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ABSTRACT. Suppose al, a2,... is a sequence of real numbers with a,, oo. If 
lim sup( Xl + + X, )/a,, = a a.s. for every sequence of independent nonnegative 
uniformly bounded random variables Xi, X2,... satisfying some hypothesis condi- 
tion A, then for every (arbitrarily-dependent) sequence of nonnegative uniformly 
bounded random variables Y1, Y2,..., lim sup( Y, + + Y, )/a,, = a a.s. on the set 
where the conditional distributions (given the past) satisfy precisely the same 
condition A. If, in addition, Y.a-2 < oo, then the assumption of nonnegativity may 
be dropped. 

1. Introduction. The purpose of this note is to provide partial answers to the 
question of when the following statement (SI) is true in the case where "property B" 
is a property reflecting the limiting behavior of the stabilized (or normalized) partial 
sums. 

If every sequence of independent random variables having 
property A has property B almost surely, then every sequence 

(S1) of random variables has property B almost surely on the set 
where the conditional distributions (given the past) have 
property A. 

Of course (SI) is not true for all choices of properties A and B, but it is sometimes 
true in rather general contexts. In [4], for example, it was shown that (SI) is true 
whenever "property B" is "the partial sums converge", regardless of property A. In 
the present note, a partial analysis of (SI) is given for conclusions concerning the 
limiting behavior, not of the partial sums Sn, but of the stabilized partial sums Snlan 

for suitable normalizing constants {a) }. 

As in [4], 6J = (Y1, Y2,...) is a sequence of random variables on a probability 
triple (2, A, P), Sn = Y1 + --+ Yn, and Fn is the sigma field generated by Y1,..., Yn. 
Let n(-,) be a regular conditional distribution for Yn given 6nY , and let H 

(r 1 7T2). Let Ji denote the Borel a-field on R, and Ji? the product a-field on R?; 
let @(R) denote the space of probability measures on (R, J33), and let C,= @(R) X 
@(R) X - . (As mentioned in [4], it might help the reader to think of 6J as a random 
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THEODORE P. HILLl

ABSTRACT. Suppose aI' a2 •... is a sequence of real numbers with a/1 ~ 00. If
lim sup( XI + ... + X/1)/a/1 = a a.s. for every sequence of independent nonnegative
uniformly bounded random variables XI' X2,. .. satisfying some hypothesis condi­
tion A, then for every (arbitrarily-dependent) sequence of nonnegative uniformly
bounded random variables YI , Y2 , .•. , lim sup( YI + ... + Y:,) / a /1 = a a.s. on the set
where the conditional distributions (given the past) satisfy precisely the same
condition A. If, in addition, ~oc;a~2 < 00, then the assumption of nonnegativity may
be dropped.

1. Introduction. The purpose of this note is to provide partial answers to the
question of when the following statement (81) is true in the case where" property B"
is a property reflecting the limiting behavior of the stabilized (or normalized) partial
sums.

If every sequence of independent random variables having
property A has property B almost surely, then every sequence

(81) of random variables has property B almost surely on the set
where the conditional distributions (given the past) have
property A.

Of course (81) is not true for all choices of properties A and B, but it is sometimes
true in rather general contexts. In [4], for example, it was shown that (81) is true
whenever" property B" is "the partial sums converge", regardless of property A. In
the present note, a partial analysis of (8 I) is given for conclusions concerning the
limiting behavior, not of the partial sums Sn' but of the stabilized partial sums Sn/an
for suitable normalizing constants {an}'

As in [4], 61J == (YI , Y2 , • •• ) is a sequence of random variables on a probability
triple (D, ~, P), Sn == YI + ... + Yn, and~ is the sigma field generated by YI ,· .. , Yn.
Let 'TTn(', .) be a regular conditional distribution for Yn given ~n-I' and let IT ==
('TTl' 'TT2 , • •• ). Let g?J denote the Borel a-field on R, and g?Joo the product a-field on Roo;
let ~(R) denote the space of probability measures on (R, g?J), and let e== ~(R) X

~(R) X .... (As mentioned in [4], it might help the reader to think of 61J as a random
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element of RI, and of rI as a random element of (C.) E(X) is the distribution of the 
random variable X. 

