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Some Underlying Human Realities. 

Human beings are inquisitive creatures who seek explanations for all that they observe 
and experience in their living environment. While this quest for understanding is 
central to our success in adapting to a changing environment, it is also a major cause 
of our willingness to accept partial understandings and superficial explanations when 
the degree of complexity of the problem situation confounds our current cognitive 
capabilities. In other words, a superficial or partial explanation is considered better 
than no explanation at all. As flawed as this approach may be, it has helped us to solve 
difficult problems in stages. By first oversimplifying a problem we are able to develop 
an initial solution that is later refined as a better understanding of the nature of the 
problem evolves. 

Unfortunately, now we have to contend with another characteristic of human beings, 
our inherent resistance to change and aversion to risk taking. Once we have found  an 
apparently reasonable and workable explanation or solution we tend to lose interest in 
pursuing its intrinsic shortcomings and increasingly believe in its validity. Whether 
driven by  complacency or lack of confidence, this state of affairs leads to many 
surprises. We are continuously discovering that what we believed to be true is only 
partly true or not true at all, because the problem is more complicated than we had 
previously assumed. 

At times a particular set of explanations, or school of thought, becomes entrenched as 
a paradigm that is not easily broken. Kuhn (1977) has drawn attention to the stagnat
ing influence on progress of scientific paradigms, the resistance experienced by indi
viduals or small groups that wish to correct flaws in a paradigm, and the resurgence of 
innovative activity after the paradigm has been broken. If experts in science will 
succumb to this weakness in human nature then how much more difficult will it be 
for a layperson to maintain a discerning mind? 

Throughout modern history these intrinsic human characteristics of resisting change, 
avoiding risks, and endeavoring to maintain status quo have created a tension in 
society. A prominent example is, of course, the Information Revolution driven by the 
rapid development of computers and communication systems and their potential 
assistance in human decision making endeavors. 
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The Increasing Complexity of Problems in a Global Community. 

The complexity of problems faced by human society in areas such as management, 
economics, marketing, engineering design, military operations, and environmental 
preservation, is increasing for several reasons. First, computer-driven information 
systems have expanded these areas from a local to an increasingly global focus. Even 
small manufacturers are no longer confined to a regionally localized market for selling 
their products. The marketing decisions that they have to make must take into ac
count a wide range of factors (e.g., international currency rates, political alliances, and 
climatic conditions) and a great deal of knowledge (e.g., language, conventions, and 
cultural beliefs) that is far removed from the local environment. 

Second, as the scope of the problem system increases so do the relationships among 
the various factors. These relationships are difficult to deal with, because they require 
the decision maker to consider many factors concurrently. Although the biological 
operation of the human brain is massively parallel, our conscious reasoning processes 
are sequential. Simply stated, we have difficulty reasoning about more than two or 
three variables at any one time. 

Third, as the scope of  problems increases decision makers suffer simultaneously from 
two diametrically opposed but related conditions. They tend to be overwhelmed by 
the shear volume of information that they have to consider, and yet they lack infor
mation in many specific areas. To make matters worse, the information tends to 
change dynamically in largely unpredictable ways. 

It is therefore not surprising that governments, corporations, businesses, down to the 
individual person, are increasingly looking to computer-based decision-support 
systems for assistance. This has placed a great deal of pressure on software developers 
to rapidly produce applications that will overcome the apparent failings of the human 
decision maker. While the expectations have been very high, the delivery has been 
much more modest. The expectations were simply unrealistic. 

It was assumed that advances in technology will be simultaneously accompanied by an 
understanding of how these advances should be applied optimally to assist human 
endeavors. History suggests that such an a priori assumption is not justified. There 
have been countless experiences in the past that would suggest the contrary. For 
example, the invention of new materials (e.g., plastics) have inevitably been followed 
by a period of misuse. Whether based on a misunderstanding or lack of knowledge of 
its intrinsic properties, the new material was typically initially applied in a manner 
that emulated the material(s) it replaced. In other words, it took some time for the 
users of the new material to break away from the existing paradigm. A similar situa
tion currently exists in the area of computer-based decision-support systems. 
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The Rationalistic Problem Solving Tradition. 

To understand current trends in the evolution of progressively more sophisticated 
decision-support systems it is important to briefly review the foundations of problem 
solving methodology from an historical perspective. Epistemology is the study or 
theory of the origin, nature, methods and limits of knowledge. The dominant episte
mology of Western Society has been technical rationalism (i.e., the systematic appli
cation of scientific principles to the definition and solution of problems). 

The rationalistic approach to a problem situation is to proceed in well defined and 
largely sequential steps (Fig.1): define the problem; establish general rules that describe 
the relationships that exist in the problem system; apply the rules to develop a solution; 
test the validity of the solution; and, repeat all steps until an acceptable solution has 
been found. This simple view of problem solving suggested a model of sequential 
decision making that has retained a dominant position to the present day. With the 
advent of computers it was readily embraced by 1st Wave software (Fig.2) because of 
the ease with which it could be translated into packaged, automated solutions utilizing 
the procedural computer languages that were available at the time (Pohl 1996). 

1st Wave software assumes that problem solving is essentially a sequential process in 
which every subsequent step depends on the completion of the preceding step. This 
view of problem solving is far removed from real world experience, where project 
teams solve problems collaboratively and contribute to the decision making process 
whenever they have something useful to share with the other team members. Seldom, 
if ever, is a team member prevented from contributing information until a certain 
stage or milestone has been reached. On the contrary, team members are encouraged 
to exchange information freely in the hope that their contributions will accelerate the 
solution process and increase the quality of the solution. 

STEP 1: 
DEFINE PROBLEM AS A SYSTEM OF 
IDENTIFIABLE OBJECTS THAT HAVE 
KNOWN CHARACTERISTICS. 

STEP 2: 
FIND GENERAL RULES THAT DEFINE 
THE RELATIONSHIPS AMONG THE 
OBJECTS WITHIN THE CONTEXT OF THE 
PROBLEM SYSTEM. 

STEP 3: 
APPLY THE RULES TO THE 
PROBLEM SITUATION AND DRAW 
CONCLUSIONS THAT LEAD TO A 
SOLUTION. 

