

Monitoring of Distributed Processes with Mobile Agents

Ryan P. Kennedy

Computer and Information Science

Department

New Jersey Institute of Technology

Newark, NJ, U.S.A.

Ryanpk@bellatlantic.net

Abstract

The Proliferation of networked and distributed
systems presents a need for more tool development
with regard to the monitoring and maintenance of
distributed processes. The goal of this paper is to
present a mechanism used to collect detailed
process information from various remote Unix
hosts on a network. The interface to this
mechanism, a GUI applet, is accessible through a
Java enabled browser such as Netscape Navigator.
It presents the user with a menu of choices such as
which host to view, and what process information
to retrieve(I/O – bound processes, numbers of
processes, individual/total process usage, etc.).
The requested information is retrieved and
displayed in a window presented by the GUI.

1. Project Overview

 Much of the work concerning the management
of computer networks, especially in large
organizations, is rather tedious, routine work.
Although network management systems offer
substantial support, the network administrators are
often burdened with small decisions that required
the processing of a lot of detailed, relatively low-
level information. Over the last two years, our
group has investigated the use of intelligent agents
for network management; this paper describes an
enhancement of the user interface, and more
realistic experiments.
 The goal of the project described in this paper is
to develop a Java GUI applet that will be used to
collect detailed process information from various
remote hosts on a network. The experimental setup
for the system has been expanded and some
implementation aspects have been revised. These
are described in this paper.

Franz J. Kurfess

Computer Science Department

Concordia University

Montreal, Quebec, Canada

Franz.Kurfess@computer.org

2. Related Work

 This paper is based upon previous work done
by Klaus Holthaus, Felip Miralles, Franz J.
Kurfess, and Dhaval P. Shah [1] in which a
platform-independent application for the
monitoring of distributed applications is presented.
This application is to be effected through the use of
mobile agents that travel throughout a network,
enabling collection of a distributed application’s
process information over various (remote) hosts.
A client-side applet GUI is used by an
administrator to specify the criteria for information
to collect. The result is returned and displayed in a
window of the GUI.
 The aforementioned project is ongoing and the
work detailed in this paper is an extension and
support effort, with particular emphasis on user
interaction, and on practical tests in realistic
setups.

3. Intelligent Agents

 An intelligent agent is an autonomous entity
that acts on behalf of the user. The key here is
behalf; the agent autonomously behaves according
to its own judgement (on behalf of the user),
influenced by parameters that the user specifies.
The benefit is that the user need not be directly
concerned with the task the agent has been
developed to perform. The task is being performed
by the agent.

Intelligent agents usually begin or change
operation when some recognizable event occurs.
“In the context of intelligent agents, an event is
anything that happens to change the environment
or anything of which the agent should be aware.
For example, an event could be the arrival of a new
piece of mail, a timer going off at midnight, or a
change to a web-page” [7]. When the event
occurs, the intelligent agent must autonomously

analyze the situation (or conditions) and act
according to the new environment and its design
specification. This is the Events-Conditions-
Actions [7] behavior, and it is common to all
intelligent agents.
 Intelligent agents come in two types, stationary
agents and mobile agents. Stationary agents do not
leave their system or host of origination; rather,
they operate using more traditional means such as
Remote Procedure Calls. Though a stationary
agent may be very helpful by its function, it does
not provide the level of advantages that a mobile
agent does.

A mobile agent enhances the abilities of
intelligent agents. A mobile agent is not bound to
the system on which it begins execution [2]. When
it travels to another host on a network, the agent
transports its execution state and execution code
along with it. Upon arrival at the destination, the
agent resumes its execution. This behavior
provides several advantages. It helps reduce
network traffic. The agent travels to the host
where the object or data is located, and executes
upon it there, afterwards returning to the origin
host with the results. The data remains at its own
location rather than being transmitted over the
network for processing. Mobile agents are also
very helpful with performing network management
tasks. A number of agents disseminated across a
network may execute autonomously and in
parallel, aiding in network administration by
performing management tasks at each host.
Mobile agents are ideal for heterogeneous
networks. Because they perform execution
operations locally, they are mostly hardware and
software independent; they execute in the context
of the local environment. Distributed applications
using mobile agents across a heterogeneous
network are provided with seamless system
integration [2].
 Mobile agents aid in mobile computing (e.g.
travelling salesperson with a laptop). The links
that connect mobile computer users to a network
are often unreliable or sporadic. This greatly
reduces the effective use of distributed applications
with respect to the mobile user. Mobile intelligent
agents provide a means to reduce the penalty of
mobile computing. First, they are location
independent. The agent may begin a task when the
user is at one location and return the results to the
user at another location. Also, disconnection of
the user from a network does not mean that the
tasks being performed by the user are disrupted.
For example, suppose a travelling salesperson
begins a time-consuming interactive application on