Let B E q?'. In this notation, the formalization of statement (SI) is the following 
statement (S2) of [4]. 

If AC C is such that (X,, X2,...) E B a.s. whenever Xl, 
(S2) X2,... are independent and (P-(X,), e(X2),...) E A, then for 

arbitrary 6, 6? E B a.s. on the set where H E A. 

DEFINITION 1. XC = {B E qJ?: (S2) is true for all A C &}. 

Throughout this note, a,, a2' ... and b,, b2,... are sequences of real numbers with 
a,, -x o and E'b,;2 < 0o, and r< = (r,, r2,...). The main positive result in this paper 
is the following theorem. 

THEOREM 1. For allM> 0, all -x <a <b < xo, and all D C [-oo, xc], 

(i) B =B {i - R?cz : 0 < r, ? Mfor all i, andlimsup,, (r + - +r,)/a,, E 

D} eSC; 
and 

(ii) B =B {Bab R?: a s r, ? b for all i, and limsup,, (r, + - +r,,)/bn E 

D} LSC. 
Moreover, the analogs of (i) and (ii) with lim sup replaced by lim inf or lim also hold. 

In contrast to the conclusions of Theorem 1, examples will be given in ?4 to show 

that 

(1) B ={ (r ER: -I ?r, s I foralli, and 

lim sup (r + + r, )/(n log log(n/2))1/2 1) (4 ; 
11 -00 

and that 

(2) B = E R??: lim (r + *-+rn)/n # 0} W. 
11-0X 

2. Applications of Theorem 1. Theorem 1(i) essentially says that any theorem for 
nonnegative uniformly bounded independent random variables which concludes 
"lim sup,, OOSn/an E D a.s." may immediately be generalized into a conditional 
version of that result. For example, suppose one just learned the following fact. 

If X1, X2,... are independent random variables taking values 
(3) in [0,1], and if P(X,, < X) > 1 - xn- for all x E [0,1] and 

all n, then 

lim sup( X1 + * * +Xn )/log n < 1 a.s. 

Applying Theorem 1(i) with an log n, M = 1, and D = [0, 1] allows the gener- 
alization of (3) given by (4). 

If Y1, Y2,... are (arbitrarily-dependent) random variables 
taking values in [0, 1], then lim supn . Sn/log n 1 a.s. on 
the set where P(1Yn < xI167)n > 1 Xn- I for all x E [0,1] 
and all n. 
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element of Roo, and of IT as a random element of e.) e( X) is the distribution of the
random variable X.

Let B E ~oo. In this notation, the formalization of statement (81) is the following
statement (82) of [4].

If ACe is such that (XI' X 2 , • •• ) E B a.s. whenever XI'

(82) X 2 , ••• are independent and (e(XI ), e(X2 ), ••• ) E A, then for
arbitrary 61J, 61J E B a.s. on the set where IT E A.

DEFINITION 1. X:= {B E 0Doo : (82) is true for all ACe}.
Throughout this note, aI' a 2 , ••• and b l , b2 , ••• are sequences of real numbers with

an ~ 00 and 2.oob,~2 < 00, and r:= (r l , r2, .. . ). The main positive result in this paper
is the following theorem.

THEOREM 1. For all M > 0, all-oo < a < b < 00, and all D C [-00,00],
(i) B:= Btt {rE ROO: °~ r1 ~ M for all i, and lim sUPn-+oo(r l + ... +rn)/an E

D} EX;
and

(ii) B:= B; {rE Roo: a ~ r
1
~ b for all i, and limsuPn-+oo(r l + ... +rn)/bn E

D} E 1(.

Moreover, the analogs of (i) and (ii) with lim sup replaced by lim inf or lim also hold.