STEP 4: 
TEST THE SOLUTION AGAINST 
SPECIFIC ACCEPTANCE CRITERIA 
AND IF UNSATISFACTORY RETURN TO 
ANY OF THE PREVIOUS STEPS. 

USER DATA 

USER DATA 

INPUT 

OUTPUT 

O Single Process and Single User 

O Low Level Object Representation 

O All Input from Data Files and User 

O All Output to Data Files and User 

O Limited Integration Potential 

O Predetermined Operational Sequence 

Fig.1: Solution of simple problems Fig.2: ‘1st Wave’ computer applications 
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Over the past 50 years with the availability of more and more convenient and effective 
communication facilities, government and industry have been increasingly challenged 
by real world problems that are often very complex involving many related variables. 
Neither the relationships among the variables nor the variables themselves are nor
mally sufficiently well understood to provide the basis for clear and comprehensive 
definitions. In other words, problem situations are often too complex to be amenable 
to an entirely logical and predefined solution approach. Under these conditions the 
analytical strategy has been to decompose the whole into component parts, as follows: 

•	 Decompose the problem system into sub-problems. 

•	 Study each sub-problem in relative isolation, using the rationalistic approach 
(Fig.1), and if the relationships within the sub-problem domain cannot be 
clearly defined then decompose the sub-problem further. 

•	 Combine the solutions of the sub-problems into a solution of the whole. 

Underlying this problem solving strategy is the implicit assumption that an under
standing of parts leads to an understanding of the whole. Under certain conditions 
this assumption may be valid. However, in many complex problem situations the parts 
are tightly coupled so that the behavior of the whole depends on the interactions 
among the parts rather than the internal characteristics of the parts themselves 
(Bohm 1983, Senge 1993). An analogy can be drawn with the behavior of ants. Each 
ant has only primitive skills, such as the ability to interpret the scent of another ant 
and the instinctive drive to search for food, but little if any notion of the purpose or 
objectives of the ant colony as a whole. Therefore, an understanding of the behavior of 
an individual ant does not necessarily lead to an understanding of the community 
behavior of the ant colony of which the ant is a part. 

Decomposition is a natural extension of the scientific approach to problem solving 
and has become an integral and essential component of rationalistic methodologies. 
Nevertheless, it has serious limitations. First, the behavior of the whole usually de
pends more on the interactions of its parts and less on the intrinsic behavior of each 
part. Second, the whole is typically a part of a greater whole and to understand the 
former we have to also understand how it interacts with the greater whole. Third, the 
definition of what constitutes a part is subject to viewpoint and purpose, and not 
intrinsic in the nature of the whole. For example, from one perspective a coffee maker 
may be considered to comprise a bowl, a hotplate, and a percolator. From another 
perspective it consists of electrical and constructional components, and so on. 

Rationalism and decomposition are certainly useful decision making tools in complex 
problem situations. However, care must be taken in their application. At the outset it 
must be recognized that the reflective sense (Schön 1983) and the intuitive capabili
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ties of the decision maker are at least equally important tools. Second, decomposition 
must be practiced with restraint so that the complexity of the interactions among 
parts is not overshadowed by the much simpler behavior of each of the individual 
parts. Third, it must be understood that the definition of the parts is largely depen
dent on the objectives and knowledge about the problem that is currently available to 
the decision maker. Even relatively minor discoveries about the greater whole, of 
which the given problem situation forms a part, are likely to have significant impact 
on the purpose and the objectives of the problem situation itself. 

Decision Making in Complex Problem Situations. 

In several previous CAD Research Center publications we have drawn attention to 
the importance of internal and external relationships in complex problem situations 
(Pohl et al. 1997 (48-62), Pohl and Myers 1994). As shown in Fig.3, there are several 
characteristics that distinguish a complex problem from a simple problem. First, the 
problem is likely to involve many related issues or variables. As discussed earlier the 
relationships among the variables often have more bearing on the problem situation 
than the variables themselves. Under such tightly coupled conditions it is usually not 
particularly helpful, and may even be misleading, to consider issues in isolation. 
Second, to confound matters some of the variables may be only partially defined and 
some may yet to be discovered. In any case, not all of the information that is required 
for formulating and evaluating alternatives is available. Decisions have to be made on 
the basis of incomplete information. 

Third, complex problem situations are pervaded with dynamic information changes. 
These changes are related not only to the nature of an individual issue, but also to the 
context of the problem situation. For example, a change in location of an enemy force 
(even within the same sector of the battlefield) could easily have a major impact on 
the entire nature of the combat situation facing the commander. Apart from the 
disposition of friendly forces under these changed conditions, the influence on target 
priorities, and the effectiveness of available weapons, such a relocation could call into 
question the very feasibility of the existing battle plan. Even under less critical condi
tions it is not uncommon for the solution objectives to change several times during 
the decision making process. This fourth characteristic of complex problem situations 
is of particular interest. It exemplifies the tight coupling that can exist among certain 
problem issues, and the degree to which decision makers must be willing to accom
modate fundamental changes in the information that drives the problem situation. 

Fifth, complex problems typically have more than one solution (Archea 1987). It is 
normally unproductive to look for an optimum solution, because there are no static 
benchmarks available for evaluating optimality. A solution is found to be acceptable if it 
satisfies certain performance requirements and if it has been determined that the search 
for alternatives is no longer warranted. Such a determination is often the result of 
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resource constraints (e.g., availability of time, penalty of non-action, or financial re
sources) rather than a high level of satisfaction with the quality of the proposed solution. 

Many Related Variables 

Some Variables Undefined 

Dynamic Information Changes 

Solution Objectives Change 

Several Possible Solutions 

CONCURRENT 

MULTI-TASKING 

OPPORTUNISTIC 

ADAPTABLE 

OPEN SYSTEM 

DYNAMIC 

TIME-SAVING 

Fig.3: Character of complex problems Fig.4: Parallel decision support 

While human decision making in complex problem situations has so far defied rigor
ous scientific explanation, we do have knowledge of at least some of the characteristics 
of the decision making activity. 