a local network, which requests information and
prices on many products. Next, suppose that the
task was initiated via a mobile agent. Then the
salesperson, before the application has completed,
disconnects from the network and travels to some
other distant location, only to reconnect at a later
time. During the duration of time that the
salesperson has been disconnected (to travel), the
mobile agent has been handling the task. Later,
when the salesperson reconnects, the mobile agent
is alerted of this event and will travel to the new
location with the results.
 The salesperson example also exemplifies the
Events-Conditions-Actions [7] operation design of
intelligent agents mentioned above. The
(autonomously handled) event is the reconnection
of the salesperson at a remote location ant the
agent being alerted of this (e.g. a message sent to
the agent). The condition is the new user location.
The action is the response to the new user location.
The agent must decide to transport itself with the
data from the task it was performing (the product
information application) to the user, for delivery of
final output.

This section presents some of the advantages of
mobile agents. There are many others; the intent
of the section is to illustrate the potential of mobile
intelligent agents.

4. Intelligent Agent Development

 The development environment for the
intelligent agents of the project is the IBM
Agent Building Environment Developer’s
Toolkit (ABE), Level 6. The ABE Toolkit,
Level 6 utilizes a rule-based reasoning system
to impart intelligence to agents. It is available
on several platforms: AIX Version 4.1.4, OS/2
Warp, Windows 95, Windows NT. The
toolkit consists of five components as depicted
in the diagram below:

Figure 1 – Architecture Diagram of ABE

This diagram is taken from the documentation
provided with the ABE Toolkit [8], which is also
the source for the following description of the
main components. Each of the five components
has distinct functions which provide a developer
with tools for agent development.

Views: “This component establishes and
modifies the instruction for the agent.” It
contains a rule-editor, which allows the
developer to enter, edit, and remove rules from
the rule ABE. The rule-editor is an interface to
views.
Library: “Manages the storage of the agent
instructions (rules and facts).”
Engine(s): Provides a rule-based engine for
interpreting instructions to the agent.
Adapters: “Provide the interface needed by the
engine to trigger events and communicate with
the engine.” There are five adapters: files
adapter, http adapter, nntp adapter, time
(alarms) adapter, and util (mathematical
utilities) adapter.
 Agent Control: Initializes and provides
overall control of the running agent. This
component also provides an interface for
designing agents.

The arrows origination from outside the
development kit and pointing to components
represent the existence of an interface. The
interface is provided for the user to facilitate using
a component to make changes, developments, etc.
 Intelligent agents developed using ABE and
Java are named aglets by IBM. The ABE Aglet
Daemon is a server that needs to be run on
computers that are to use aglets. The daemon
provides a context or “place” which is a
homogeneous environment in which aglets may
travel to and from, and execute. The context is
implemented in Java and is thus platform
independent.

5. Project Components

 The main component discussed here is a user-
interaction component implemented as a Java
applet, which is used to retrieve detailed process
information from one or multiple hosts on a
network. The application design is composed of
the following components:

Client GUI: The GUI has one menu allowing
the user to specify a host to view, and another
menu to specify process criteria (type of processes
to view, or all processes). There are two windows
in the GUI. One to display the processes (as
specified by the process criteria in the menu) that

are running on a host, together with their states,
usage, and priorities. The second window displays
host information, IP address, idle-time, hostname,
I/O-time, and processing-time.