In contrast to the conclusions of Theorem 1, examples will be given in §4 to show

that

(1) B = {r E Roo: -1 ,,;;;; r, ,,;;;; 1 for all i, and

lim sup (r l + ... +rn )/ (n log log( n/2)) 1/2

11-+ 00

and that

(2) B = {r E Roo: lim (r1 + · . . +rn ) / n :;6 o} El ~.
11-+ 00

(4)

2. Applications of Theorem 1. Theorem l(i) essentially says that any theorem for
nonnegative uniformly bounded independent random variables which concludes
"limsuPn-+ooSn/an E D a.s." may immediately be generalized into a conditional
version of that result. For example, suppose one just learned the following fact.

If XI' X 2" •• are independent random variables taking values
(3) in [0,1], and if P(Xn ~ x) ~ 1 x n

-
I for all x E [0,1] and

all n, then

limsup(XI + ... +Xn)/logn ~ 1 a.s.

Applying Theorem l(i) with an log n, M 1, and D := [0,1] allows the gener-
alization of (3) given by (4).

If Y I ,Y2 , ••• are (arbitrarily-dependent) random variables
taking values in [0, 1], then lim sUPn-+oo Sn/log n ~ 1 a.s. on
the set where P(Yn ~ xl~_I) ~ 1 - x n

-
I for all x E [0,1]

and all n.
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Clearly it is not difficult to prove (4) using the conditional versions of the 
arguments used to establish (3), as is often the case; the point of Theorem 1 is that 
this is not necessary. 

As an application of Theorem l(ii), one may prove Levy's martingale strong law 
of large numbers [5, ?69, p. 250] by proving the special case of independence, and 
then applying Theorem 1 (ii) with bn = n and D {0}. For a stronger similar result, 
consider first the following theorem (5). 

[6, Theorem 2.8.1]. Let Xl, X2,... be a sequence of indepen- 
(5) dent, mean zero uniformly bounded random variables. Then 

(X1 + *-- +Xn)/nl/2+EO - 0 a.s. for each E > 0. 

Applying Theorem 1(ii) one immediately has the following martingale generaliza- 
tion of (5). 

Let S1,S2,... be a martingale with uniformly bounded 

(6) increments. Then Sn/nl /2+e -- 0 a.s. for each - > 0. 

(Stronger results than (6) are known; see, for example, Chow's result [2 or 7, 
Theorem 3.3.1].) It should be noted that the classical formulations of most laws of 
the iterated logarithm do not fit the framework of Theorem 1; they usually involve 
some form of centering which violates the nonnegativity assumption of (i), and 
clearly bn = (n log log n)1/'2 does not satisfy the ?b- < x hypothesis of (ii). 

Although the above applications all involve conditional moment hypotheses, the 
"hypothesis"set A in (S2) need neither be measurable nor involve (conditional) 
moments. (For a similar nonmoment application, the reader may see [4, Theorem 2].) 
It should also be remarked that technically speaking the set D in Theorem 1 may 
also be nonmeasurable, although in most applications, D will simply be a point or 
interval. 

3. Proof of Theorem 1. The argument below closely parallels that in the proof of 
[4, Theorem 1]; the crucial difference being the use of Lemma 2 in place of the 
three-series and Borel-Cantelli arguments of [4]. Without loss of generality, assume 
(Q, A, P) is complete. 

LEMMA 1 [4, LEMMA 1]. (S2) # (S3). 

(S3) P({w: Pr(,,)(B) = 1) nfl i4 B) = O for all 6?, where Pn(,) is 
the product measure r,(w) X 72(w) X ... on (R?, ffi?). 

REMARKS. In Lemma 1, the "hypothesis" set A of (S2) has in effect been replaced 
by the set representing all possible sufficient conditions for the conclusion 
"(X1, X2,...) E B" to hold; one direction of the equivalence uses the completeness 
of the measure space to guarantee all subsets of null sets are measurable. In terms of 
the class YuC, Lemma 1 says 

(7) SC,= {B E '??o: P({W: Prl(,)(B) = 1} n6 (i4 B) = 0 for all 6}. 