•	 Decision makers typically define the problem situation in terms of issues that 
are known to impact the desired outcome. The relative importance of these 
issues and their relationships to each other change dynamically during the 
decision making process. So also do the boundaries of the problem space and 
the goals and objectives of the desired outcome. In other words, under these 
circumstances decision making is an altogether dynamic process in which both 
the rules that govern the process and the required properties of the end result 
are subject to continuous review, refinement and amendment. Accordingly, the 
borderline between planning and execution is blurred by the constant need for 
replanning. 

•	 The complexity of the decision making activity does not appear to be due to a 
high level of difficulty in any one area but the multiple relationships that exist 
among the many issues that impact the desired outcome. Since a decision in 
one area will tend to influence several other areas there is a need to consider 
many factors at the same time. This places a severe burden on the human 
cognitive system. Although the neurological mechanisms that support con
scious thought processes are massively parallel, the conscious operation of 
these reasoning capabilities is largely sequential. Under these conditions the 
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individual human decision maker is very much in need of assistance. The 
availability of computers would appear to offer welcomed support through paral
lelism (Fig.4), connectivity, and information access, as long as the human decision 
makers are able to effectively communicate their assistance needs to the computer. 

•	 Observation of decision makers in action has drawn attention to the impor
tant role played by experience gained in past similar situations,  knowledge 
acquired in the general course of decision making practice, and expertise 
contributed by persons who have detailed specialist knowledge in particular 
problem areas (Mackinder and Marvin 1982, Mallen and Goumain 1973). 
The dominant emphasis on experience is confirmation of another fundamen
tal aspect of the decision making activity. Problem solvers seldomly start from 
first principles. In most cases, the decision maker intuitively builds on existing 
solutions from previous situations that are in some way related to the problem 
under consideration. Again, computers should be potentially useful through their 
ability to store not only vast amounts of data but also higher level information and 
knowledge. It is not unreasonable to expect knowledge-based computer systems (i.e., 
software applications) to alert the user to past solutions and suggest how these 
might relate to the current problem. 

•	 Finally, there is a distinctly irrational aspect to decision making in complex 
problem situations. Schön (1983) refers to a “...reflective conversation with the 
situation...”. He argues that decision makers frequently make value judgments 
for which they cannot rationally account. Yet, these intuitive judgments often 
result in conclusions that lead to superior solutions. It would appear that such 
intuitive capabilities are based on a conceptual understanding of the situation, 
which allows the problem solver to make knowledge associations at a highly 
abstract level. This strongly suggests that a collaborative human-computer part
nership is essential. Both must contribute their respective strengths and assist each 
other to overcome their respective weaknesses. Any attempt to automate the deci
sion making process to the exclusion of the human element is not only likely to be 
counterproductive, but dangerous as well. 

Based on these characteristics the solution of complex problems can be categorized as 
an information intensive activity that depends for its success largely on the availability 
of information resources and, in particular, the experience and reasoning skills of the 
decision makers. It follows that the quality of the solutions will vary significantly as a 
function of the problem solving skills, knowledge, and information resources that can 
be brought to bear on the solution process. This clearly presents an opportunity for 
the useful employment of computer-based decision-support systems in which the 
capabilities of the human decision maker are complemented with knowledgebases, 
expert agents, and self-activating conflict identification and monitoring capabilities. 
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The Critical Importance of Information Representation in the 
Computer. 

Although technological advances in computer hardware and communication systems 
have been truly astounding over the past 20 years, the direct utilization of these 
advances in the area of decision-support has been less than remarkable. The fact is 
that we are still using computers largely as data processing devices that perform only 
the most menial and least intelligent data transmission and manipulation tasks. While 
computers are performing these tasks with great speed and accuracy, and while they 
are able to provide connectivity among a virtually unlimited number of access points, 
the higher level and much more rewarding tasks of analyzing, interpreting and ab
stracting data as information and knowledge is almost entirely left to the human users 
(Fig.5). 

COMPUTER-STORED DATAUBIQUITOUS COMPUTING 
Millions of connected interfaces serving Alphanumeric character strings
as information sources and information and numbers without subject

delivery nodes. matter meaning to computer. 

BODY NETS 
Direct interface to the human senses for COMPUTER-STORED INFORMATION 
the enhancement of human functions. Symbols representing real world 

objects with behavorial characteristics 
and shallow (typical) relationships.PROBLEM SOLVING TOOLS 

Shift from programming tools to user 

tools for solving problems.
 

COMPUTER-STORED KNOWLEDGE 

AGENT SOCIETIES Information with deeper relationships 
A virtual world of service agents will based on monitoring of events, 

profoundly leverage the capabilities of reasoning and understanding. 
the individual. 

Fig.5: Evolving computer-human partnership Fig.6: Data-information-knowledge 

This serious deficiency has become increasingly apparent as technological advances have 
increased computing power, data storage capacities, and data transmission speeds by 
orders of magnitude in such a short period of time. Convenient global access to users 
and data has increased the need for information filtering, so that individuals might take 
advantage of the opportunities for material and personal profit that this connectivity 
and processing power present to the user. Needless to say, the capabilities of a computer 
to assist in the intelligent assessment of information are basically non-existent if the 
computer processes this information as bitmaps and alphanumeric text strings (Fig.6). 
Any significantly useful human-computer collaborative partnership carries with it the 
expectation that information is held within the system environment in a representational 
form that is, if not equivalent to, at least compatible with human cognition. 
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The current approach for achieving this objective is to represent information in the 
computer as objects with behavioral characteristics and relationships to other objects 
(Myers et al. 1993). While this approach is hardly sophisticated it does allow real 
world objects (e.g., airfield, tunnel, building, weapon, tank) to be represented sym
bolically so that computer software modules can reason about them. 

It is important to note that the relationships among these objects are often far more 
important than the characteristics that describe the individual behavior of each object. 
For example, the word house holds little meaning if we strip away the many associa
tions that this word represents in our mind. However, such associations to our knowl
edge of construction materials, our experiences in having lived in houses, and our 
understanding of how our own home is impacted by external factors (such as rain, 
sunshine, neighbors, mortgage interest rates, and so on) constitute the rich meaning 
of the object house (Minsky 1982). Accordingly, any useful representation of informa
tion in the computer must be capable of capturing the relationships among the enti
ties (i.e., objects) in the problem system. 