 Client GUI process window: Each process
to be displayed in the window appears as a
circle. When the user places the mouse pointer
on a process circle, a window pops up, listing
the information of the process (i.e. process id,
name, usage, state, etc.) [1].
 Client GUI host information window: This
window displays the pertinent information for a
specific host in a text format. It lists IP
address, idle-time, hostname, I/O-time, and
processing-time of the host.

The GUI applet is not standalone; rather it inter-
operates with other components that actually
facilitate the collection of information for the GUI.
These comprise the following:

Helper Tool: This is local to a host and
retrieves (via low-level calls) host information (IP
address, hostname, processor idle-time, I/O-time,
processing-time) and process information (process
ID, process name, type(thread/process), state,
kernel-running-time, user-running-time, sleeping-
time priority). The Helper Tool is implemented in
C, and based on a Unix platform. For other
platforms such as Windows NT, separate helper
tools must be developed.

Intelligent Agents: The agents are
implemented using IBM’s ABE Development
Toolkit. The Java-based agents are called aglets.
Aglets are used in this project because they may
autonomously perform the tasks given them. Their
ability to intelligently execute allows them to
implement their goals efficiently and flexibly.
Their ability to traverse a network, bringing their
code and preserving their state helps reduce the
network load that would otherwise be greater with
a different implementation. The intelligent agents
used in this project come in two forms: mobile
and stationary[10].

 Mobile Aglets: Intelligent agents that roam
the network, collecting the information
produced from the helper tools located on the
various hosts and delivering it to a stationary
aglet located on a “Management Server” [4],
[1].
 Stationary Aglet: Located on a management
server with whom the GUI applet
communicates. This aglet (developed with
IBM’s Agent Building Environment(ABE) is
responsible for persistent storage of
information delivered to it by the mobile aglets
[4],[1].

6. 	 Input and Output

 As indicated above, the interaction with the user
is required for the system to function. The user
must dictate a host on the network to view, as well
as any process criteria for viewing. This can be
accomplished via the two pull-down menus. The
user may manipulate the menus using a mouse or
keyboard.
 The applications output reflects the user’s input.
The host information window of the GUI displays
the information of the host that pertains to the host
chosen by the user: host name, address, etc. The
information displayed in the process information
window of the GUI reflects the process criteria as
specified by the user (or the default, which in itself
is a user’s choice). The application retrieves the
process information of a host from the stationary
aglet, which received the information from one of
the mobile aglets. Upon receipt from the
stationary aglet, the GUI displays the information.

7. 	 Project Functionality

 Five steps summarize the overall functionality
of the application:

1. 	Connection to the user’s choice of a
network host to view. This is
implemented by access to a pull-down
menu found on the GUI. Each choice on
the pull-down menu will be a host that is
located on the network. The user only
needs to choose one to be connected to
that host [1].

2. 	 Record the user’s process criteria (or set
of information that the user wishes to
have displayed). This action is
implemented by access to a second pull-
down menu, which enables the user to
choose what information will be returned
and displayed in the GUI process
window. The default will be to display all
processes running on the host, along with
all pertinent information.

3.	 The display of process information in the
GUI process window. This information
will reflect the criteria that the user has
specified regarding which processes to
view, and on which host(s).

4.	 The display of host information, such as
hostname and IP address, in the host
information window.

5.	 Print the contents of the GUI’s process
and information window. This function is
enabled by a print button provided as part

of the GUI. A log-file is also created
which will reflect the same data as the
output of a print. Like the print function,
this facility is to be enabled by a button
which is found on the user interface.

Figure 2 – Overall Project Schematic

8. 	 System Organization

 The system includes three different components
that interact:

1.	 Network hosts from which information is
needed; they are monitored.

2.	 The management server in which the
stationary agent collects and stores
information about a network host.

3. 	 The client GUI, which accepts user input,
collects information from the stationary
agent residing on the server, and displays
collected information for the user.

 The client GUI is designed with JavaScript and
a Java applet and will send a request to the
management server for process and host
information. The server will then retrieve that
information from a network host using mobile
aglets, and upon receiving the information, again
from a mobile aglet, will make it available to the
client GUI. The client GUI will then display the
information for the user [1].