LEMMA 2. Let Y1, Y2,... be a sequence of uniformly bounded (arbitrarily-dependent) 
random variables, and let sn = YEn Yj I 6. F ) Then 

(i) lim sup Sn/bn =MSUPn oosn/bn a. s.; and 
(ii) if Y 2 0 for all i, then lim supn n . Sn/a= lim SUPn oSnl/an a. s. 
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(5)

(6)

(S3)

Clearly it is not difficult to prove (4) using the conditional versions of the
arguments used to establish (3), as is often the case; the point of Theorem 1 is that
this is not necessary.

As an application of Theorem I(ii), one may prove Levy's martingale strong law
of large numbers [5, §69, p. 250] by proving the special case of independence, and
then applying Theorem I(ii) with bn == nand D == {O}. For a stronger similar result,
consider first the following theorem (5).

[6, Theorem 2.8.1]. Let XI' X2 , ••• be a sequence of indepen­
dent, mean zero uniformly bounded random variables. Then
(XI + ... +Xn )/n l

/
2+ E ~ 0 a.s. for each E > O.

Applying Theorem I(ii) one immediately has the following martingale generaliza­
tion of (5).

Let SI' S2"" be a martingale with uniformly bounded
increments. Then Sn/n l

/
2+ E ~ 0 a.s. for each E > O.

(Stronger results than (6) are known; see, for example, Chow's result [2 or 7,
Theorem 3.3.1].) It should be noted that the classical formulations of most laws of
the iterated logarithm do not fit the framework of Theorem 1; they usually involve
some form of centering which violates the nonnegativity assumption of (i), and
clearly bn == (n log log n )1/2 does not satisfy the ~oob;2 < 00 hypothesis of (ii).

Although the above applications all involve conditional moment hypotheses, the
"hypothesis"set A in (S2) need neither be measurable nor involve (conditional)
moments. (For a similar nonmoment application, the reader may see [4, Theorem 2].)
It should also be remarked that technically speaking the set D in Theorem 1 may
also be nonmeasurable, although in most applications, D will simply be a point or
interval.

3. Proof of Theorem 1. The argument below closely parallels that in the proof of
[4, Theorem 1]; the crucial difference being the use of Lemma 2 in place of the
three-series and Borel-Cantelli arguments of [4]. Without loss of generality, assume
(D, ~, P) is complete.

LEMMA 1 [4, LEMMA 1]. (S2) ~ (S3).

P( {w: Prr(w)(B) == I} n 6]J f/:. B) == 0 for all6]J, where Prr(w) is
the product measure '1T I ( w) X '1T2( w) X ... on (ROO, 0?>OO).

REMARKS. In Lemma 1, the "hypothesis" set A of (S2) has in effect been replaced
by the set representing all possible sufficient conditions for the conclusion
"(XI' X2 , ••• ) E B" to hold; one direction of the equivalence uses the completeness
of the measure space to guarantee all subsets of null sets are measurable. In terms of
the class %, Lemma 1 says

(7) % == {B E 0?>oo: p({w: Prr(w)( B) == I} n 6]J f/:. B) == 0 for all 6]J} .

LEMMA 2. Let YI , Y2 , ••• be a sequence of uniformly bounded (arbitrarily-dependent)

random variables, and let sn == ~7E( lj I~_I)' Then

(i) lim sUPn_oo Sn/bn == lim sUPn_oo sn/bn'a.s.; and

(ii) if 1'; ~ 0 for all i, then lim sUPn_oo Sn/an == limsuPn_oosn/an a.s.
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PROOF. (i) follows from a martingale result of Chow [2 or 7, Theorem 3.3.11. 
(ii) follows easily (since an -x CC) from a generalization of a result of Dubins and 

Freedman [3] which can be found in Brown [1], namely: 

If Yl,Y2,... are nonnegative uniformly bounded random 
(8) variables, then limn - Sn/sn < cc a.s., and = 1 almost surely 

on the set sn 
- cc. C] 

The following example shows that the "uniform boundedness" assumption in 
Lemma 2 may not be replaced by " tightness". 