While some of these associations are fairly static (e.g., a weapon is a kind of asset and 
a lethal weapon is a kind of weapon) many of the associations are governed by current 
conditions and are therefore highly dynamic. For example, as a platoon of soldiers 
moves through the battlefield it continuously establishes new associations (e.g., to 
windows in buildings from which snipers could fire on individual members of the 
platoon), changes existing associations (e.g., higher levels of risk as the platoon nears 
an active combat zone), and severs previous associations (e.g., as the platoon is forced 
to abandon its compromised command post). 

Abstract concepts such as privacy, security and power, are less amenable to this ap
proach since their meaning and role in our day-to-day activities is less easily defined. 
For example, the characteristics of privacy are neither static nor can they be accurately 
described in relational terms. They depend on a wide range of factors that relate to 
both environmental and personal circumstances and dispositions. These factors can be 
only partially accounted for through embedded knowledge and rules, and therefore 
become largely the purview of the human members of the collaborative human-
computer partnership. 

Nevertheless, even with these shortcomings this form of representation of real world 
objects can provide the basis of usable problem solving support and decision making 
assistance. Improvements are possible with the addition of knowledge bases and user 
interaction. In the latter case the user becomes as much a helper to the system as the 
system serves as an assistant to the user. However, this occurs in quite different ways. 
The system uses its computing and logical reasoning capabilities to monitor, analyze 
and evaluate the actions, requests and interests of the user in an opportunistic manner. 
The user, on the other hand, helps the system to understand the nature of the objects 
and relationships that it is processing in a more deliberate manner (Pohl 1995). 
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The reliance on object representations in reasoning endeavors is deeply rooted in the 
innately associative nature of the human cognitive system. Information is stored in long 
term memory through an indexing system that relies heavily on the forging of associa
tion paths. These paths relate not only information that collectively describes the mean
ing of symbols such as helicopter, rifle and truck, but also connect one symbol to another. 
The symbols themselves are not restricted to the representation of physical objects, but 
also serve as concept builders. They provide a means for grouping and associating large 
bodies of information under a single conceptual metaphor. In fact, Lakoff and Johnson 
(1980) argue that “...our ordinary conceptual system, in terms of which we both think and act, 
is fundamentally metaphorical in nature...”. They refer to the influence of various types of 
metaphorical concepts, such as ‘desirable is up’ (spatial metaphors) and ‘fight inflation’ 
(ontological or human experience metaphors), as the way human beings select and 
communicate strategies for dealing with every day events. Problem solvers typically 
intertwine the factually based aspects of objects with the less precise, but implicitly 
richer language of metaphorical concepts. This leads to the spontaneous linkage of 
essentially different objects through the process of analogy. In other words, the decision 
maker recognizes similarities between two or more sub-components of apparently 
unrelated objects and embarks upon an exploration of the discovered object seeking 
analogies where they may or may not exist. At times these seemingly frivolous pursuits 
lead to surprising and useful solutions of the problem at hand. 

The need for a high level representation is fundamental to all computer-based decision-
support systems.  It is an essential prerequisite for embedding artificial intelligence in 
such systems, and forms the basis of any meaningful communication between user and 
computer. Without a high level representation facility the abilities of the computer to 
assist the human decision maker are confined to the performance of menial tasks, such 
as the automatic retrieval and storage of data or the computation of mathematically 
defined quantities. While even those tasks may be highly productive they cannot 
support a partnership in which human users and computer-based systems collaborate in 
a meaningful and intelligent manner in the solution of complex problems. 

The Limited Role of Visualization. 

Decision makers use various visualization media, such as visual imagination or simu
lation, drawings and physical models, to communicate the current state of the evolv
ing solution to themselves and to others. For example, drawings, sketches and com
puter displayed images have become intrinsically associated with problem solving. 
Although the decision maker can reason about complex problems solely through 
mental processes, drawings and related visual images are useful and convenient for 
extending those processes. The failings of a drawing or sketch as a vehicle for commu
nicating the full intent of the decision maker do not apply to the creator of the draw
ing. To the latter the drawing serves not only as an extension of long term memory, 
but also as a visual bridge to its associative indexing structure. In this way, every 
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meaningful part of the drawing is linked to related data and deliberation sequences 
that together provide an effectively integrated and comprehensive representation of 
the artifact. 

From a technical point of view a great deal of headway has been made over the past 
two decades in the area of computer-based visualization. However, without high level 
representation capabilities even the most sophisticated computer generated images are 
nothing but hollow shells. If the computer system does not have even the simplest 
understanding of the nature of the objects and their associations that are contained in 
the image then it cannot contribute in any way to the analysis of those objects. On the 
other hand, visualization in combination with high level representation becomes the 
most powerful element of the user interface of a decision-support system.  Under 
these circumstances, visualization promotes the required level of understanding 
between the user and the computer as they collaborate in the solution of the problem. 

The Complementary Role of Human Intuition. 

Schön (1983 and 1988) has written extensively about the intuitive aspects of decision 
making. Although he focused primarily on engineering design as an application area, 
his views provide valuable insight into the solution of complex problems in general. 
Design has all of the common characteristics of complex problem situations, and 
some additional ones such as the desire for solution uniqueness, that make it a prime 
candidate for computer-based assistance (Pohl et al.1994). 

In Schön’s (1988) view designers enter into “...design worlds...” in which they find the 
objects, rules and prototype knowledge that they apply to the design problem under 
consideration. The implication is that the designer continuously moves in and out of 
design worlds that are triggered by internal and external stimuli. While the reasoning 
process employed by the designer in any particular design world is typically sequential 
and explicitly logical, the transitions from state to state are governed by deeper physi
ological and psychological causes. Some of these causes can be explained in terms of 
associations that the designer perceives between an aspect or element of the current 
state of the design solution and the prototype knowledge that the designer has accu
mulated through experience. Others appear to be related to environmental stimuli or 
emotional states, or interactions of both. 

