÞ;F2ðtÞ; T 2ðtÞ;DðtÞ) defined for X1, X2, and x generate paths
CX1 , CX2 , and Cx, respectively, on S. Furthermore, a tangent vector to CX1 on S is defined using
the material time derivative d1ð�Þ=dt following C1. In a similar fashion, the tangent vector to CX2

on S is defined using the material time derivative d2ð�Þ=dt following C2 while a tangent vector to
Cx on S is defined using the partial time derivative oð�Þ=ot.

Therefore, the constraint (4.1) can be considered while one of three points are held fixed: (i) a
material point X1; (ii) a material point X2; or (iii) the spatial point x which is simultaneously
occupied by X1 and X2 at time t. A normal to S is given by



n ¼ o/

oF1
;
o/

oF2
;
o/
oT 2

;
o/
oD

� �
ð4:3Þ

for all three cases (i)–(iii). Tangents to the curves CX1 , CX2 , and Cx corresponding to the three
cases (i)–(iii) are given by

tX1 ¼ d1F1

dt
;
d1F2

dt
;
d1T 2

dt
;
d1D
dt

� �
;

tX2 ¼ d2F1

dt
;
d2F2

dt
;
d2T 2

dt
;
d2D
dt

� �
;

tx ¼
oF1

ot
;
oF2

ot
;
oT 2

ot
;
oD
ot

� �
:

ð4:4Þ

Hence, for any process satisfying the constraint (4.1) it is necessary that

n � tX1 ¼ o/

oF1
� d1F1

dt
þ o/

oF2
� d1F2

dt
þ o/
oT 2

d1T 2

dt
þ o/
oD

d1D
dt

¼ 0;

n � tX2 ¼ o/

oF1
� d2F1

dt
þ o/

oF2
� d2F2

dt
þ o/
oT 2

d2T 2

dt
þ o/
oD

d2D
dt

¼ 0;

n � tx ¼
o/

oF1
� oF

1

ot
þ o/

oF2
� oF

2

ot
þ o/
oT 2

oT 2

ot
þ o/
oD

oD
ot

¼ 0

ð4:5Þ

for the three cases (i)–(iii). Recalling

daFa

dt
¼ LaFa; ð4:6Þ

(2.4)2, and (2.8)2, the constraint equations (4.5) can be written as

n � tX1 ¼ o/

oF1
� L1F1 þ o/

oF2
� ðL2F2 þ gradF2½a1�Þ þ o/

oT 2

dT 2

dt

�
þ gradT 2 � u1

�

þ o/
oD

dD
dt

�
þ gradD � u1

�
¼ 0;

n � tX2 ¼ o/

oF1
� L1F1
�

� gradF1½a1�
�
þ o/

oF2
� L2F2 þ o/

oT 2

dT 2

dt

�
þ gradT 2 � u2

�

þ o/
oD

dD
dt

�
þ gradD � u2

�
¼ 0;

n � tx ¼
o/

oF1
� L1F1
�

� gradF1½v1�
�
þ o/

oF2
� ðL2F2 � gradF2½v2�Þ þ o/

oT 2

dT 2

dt

�
� gradT 2 � v

�

þ o/
oD

dD
dt

�
� gradD � v

�
¼ 0;

ð4:7Þ



where the notation gradFa½a� has the component form F a
iA;kak. The middle terms of the constraint

equations (4.7) can also be shown to be equal since (4.1) implies

grad/ ¼ o/
ox

¼ o/

oF1
gradF1 þ o/

oF2
gradF2 þ o/

oT 2
gradT 2 þ o/

oD
gradD ¼ 0: ð4:8Þ

Although the three tangents (4.4) are, in general, not equal at a time t during a given process, the
relation (4.8) ensures that they all lie in the tangent space to a point on S. The development of
constrained mixtures will proceed with case (ii) (i.e., holding X2 fixed) represented by (4.7)2. Also,
it is assumed that the constraint is satisfied in the reference configuration: 8

/ðI; I; T0; 0Þ ¼ 0: ð4:9Þ

To define an equivalence class associated with the constraint, consider two mixtures of elastic
materials, m1 and m2, which have common values of partial densities in the reference configuration
K0. These mixtures can be considered as elements of the set M of all unconstrained mixtures,
which are infinite in number. An equivalence relation associated with the constraint (4.1) is de-
fined as:

Definition 1. The mixture m1 is equivalent to the mixture m2 ðm1 � m2Þ if and only if
(i) wa

m1
¼ wa

m2
ð) wm1

¼ wm2
Þ;

(ii) qa
m1

¼ qa
m2

, el
1
m1

¼ el
1
m2

, eT
a

m1
¼ eT

a

m2
, H1

m1
¼ H1

m2

for all ðF1;F2; T 2;DÞ 2 S and for all ðG1;G2; a1; g1; g2Þ.