8.2 Part I – The Client (user) GUI

Figure 3 Part I – The Client (User) GUI

 The client GUI applet receives user input that
will specify the monitor information which is to be
retrieved (i.e., from which host, process criteria).
The client GUI sends this request to the
management server. The management server will
then dispatch a mobile agent to obtain the
information. When the information is retrieved,
the management server will alert the client GUI.
The GUI will then display the retrieved
information in its host information and process
information windows.

8.3 Part II – Management Server

Figure 4 Par II – Management Server

 The management server has a stationary aglet
with the ability to create and dispatch mobile
aglets. When the management server receives a
monitor request from the client GUI, it dispatches
a mobile aglet to the host to be monitored. The
aglet will be autonomous and will act in
accordance to the user-specified criteria of
information retrieval. When the aglet returns from
a monitored host with the required information, the
management server will store the information and
make it available to the GUI [1].

8.4 Part III – The Networked Host

Figure 5 Part III – The Network Host

 These are the computers on the network to be
monitored. Each network host to be monitored
must have the IBM ABE installed on it. This
allows the Aglet Daemon to run on it. The Aglet
Daemon in turn allows aglets to reside on the host
by providing an aglet context or “place”. It is in
this context that the aglets reside and do their
work. The aglets will have been created by the
stationary aglet and dispatched from the
management server, and will travel to the host to
be monitored. The aglet will be able to
autonomously retrieve the process information
according to the process criteria specified by the
user (through the help of the Helper Tool). After
the information is retrieved, the aglet will travel
back to the management server [1].

9. Equipment Configuration

The client GUI may run on any platform that
supports a Java-enabled browser such as Netscape
Navigator. The Management Server is designed to
run on a Unix platform. The Network (Monitored)
Hosts are Unix hosts.

10. Implementation Languages

Java language is used to code the client GUI
applet and the Management Server because it is
platform independent and is the preferred language
for agent development. Through the use of Java
object serialization, an aglet object may be
persistently serialized or “stored” along with its
execution state and associated values. The
serialized aglet can then be dispatched over the
network to another host where it is deserialized.
The execution code and stored values allow the
aglet to resume execution on the remote host in its
previous execution state.
 The Helper Tool installed on the network
(monitored) hosts is implemented using C
language because it is efficient for low-level calls
to the system for process and host information
collection.

11. Conclusion

The project is part of an ongoing endeavor
and it enhances the interaction capabilities and
the functionality of the work reported earlier.
The purpose is to facilitate the monitoring and
information retrieval of process information
on networked hosts. The intent of the effort is
to present a tool that may assist in network
maintenance and monitoring.

12. References

[1] F. J. Kurfess, D. P. Shah, K. Holthaus, F.
Miralles, “Monitoring Distributed Processes with
Intelligent Agents”, In Proceedings, Engineering
of Computer-based Systems (ECBS’99), Nashville,
TN, USA 1999.

[2] D. B. Lange, M. Oshima, “Seven Good
Reasons for Mobile Agents”, Communications of
the ACM 42, [(March 1999), pp. 88-89].

[3] D. Wong, N. Paciorek, D. Moore, “Java-based
Mobile Agents”, Communications of the ACM, 42,
[(March 1999), pp. 92-102].

[4] W. R. Cockayne, M. Zyda, Mobile Agents,
Manning Publications, Connecticut, 1998.

[5] M. Knapik, J. Johnson, Developing Intelligent
Agents for Distributed Systems, McGraw-Hill
Publishing, 1998.

[6] J. Bloomer, Power Programming with RPC,
O’Reilly & Associates, Inc., 1992

[7] J. P. Bigus, J. Bigus, Constructing Intelligent
Agents with Java, Wiley Computer Publishing,
1998.

[8] International Business Machines (IBM),
Documentation distributed with the IBM Agent
Building Environment Developer’s Toolkit, Level
6, 1997.

[9] JavaWorld Web-Page with Java aglets
information,
http://www.javaworld.com/javaworld/jw-05
1997/jw-05-hood.html.

[10] Matisse, Computing Glossary Web-Page,
http://www.matisse.net/files/glossary.html.