For example, applying Schön’s view to the broader area of complex problem solving, a 
particular aspect of a problem situation may lead to associations in the decision 
maker’s mind that are logically unrelated to the problem under consideration. How
ever, when the decision maker pursues and further develops these associations they 
sometimes lead to unexpected solutions. Typically, the validity of these solutions 
becomes apparent only after the fact and not while they are being developed. In 
popular terms we often refer to these solutions as creative leaps and label the author as 
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a brilliant strategist. What we easily forget is that many of these intuitions remain 
unrelated associations and do not lead to any worthwhile result. Nevertheless, the 
intuitive aspect of decision making is most important. Even if only a very small 
percentage of these intuitive associations were to lead to a useful solution, they would 
still constitute one of the most highly valued decision making resources. 

The reasons for this are twofold. First, the time at which the decision maker is most 
willing to entertain intuitive associations normally coincides with a most difficult 
stage in the problem solving process. Typically, it occurs when an impasse has been 
reached and no acceptable solution strategy can be found. Under these conditions 
intuition may be the only remaining course of action open to the decision maker. The 
second reason is particularly relevant if there is a strong competitive element present 
in the problem situation. For example, in command and control situations during the 
execution of military operations. Under these circumstances, strategies and solutions 
triggered by intuitive associations will inevitably introduce an element of surprise that 
is likely to disadvantage the enemy. 

The importance of intuition in decision making would be sufficient reason to insist 
on the inclusion of the human decision maker as an active participant in any com
puter-based decision-support system. In designing and developing such systems in 
the CAD Research Center over the past decade we have come to appreciate the 
importance of the human-computer partnership concept, as opposed to automation. 
Whereas in some of our early systems (e.g., ICADS (Pohl et al. 1988) and AEDOT 
(Pohl et al. 1992)) we included agents that automatically resolved conflicts, today we 
are increasingly moving away from automatic conflict resolution to conflict detection 
and explanation. We believe that even apparently mundane conflict situations should 
be brought to the attention of the human agent. Although the latter may do nothing 
more than agree with the solution proposed by the computer-based agents, he or she 
should be given the opportunity to bring other knowledge to bear on the situation 
and thereby influence the final determination. 

The Human-Computer Partnership 

To look upon decision-support systems as partnerships between users and computers, 
in preference to automation, appears to be a sound approach for at least two reasons. 
First, the ability of the computer-based components to interact with the user over
comes many of the difficulties, such as representation and the validation of knowl
edge, that continue to plague the field of machine learning (Thornton 1992, Johnson-
Laird 1993). 

Second, human and computer capabilities are in many respects complementary 
(Figs.7 and 8). Human capabilities are particularly strong in areas such as communi
cation, symbolic reasoning, conceptualization, learning, and intuition. We are able to 
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store and adapt experience and quickly grasp the overall picture of even fairly chaotic 
situations. Our ability to match patterns is applicable not only to visual stimuli but 
also to abstract concepts and intuitive notions. However, although the biological basis 
of our cognitive abilities is massively parallel, our conscious reasoning capabilities are 
essentially sequential. Therefore, human decision makers are easily overwhelmed by 
large volumes of information and multi-faceted decision contexts. We have great 
difficulty dealing with more than two or three variables at any one time, if there are 
multiple relationships present. Under these circumstances we tend to switch from an 
analysis mode to an intuitive mode in which we have to rely almost entirely on our 
ability to develop situation awareness through abstraction and conceptualization. 
While this is our greatest strength it is also potentially our greatest weakness. At this 
intuitive meta-level we are vulnerable to emotional influences that are an intrinsic part 
of our human nature and therefore largely beyond our control. 

Computer capabilities are strongest in the areas of parallelism, speed and accuracy 
(Fig.8). Whereas the human being tends to limit the amount of detailed knowledge 
by continuously abstracting information to a higher level of understanding, the 
computer excels in its almost unlimited capacity for storing data. While the human 
being is prone to making minor mistakes in arithmetic and reading, the computer is 
always accurate. A slight diversion may be sufficient to disrupt our attention to the 
degree that we incorrectly add or subtract two numbers. However, if the error is large 
we are likely to notice that something is wrong further downstream due to our ability 
to apply conceptual checks and balances. The computer, on the other hand, cannot of 
its own accord distinguish between a minor mistake and a major error. Both are a 
malfunction of the entirely predictable behavior of its electronic components. 

The differences between the human being and the computer are fundamental. All of 
the capabilities of the digital computer are derived from the simple building blocks of 
‘0’ and ‘1’. There is no degree of vagueness here, ‘0’ and ‘1’ are precise digital entities 
and very different from the massively parallel and largely unpredictable interactions of 
neurons and synapses that drive human behavior. It is not intuitively obvious how to 
create the high level representations of real world objects (e.g., ship, aircraft, dog, 
house, power, security, etc.) that appear to be a prerequisite for human reasoning and 
learning, in a digital computer. While these objects can be fairly easily represented in 
the computer as superficial visual images (in the case of physical objects such as 
aircraft and house) and data relationships (in the case of conceptual objects such as 
power and security) that in itself does not ensure that the computer has any under
standing of their real world meaning. These representations are simply combinations 
of the basic digital building blocks that model, at best, the external shell rather than 
the internal kernel of the object. 
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Fig.7: Human abilities and limitations Fig.8: Computer abilities and limitations 

Unfortunately, it is still not generally understood that this representational inadequacy 
is the single most limiting factor in virtually all existing decision-support systems. For 
example, current military command and control systems tend to overwhelm com
manders with hundreds of detailed satellite pictures of battlefield conditions that are 
transmitted by computers as digital packages rather than groups of objects. As a result 
the interpretation, filtering and fusion of these images, areas in which computer-
assistance would be highly desirable, become the burdensome task of the human 
decision maker. 

More than 10 years ago when the CAD Research Center first embarked on the 
development of cooperative multi-agent systems we recognized the fundamental 
importance of representation, as a prerequisite for providing computer-based agents 
with reasoning capabilities. We discovered that while this problem was well known 
and had been the subject of considerable research in the artificial intelligence commu
nity, the results of this research work had generally remained the province of that 
close-knit community. 