This equivalence relation partitions the set M into disjoint subsets whose union is M. The disjoint
subsets are equivalence classes denoted by MðmÞ ¼ fn 2 M : n � mg.

To derive relationships among the constitutive restrictions for two equivalent mixtures m1 and
m2, parts (i) and (ii) of Definition 1 will be used with the Clausius–Duhem inequality (2.31) in-
voked for m2.

9 If m1 � m2, then wm1
and wm2

match on S and using Definition 1 we have

dwm1

dt
¼

dwm2

dt
; ð4:10Þ

when m1 and m2 are undergoing processes that satisfy the constraint. Introducing (4.10) and (4.7)2

multiplied by a Lagrange multiplier k into the Clausius–Duhem inequality (2.31) invoked for m2

and recalling (3.28)–(3.30), (3.37), and (3.38) evaluated for m1 we obtain

8 To be consistent with the development in Section 3, we assume that the constraint allows D ¼ 0 so that a reference

configuration with a common mixture temperature may be chosen.
9 For a mixture at a common mixture temperature, Klisch [20] applied Definition 1 in two parts; in particular, part (i)

of Definition 1 was used with the Gibbs equation. However, we cannot use this approach in the present paper as the

internal constraint (4.1) depends on the temperature difference while the Gibbs equation (3.25) is developed for a

process in which the temperature difference is zero.



oT
a

m2
¼ oT

a

m1
þ k

o/
oFa F

aT

;

ol
1
m2

¼ ol
1
m1

� k
o/

oF1
gradF1;

q1g	1
m2

T 1
¼

q1g	1
m1

T 1
þ k

o/
oD

;

q2g	2
m2

T 2
¼

q2g	2
m1

T 2
þ k

o/
oT 2

�
� o/
oD

�
ð4:11Þ

for any two mixtures m1;m2 2 MðmÞ which are undergoing processes which satisfy the constraint
(4.1). In addition, there is the residual inequality

Rm1
þ

q1g	1
m2

T 1

 
� q1g	1

m1

T 1

!
a1 � g1 P 0 ð4:12Þ

for any two mixtures m1;m2 2 MðmÞ which are undergoing processes which satisfy the constraint
(4.1), where Rm1

is obtained by evaluating (3.42) for m1.
Upon repeating the analysis with (4.7)1 corresponding to holding X1 fixed, it can be shown that

(4.11) and (4.12) are recovered. However, we can express (4.11)2 and (4.12) in the alternative and
equal forms

ol
1
m2

¼ ol
1
m1

þ k
o/

oF2
gradF2 ð4:13Þ

and

Rm1
�

q2g	2
m2

T 2

 
�

q2g	2
m1

T 2

!
a1 � g2 P 0: ð4:14Þ

Similarly, by repeating the analysis with (4.7)3 corresponding to holding x fixed, it can be shown
that (4.11) and (4.12) are recovered. It should be pointed out that in [20], three different residual
inequalities were obtained for internally constrained mixtures of elastic materials with a common
mixture temperature. Thus, we have shown in the present paper that by generalizing the approach
of [20] for a mixture of elastic materials with different temperatures, the same restrictions (4.11)
and (4.12) are recovered regardless of whether X1, X2, or x is held fixed.

5. Constrained mixtures of elastic materials

The above development for unconstrained mixtures of elastic materials leads to the following
definition of a constrained mixture of elastic materials:



Definition 2. A constrained mixture of elastic materials with different constituent temperatures m0

associated with an equivalence class MðnÞ is a mixture for which:
(i) the possible processes are those and only those which satisfy the constraint (4.1);
(ii) m0 can possess the values of the quantities ðwa; qa; ol

1; el
1; oT

a
; eT

a
; ga;H1Þ of any m 2 MðnÞ

when m undergoes a process satisfying the constraint;
(iii) m0 can only possess values of the quantities ðwa; qa; ol

1; el
1; oT

a
; eT

a
; ga;H1Þ that are possible

for any m 2 MðnÞ when m undergoes a process satisfying the constraint.