EXAMPLE 1. Let Y,, Y2,... be independent with 

n2) 12= - p(y = 0). P(Yn = n )=n = (n =? 

Then sn/n 1, but lim supn Sn,/n 0 a.s. by the Borel-Cantelli Lemma. 
PROOF OF THEOREM 1. The argument for (i) only will be given; that for (ii) and 

lim inf or lim are similar. 
Fix M > 0 and D C [-cc, cc]. By (7), it suffices to show that B satisfies (S3), 

where B = Bo { = Fr R?: 0 < r, < M for all i, and limsupn- (r1 + . r.)Ian 
E D}. Fix 6J (Yi, Y2,. ) 

Let (Q, A, P) be a copy of (Q, A, P), and (enlarging this new space if necessary) 
for each X E Q, let Z1(w), Z2(W),... be a sequence of independent random variables 
on (Q, 9X, P) with (4Z,n(w)) = Tn(w). Let E {w E Q: support of 7n(w) C [0, M] 
for all n}, and observe that, without loss of generality, it may be assumed that 
E {w e 2: 0 < Zn,(w) < M everywhere (in 2) for all n > 1). Next, calculate 

(9) 

P((w: Prl(,)(B) =1} i I n B) 

=P(E n {w: PHI(W)(B) 1) n6 (i B) 

= P 0: O < Zj(w) < M for all i and 

limsup(Z1(w) + +Zn(w))/an E D a.s. (in (s2, X, PS)) n 6@ 4 i B) 
,, - 00 

= P w: O 0 Z,(w) < M for all i and 

lim sup (EZ1(w) + * . +EZn(w))/an E D} n i 4 B) 
,, f 00 

= P(E n w: limsup (EY1 + E(Y2I' Y1)(w) 
,, - 00 

+** +E(Yn I (gn-1)(w))1an E D} n 6@Mi B) 

-0, 

where the first equality in (9) follows by the definitions of E and B; the second by 
the definitions of Zn( w) and B; the third by Lemma 2(ii) (recall that Z1( W), 
Z2(W), ...are independent in (Q, 9X, P) for each w); the fourth by the definition of 

Zn(w) and vn; and the last by Lemma 2(ii) again and the definitions of B and E. CI 
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PROOF. (i) follows from a martingale result of Chow [2 or 7, Theorem 3.3.1].
(ii) follows easily (since an ~ (0) from a generalization of a result of Dubins and

Freedman [3] which can be found in Brown [1], namely:

If Y1, Y2 , • •• are nonnegative uniformly bounded random
(8) variables, then limn_ 00 Sn/Sn < 00 a.s., and == 1 almost surely

on the set sn ~ 00. D

The following example shows that the "uniform boundedness" assumption in
Lemma 2 may not be replaced by "tightness".

EXAMPLE 1. Let Y1, Y2 , ••• be independent with

p(Yn == n 2
) == n-2 == 1 - p{Yn == 0).

Then sn/n == 1, but lim sUPn_oo Sn/n == 0 a.s. by the Borel-Cantelli Lemma.
PROOF OF THEOREM 1. The argument for (i) only will be given; that for (ii) and

lim inf or lim are similar.
Fix M > 0 and D C [- 00, 00]. By (7), it suffices to show that B satisfies (83),

where B == BaM == {rE Roo: 0 ~'1 ~ M for all i, and limsuPn_oo('1 + ... +'n)/an

ED}. Fix 6]J == (Y1, Y2 , •• • ).