Early practical implementations of artificial intelligence systems were almost exclu
sively confined to stand-alone applications, such as expert systems (e.g., Prospector 
(Duda et al. 1977, Reboh 1981), MYCIN (Buchanan and Shortliffe 1984), and 
ASTA (Wilson et al. 1984)). Since these systems were not intended to interface with 
other applications the importance of representation continued to be largely ignored by 
the mainstream of software developers and users. Over the past decade the CAD 
Research Center has explored, adapted and implemented several high level represen
tation techniques in its various decision-support applications for industry and govern
ment sponsors (Myers et al. 1993). While there is a need for a great deal more work 
in this area the state of technology today is, without question, capable of providing an 
internal representation level that can support meaningful reasoning assistance in large 
integrated decision-support systems. 
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Multi-Agent Collaborative Decision-Support Systems 

Adaptation of 1st Wave software (Fig.2) to increasingly more complex real world 
problem situations has led to a hybrid of  human and computer-based decision-
support systems (Fig.9). Individual members of the human problem solving team 
utilize computer-based tools to assist them mostly with the computational and plan
ning components of their tasks. However, this assistance is limited to the individual 
team member. While the computer can retrieve and send information from and to 
shared databases, it exercises these capabilities only on the request of its user. Collabo
ration within the problem team is largely restricted to the communications initiated 
by team members. The computer shares in these communications only to the extent 
that its user initiates queries to shared databases. The computer functions as a stand
alone tool that interacts with its user, but does not actively participate in the collabo
rative problem solving process. 
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Fig.9: Limited computer assistance Fig.10: Hierarchical military C4I structure 

In this hybrid decision-support environment, which is still representative even of the 
more critical transportation and military systems today, much of the collaboration is 
based on human to human voice communication. As a result, under severe stress 
conditions these systems are subject to serious communication bottlenecks that will 
disrupt and may even terminate the decision making process. In recent years examples 
of these conditions have occurred during environmental disasters, such as earthquakes 
in the USA, and military missions, such as Desert Storm in the Middle East. In the 
latter case, as shown in Fig.10, the combination of a hierarchical command and 
control structure with a 1st Wave software architecture produced a high potential for 
communication failure. A massive build-up of US and allied forces (i.e., more than 
500,000 personnel) in the theater was supported by computer-based communication 
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facilities that reflected the chain of command through multiple levels from the com
mander in chief (CINC) down to the soldier in the battlefield. In this human-based 
C4I system environment continuous electronic and voice communication, essentially 
from person to person, quickly clogged the available communication channels. 

During the late 1990s the limited computer-assistance capabilities (Fig.9) that are 
reflective of  1st Wave software will be increasingly replaced by integrated, multi-
agent, cooperative systems. This signals the emergence of  2nd Wave software 
(Fig.11) in which the contributions of several decision-support components are 
coordinated through an inter-process communication facility. The components, 
commonly referred to as agents, may be separate processes or modules of one or more 
processes. They may be rule-based expert systems, procedural programs, neural 
networks, or even sensing devices. Increasingly, these agents will have the ability to 
explain their actions and proposals, as they interact spontaneously with each other 
either directly or through coordination facilities. 

In the broadest sense an agent may be described as a computer-based program or 
module of a program that has communication capabilities to external entities and can 
perform some useful tasks in at least a semi-autonomous fashion. According to this 
definition agent software can range from simple, stand-alone, predetermined applica
tions to the most intelligent, integrated, multi-agent decision-support system that 
advanced technology can produce today. 
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Fig.11: 2nd Wave computer applications Fig.12: The service-agent architecture 

As discussed previously, 2nd Wave software requires a high level internal representa
tion of the real world objects and their relationships that are central to the problem 
situation. This is a prerequisite for the reasoning capabilities of the agents and also for 
the interaction of the user(s) with the system. The objective of 2nd Wave software is 
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not to automate the decision making activity, but to create an effective partnership 
between the human decision maker and the computer-based agents. In this partner
ship the human agent must be able to communicate with the computer-based agents 
in terms of the same real world objects that are used so effectively in all human 
reasoning endeavors. In their role as active collaborators the computer-based agents 
will have information needs that cannot be totally predetermined. Therefore, similar 
to the human agent, they will require the capability to dynamically generate database 
queries and initiate user interactions. At least some of the information sources ac
cessed by the agents will be prototypical in nature (i.e., standard practices, case stud
ies, and other typical knowledge pertaining to the problem situation) consistent with 
the notion of knowledge-based systems. 

As discussed earlier, human and computer capabilities are complementary in many 
respects. Where we excel in the areas of abstraction, conceptualization, intuition and 
creativity, the performance of the computer cannot be described as being even ad
equate. However, when it comes to computational speed and accuracy, searching for 
and storing data, redundancy and parallelism, information persistence, and continuous 
availability, the computer outperforms us by far. It is therefore not surprising that 
current 2nd Wave software developments are increasingly focusing on collaborative 
systems in which users interact with computer-based expert agents (Fig.11). Typically, 
each agent is designed to be knowledgeable in a narrow domain, and represents the 
viewpoint of that domain in its collaborative endeavors. In this respect it provides 
services and can be categorized as a service-agent (Fig.12). 

The service-agents are endowed with a communication facility that allows them to 
receive and send information. The manner in which they participate in the decision 
making activities depends on the nature of the application. They can be designed to 
respond to changes in the problem state spontaneously, through their ability to moni
tor information changes and respond opportunistically, or information may be passed 
to them in some chronological order based on time-stamped events or predefined 
priorities. They should be able to generate queries dynamically and access databases 
automatically whenever the need arises. In other words, service-agents should have 
the same data search initiation capabilities as the user and should not be dependent 
solely on the user for access to external information sources. In fact, the human users 
in such multi-agent systems may be categorized as very intelligent, multi-domain 
service agents. Examples of such service-agent systems can be found in the literature 
(Durfee 1988, Lesser 1995, Pohl et al. 1989, 1991 and 1997). 