From this definition, it is clear that the union of all equivalence classes associated with the
constraint will generate the set of all constrained mixtures M0 associated with the constraint.

Consider any constrained mixture m0 2 M0 that is associated with an equivalence class MðnÞ.
For any process which satisfies the constraint, m0 possesses values of ðwa

m0 ; qa
m0 ; el

1
m0 ; eT

a

m0 ;H1
m0 Þ

which are the common values of all elements in MðnÞ. Because m0 can possess values of
ðol

1
m0 ; oT

a

m0 ; ga
m0 Þ of any element in M(n), from (4.11) it is evident that 10

oT
a

m0 ¼ oT
a

m þ k
o/
oFa F

aT

;

ol
1
m0 ¼ ol

1
m � k

o/

oF1
gradF1;

q1g	1
m0

T 1
¼ q1g	1

m

T 1
þ k

o/
oD

;

q2g	2
m0

T 2
¼ q2g	2

m

T 2
þ k

o/
oT 2

�
� o/
oD

�
ð5:1Þ

on S for any element m 2 MðnÞ undergoing the same process as m0. Also, from (4.12) it is evident
that

Rm0 þ q1g	1
m0

T 1

 
� q1g	1

m

T 1

!
a1 � g1 P 0 ð5:2Þ

on S for any element m 2 MðnÞ undergoing the same process as m0, where Rm0 is obtained by
evaluating (3.42) for m0. Upon repeating the analysis using conditions (4.7)1 and (4.7)3 corre-
sponding to holding X1 and x fixed, respectively, we obtain the same restrictions (5.1) and (5.2).
Recalling (2.27)1 and noting that wa

m0 ¼ wa
m on S, (5.1)3;4 and (5.2) may be written as

q1g1
m0

T 1
¼ q1g1

m

T 1
þ k

o/
oD

;

q2g2
m0

T 2
¼ q2g2

m

T 2
þ k

o/
oT 2

�
� o/
oD

�
;

ð5:3Þ

10 These results are obtained from (4.11) and (4.12) by specifying m1 ¼ m0, m2 ¼ m, and replacing k with �k.



and

Rm0 þ q1g1
m0

T 1

 
� q1g1

m

T 1

!
a1 � g1 P 0: ð5:4Þ

By defining two constrained mixtures to be identical if the quantities ðwa
m; q

a
m; el

1
m; eT

a

m;H
1
mÞ are

equal, then it can be seen that there exists a one-to-one relationship between equivalence classes of
unconstrained mixtures and constrained mixtures. Furthermore, a constrained mixture m0 can be
constructed from a corresponding unconstrained mixture m by evaluating the quantities
ðwa

m; q
a
m; el

1
m; eT

a

m;H
1
mÞ for m on the constraint manifold S, and noting that the quantities

ðol
1
m0 ; oT

a

m0 ; ga
m0 Þ are specified by (5.1)1;2 and (5.3) where ðol

1
m; oT

a

m; g
a
mÞ are evaluated on S.

6. Examples

Example 1. Consider a mixture constrained to have equal constituent temperatures. Thus, the
constraint (4.1) becomes

/ Dð Þ ¼ D ¼ 0;
o/
oD

¼ 1: ð6:1Þ

Letting T 1 ¼ T 2 ¼ T , from (5.1)1;2 and (5.3) we obtain

oT
a

m0 ¼ oT
a

m;

ol
1
m0 ¼ ol

1
m;

q1g1
m0

T
¼ q1g1

m

T
þ k;

q2g2
m0

T
¼ q2g2

m

T
� k;

ð6:2Þ

while the residual inequality (5.4) reduces to

Rm0 þ ka1 � gradT P 0: ð6:3Þ

Upon adding (6.2)3;4 we find

qgm0 ¼
X2

a¼1

qaga
m0 ¼

X2

a¼1

qaga
m ¼ qgm: ð6:4Þ

Thus, although (6.2)3;4 reveals that there is an indeterminacy in each partial entropy, (6.4) shows
that the mixture entropy defined by (3.26) is determinate.



For a mixture constrained by (6.1), we wish to compare the constitutive restrictions for the
mixture entropy (3.28) and the residual inequality (6.3) to earlier results obtained for the special
case where it is assumed that there exists a common mixture temperature. We introduce

q ~ww ¼
X2

a¼1

qawa; ~//a ¼ qa wa
�

� ~ww
�
; Ta ¼ ~//aIþ ~TTa;

l1 ¼ grad ~//1 þ ~ll1; ~qq	 ¼ qþ
X2

a¼1

qagahua; q ¼
X2

a¼1

qa:

ð6:5Þ

Because the mixture is constrained by (6.1) to have a common mixture temperature, recalling
(3.20) and (3.43) we note that

ewm0 ¼ 0;
oewm0

oFa ¼ 0;
oewm0

oT 2
¼ 0; ð6:6Þ

whereas, in general,

o ewm0

oD
6¼ 0: ð6:7Þ

It can then be shown that (3.28) takes the form

g ¼ � o ~ww
oh

; ð6:8Þ

which agrees with classical results. Furthermore, the residual inequality (6.3) reduces to

X2

a¼1

e
~TTa
m0 � La þ e~llm0 � a1 � q	m0 � gradh

h
þ ka1 � gradh

h
P 0; ð6:9Þ

which, using (6.2)3;4, can be written in the alternative and equivalent forms

X2

a¼1

e
~TTa
m0 � La þ e~llm0 � a1 � q	m0 � gradh

h
þ q1g1

m0

�
� q1g1

m

�
a1 � gradh P 0;

X2

a¼1

e
~TTa
m0 � La þ e~llm0 � a1 � q	m0 � gradh

h
� q2g2

m0

�
� q2g2

m

�
a1 � gradh P 0;

X2

a¼1

e
~TTa
m0 � La þ e~llm0 � a1 � q	m0 � gradh

h
þ
X2

a¼1

qaga
m0

�
� qaga

m

�
va � gradhP 0:

ð6:10Þ

The three equivalent inequalities (6.10) are the same as those derived by Klisch [20] for a con-
strained mixture of elastic materials at a common mixture temperature.

Example 2. The second example we wish to consider is that of temperature-dependent intrinsic
incompressibility. A commonly used constraint in the theory of mixtures is that of intrinsic



incompressibility first proposed by Mills [21] and studied by other authors [22–25]. Each con-
stituent Ca is assumed to be separable from the others with constant (true) density qaT defined as
the mass of Ca per unit volume of Ca. Upon addition in forming the mixture, it is assumed that the
volumes of Ca add to form the volume of the mixture. With these assumptions, Mills [20] derived
an equation that is a special form of the general internal constraint represented by (4.1):

q1

q1T
þ q2

q2T
¼ 1: ð6:11Þ

Using the local form of the continuity equation, qaJ a ¼ qa
0, (6.11) can be written as

q1
0

q1T det F1
þ q2

0

q2T det F2
� 1 ¼ 0: ð6:12Þ

Following Trapp [29] who proposed the internal constraint of temperature-dependent com-
pressibility for thermoelastic materials, we generalize (6.12) as follows:

f 1 D þ T 2ð Þq1
0

q1T det F1
þ f 2 T 2ð Þq2

0

q2T det F2
� 1 ¼ 0; f 1 T0ð Þ ¼ f 2 T0ð Þ ¼ 1: ð6:13Þ

Recalling

odetFa

oFa ¼ det Fað ÞFa�T

; ð6:14Þ

Eqs. (5.1) become 11

oT
a

m0 ¼ oT
a

m � kf a qa

qaT
I;

olm0 ¼ olm � kf 1 gradq1

q1T
;

q1g1
m0

T 1
¼ q1g1

m

T 1
þ k

q1

q1T

of 1

oD
;

q2g2
m0

T 2
¼ q2g2

m

T 2
þ k

q1

q1T

of 1

oT 2

��
� of 1

oD

	
þ q2

q2T

of 2

oT 2

�
:

ð6:15Þ
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11 In deriving (6.15)2, it was assumed that gradq1
0 ¼ 0. Klisch [20] has discussed two ways that (6.15) may be obtained
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