Within a networked environment the service-agents pertaining to a single multi-
agent system (Fig.12) may be distributed over several computers, and even the coordi
nation facilities (i.e., planning, negotiation, conflict detection, etc.) may be distributed 
over several nodes (Pohl et al. 1992). Alternatively, several single multi-agent systems 
can be connected. In this case each multi-agent system functions as an agent in a 
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higher level multi-agent system. Such systems are well suited to planning functions in 
which resources and viewpoints from several organizational entities must be coordi
nated. Typical application areas include military mission planning and facilities 
management. The user at each node should be able to plan in multiple worlds. For 
example, a private world in which shared information sources may be accessed but the 
deliberations of the user are not shared with other users, and a shared world which 
allows and encourages the continuous exchange of comments, plans and instructions. 
The capability normally exists for the user to maintain multiple views of each world 
to facilitate experimentation and the exploration of alternatives (Nadendla and Davis 
1995). The service-agents resident in each system (i.e., at each node) should be able 
to differentiate between worlds and also between the views of any particular world. 
This normally requires a high degree of parallelism that must be supported by the 
system architecture. 

So far we have discussed multi-agent systems involving two types of agents; namely, 
service-agents and human agents (i.e., users). Other agent types are certainly feasible. 
Of particular interest is the agentification of the information objects that are intrinsic 
to the nature of each application. These are the information objects that human 
decision makers reason about, and that constitute the building blocks of the real world 
representation of the problem situation. 
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Fig.13: Object-Agent systems Fig.14: The object-agent as a mentor 

The notion of object-agents brings several potential benefits. First, it increases the 
granularity of the active participants in the decision making environment. As agents 
with communication capabilities, objects such as armored vehicles (in military mis
sions), aircraft (in air traffic control), or building spaces (in architectural design), can 
pursue their own needs and perform a great deal of local problem solving without 
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continuously impacting the communication and coordination facilities utilized by the 
higher level components of the decision-support system (Fig.13). Typically, an object-
agent is a process  (i.e., program) or component of a process that includes several 
adjuncts that provide the agent with communication capabilities, process management 
capabilities, information about its own nature, global objectives, and some focused 
problem solving tools. 

Second, the ability of object-agents to request services through their communication 
facilities greatly increases the potential for concurrent activities. Multiple object-
agents can request the same or different services simultaneously. If necessary, service-
agents responding to multiple service requests can temporarily clone themselves so 
that the requests can be processed in parallel. Third, groups of object-agents can 
negotiate among themselves in the case of matters that do not directly affect other 
higher level components or as a means of developing alternatives for consideration by 
higher level components. Fourth, by virtue of their communication facilities object-
agents are able to maintain their associations to other objects. In this respect they are 
the product of decentralization rather than decomposition. In other words, the concept 
of object-agents overcomes one of the most serious deficiencies of the rationalistic 
approach to problem solving; namely, the dilution and loss of relationships that occurs 
when a complex problem is decomposed into sub-problems. In fact, the relationships 
are greatly strengthened because they become active communication channels that can 
be dynamically created and terminated in response to the changing state of the prob
lem situation. 

The combination of object-agents and service-agents in the same decision-support 
system suggests a logical transition from 2nd Wave to 3rd Wave software in which 
even simple learning capabilities may eventually lead to emergent knowledge  (Brooks 
1990).  Object-Agents may represent abstract concepts such as image and power, 
collective notions such as climate, virtual entities such as a building space during the 
design process (Pohl 1996), physical objects such as a M1A1 tank in the battlefield, or 
even human beings such as an individual soldier, squad or platoon. In the latter case a 
small communication device, embedded in a computer tag, is attached to the uniform 
of the soldier (Fig.14). This Radio Frequency Tag (RF-Tag) is capable of receiving 
and sending messages to an object-agent taking the role of a mentor within the 
computer-based command and control system. In this scenario the object-agent can 
serve many functions. It can provide several kinds of assistance to the soldier, such as 
medical advice, geographical position and terrain information, enemy location and 
strength, maneuver strategies, fire support alternatives, and so on. Conversely, the 
object-agent can use the soldier as part of a sensory array that continuously collects 
intelligence with and without the soldier’s direct involvement. 

Many of the service requests received by the object-agent will need to be passed onto 
service-agents, human agents, or other object-agents. This can be accomplished 
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through the appropriate use of both broadcasting and directed modes of communica
tion. For example, a request for medical advice may initiate several actions by the 
mentor agent: a specific request for more detailed information to the soldier; the 
collection of bodily functions data from sensors embedded in the soldier’s uniform, if 
the soldier has been wounded; a broadcast for evacuation assistance, if the wounds are 
serious; a request for specific self-help medical advice directed to a service-agent with 
medical expertise; a situation update to the Commander’s mentor agent and/or the 
designated command and control service-agent; and so on. Even if the soldier is 
unable to personally communicate, the mentor agent is automatically alerted to the 
soldier’s medical condition through sensors attached to his uniform or skin. 

Conclusion 

A collaborative agent-based command and control system, such as the Integrated 
Marine Multi-Agent Command and Control Systems (IMMACCS) that was success
fully field-tested by the Marine Corps Warfighting Laboratory (MCWL) during the 
Urban Warrior Advanced Warfighting Experiment a few weeks ago (i.e., March 11 to 
18, 1999, Monterey and Oakland, California), differs from the conventional human-
based command and control system shown in Fig.10 in several significant respects 
(Porczak et al. 1999).  First, the continuous and automatic monitoring of human/ 
machine warfighting units by the various types of agents that operate spontaneously 
within the communication system potentially provides the warfighter with access to 
instantaneous advice and guidance. The agent to agent communication which facili
tates this continuous access to information and intelligent analysis is not dependent 
on human to human interaction. In a conventional command and control system the 
communication channels are easily saturated by the continuous flow of human to 
human electronic and voice communications.  Efforts to control this traffic inevitably 
require the imposition of communication restrictions that can easily prevent critical 
information from reaching the appropriate Commander or warfighter.  In addition, as 
shown in Fig.10, the human to human interaction encourages a build-up of support 
personnel in and around the theater. This build-up is costly in terms of transportation 
and logistics, increases the danger of casualties, and places an additional burden on 
the already overloaded communication facilities. 

Second, the multi-agent system architecture decentralizes both the collection and 
analysis of information. Individual human/machine warfighting units serve equally 
well as collectors and generators of information, as they do as recipients of informa
tion. In this way a dispersed force of warfighters can represent an important sensor 
array, with the ability to add value by converting data into information and knowledge 
close to the source. This decentralization of the data analysis process is particularly 
valuable in terms of distributing the communication traffic and validating the results 
of the analysis at the collection source. 
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Third, the seamless integration of planning, execution and training functions within 
the same command and control communication system allows the Commander and 
the individual warfighter to continuously and instantaneously switch from one mode 
of operation to another. In fact, the parallel nature of the system allows specific 
planning, execution and training tasks to be undertaken concurrently.  For example, 
the Commander may wish to initiate a planning function through one set of agents 
while executing a specific operation in the theater, and at the same time simulate a 
particular what if  scenario in anticipation of a possible future situation. 

Recent studies by the US Marine Corps and the US Army have demonstrated the 
capabilities of relatively low cost computerized RF-Tags that are mounted on vehicu
lar cargo.  Object-Agents can be designed to communicate with tagged equipment 
not only for purposes of monitoring their location, but also in a service and low level 
decision making role. 

For example, let us assume a tactical cargo loadout scenario in which a fuel truck, 
fitted with a RF-Tag has been loaded onto a ship. During the voyage the fuel truck 
starts to leak. While the volume of fuel leaked is fairly small, even this small amount 
constitutes a serious potential hazard on-board ship. Alerted of the situation through 
a simple feed-back mechanism the RF-Tag communicates to its companion object-
agent, resident in the command and control system, both its location and the extent 
of the leakage. The object-agent analyses the situation, either through its own capa
bilities or by requesting supporting services from other agents, and automatically 
notifies appropriate command personnel, or other agents, or the ship directly. What is 
particularly noteworthy in this scenario is the fact that the command and control system 
was not only able to automatically detect the problem, but also analyze the situation and 
take action without the need for human intervention. 

In existing multi-agent system configurations which include only domain agents (i.e., 
service-agents), conflicts arise when agents either disagree among themselves or with 
a decision made by the user.  For example, utilizing such a system for the load plan
ning of a ship, the placement of a fuel truck in a particular ship compartment might 
provoke the latter type of conflict (CADRC 1994). If the stow-planner unknowingly 
places the truck in the immediate vicinity of another cargo item of a different hazard
ous material class, then the hazard agent will alert the user and explain the necessary 
segregation requirements. The stow-planner resolves the conflict by relocating or 
unloading one or both of the cargo items or, alternatively, overrules the service-agent. 
The fuel truck, as a passive object, is involved in the conflict resolution process only as 
an information source that is used by the service-agent in its deliberations. In other 
words, while the validation of the load planning decision is entirely dependent on the 
knowledge encapsulated in the object the latter is unable to actively participate in the 
determination of its own destiny. 
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There is another kind of conflict resolution scenario that becomes possible with the 
availability of object-agents. An object-agent may develop a solution to a sub-problem 
in its own domain that redirects the entire course of the overall solution plan.  For 
example a squad, operating in dispersed mode in enemy territory and communicating 
with a mentor agent (Fig.14), performs its assigned enemy surveillance mission. It 
communicates through its object-agent certain enemy behavior that it believes could 
be turned to advantage if specific elements of the current overall operations plan were 
to be modified. However, such suggestions are rejected at operational levels below the 
Commander for reasons that appear to this squad to be based on erroneous intelli
gence. The squad judges the matter to be of a potentially serious nature and instructs 
its mentor agent to validate aspects of the squad’s current understanding of the battle
field situation. 

The object-agent commences a low level investigation by communicating with the 
mentor agents of several other squads and utilizing the services of domain agents (i.e., 
service-agents) where necessary. Soon an alarming picture emerges. It appears pos
sible that the enemy has infiltrated one node of the command and control system and 
is entering erroneous information through this node. The effects of this gradually 
evolving deception could lead to disastrous consequences. The squad, realizing the 
potentially serious nature of the situation, progressively develops through the activities 
of its object-agent a more and more compelling case in support of its observations and 
suggestions. 

Eventually, the overwhelming weight of evidence developed from the interactions of 
the squad with its object-agent and other agents in the command and control system 
attracts the attention of the Command Element. The Commander and his object-
agent quickly undertake another analysis of the situation considering additional 
factors not considered in the squad’s analysis. He verifies an almost certain localized 
penetration by the enemy of the command and control system and decides to utilize 
this knowledge by implementing a double-deception strategy. 

This scenario demonstrates several significant capabilities of a multi-agent command 
and control system, like IMMACCS,  incorporating object-agents.  First, it is signifi
cant that the likely enemy penetration of the information system has been discovered 
at all. If the squad had been restricted to communicating its information as passive 
objects for processing by service-agents there would not have been any desire on the 
part of the command and control system to pursue the problem after the initial 
conflict resolution.  Second, the squad’s object-agent was able to undertake its investi
gation in a decentralized fashion without impacting higher level command and 
control activities until it was ready to present a strong case for reconsideration. How
ever, it was able at any time to alert higher levels of the command structure as soon as 
the results of its investigation warranted such action. 
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Third, if the squad’s projections had been rejected at all higher agent levels, the 
squad’s object-agent could have appealed directly to the Commander or his object-
agent. Under these circumstances the Commander would have several alternative 
courses of actions open: also reject the squad’s suggestions; require one or more of the 
higher level agents (i.e., object-agents and service-agents) to explain their ruling; reset 
certain parameters that allow the higher level agents to reconsider their ruling; over
rule the higher level agents and accept the proposal; or, capture the current state of 
the battlefield situation as a recoverable view and use the squad’s proposition as the 
basis for the exploration of alternative solution paths. 

Apart from their immediate action capabilities, object-agents support the highly 
desirable goal of decentralization through localized decision making and communica
tion. In this kind of distributed, cooperative environment it would be useful if mes
sages themselves could be endowed with agent capabilities. At least certain types of 
messages would benefit greatly from action capabilities. For example, a message-agent 
sent by an object-agent or service-agent to find particular information could clone 
itself to seek the information concurrently in several potential sources. Once appar
ently relevant information has been found it could be synthesized to formulate a 
meaningful response to the originator of the query. Clearly, message-agents would 
add another level of granularity, decentralization and action capability within the 
distributed, collaborative decision-support system architecture. 
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