Let (D, ~, P) be a copy of (D, ~,P), and (enlarging this new space if necessary)
for each wED, let Zl( w), Z2( w), . .. be a sequence of independent random variables
on (D, ~, P) with e(Zn(w)) == '17n(w). Let E == {w E D: support of '17n(w) C [0, M]
for all n}, and observe that, without loss of generality, it may be assumed that
E == {w E D: 0 ~ Z,z< w) ~ M everywhere (in D) for all n ~ I}. Next, calculate
(9)

p( {w: PTI(w){B) == I} n 6]J fl B)

== P(E n {w: PTI(w){B) == I} n 6]J fl B)

= P ( { w: 0 :;;;; Z;(w) :;;;; M for all i and

li~S;P(ZI(w)+ ... +Zn(w))/an ED a.s. (in (D, if, ]5))} n ~ ff. B)

= P ( {w: 0 :;;;; Z, (w) :;;;; M for all i and

li~s;P(EZI(w)+ ... +EZn(w))/an ED} n ~ ff. B)

= p( En {w: li~s;P(EYI + E(Y2 1 '?J])(w)

+ ... +E(Yn I '!f,,-])(w))/an ED} n ~ ff. B)

== 0,

where the first equality in (9) follows by the definitions of E and B; the second by
the definitions of Zn(w) and B; the third by Lemma 2(ii) (recall that ZI(W),
Z2( w), . .. are independent in (D, ~, P) for each w); the fourth by the definition of
Zn( w) and '17n; and the last by Lemma 2(ii) again and the definitions of Band E. D



ALMOST SURE STABILITY OF PARTIAL SUMS 689 

4. Examples establishing (1) and (2). 
EXAMPLE 2 [4]. Let Yn = S - S_, where SI, S2,'*. are iid, P(Sn = 0) 
P(Sn = 1) = 4. Then for a = (n log log(n/2))' /2 and D { 1}, lim supn 0Sn/a 

= O M D a.s., but PI(,)(B) = 1 a.s. for 

B= F {rR?: - I r, Ifor all i,and limsup (r, + + rn)lan= ) 
n oo 

Via (7), this proves (1). 
EXAMPLE 3. Let Sl, S2,.'.*. be independent with P(Sn = )n P(Sn - 2) = 

and let Yn = Sn - Sn (Y = SI). From the definition of Sn, one has that lim Sn/n 
O a.s. There are only two possible conditional laws for vn, namely 

(+n = 
8 ln ) + 8 (-rn + rn~- )l)/2, 

and 

7n(- (rn - n -1 + 8 (-n- rn~- f))/2. 

Construct { Z} as in the proof of Theorem 1. Then the unconditional distribution of 
{ Z1 } is independent with law 

P ( Zn = S + lln 1 ) ( Zn =F 
- n 1 ) P( Zn Fn + lln 1 ) 

It will now be shown that 

(10) (Z1+ +Zn)/n-1+0 a.s. 

To see (10), consider the following theorem of Revesz [6, p. 65 or 7, p. 167]: 

If Z1 I Z2,... are independent with I Zn I< n a.s. and E(Zn) = 0 
(11) for all n > 1, then (Z1 + - +Zn)/n -O 0 a.s. implies 

lim n- ,:[En nE( Zi2li 2 )]/log n = O . 

Since E(Zn2) = 2n - 1 for all n, then limn- 0. n E(Z72/i2)/logn = 0 which by 
(11) implies (10). Since limn- ooSn/n = 0 a.s., this establishes (2). (Informally, (2) 
says that "Sn/n does not converge to zero" is not a "property B" for which (SI) 
holds for every property A.) 

ACKNOWLEDGEMENTS. The author is grateful to Robert Kertz for several useful 
conversations, to Thomas Kurtz and the referee for several suggestions, and to the 
Department of Mathematics at the University of Leiden for its hospitality and 
technical assistance during the academic year 1982-83. 
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4. Examples establishing (1) and (2).
EXAMPLE 2 [4]. Let Yn == Sn - Sn-I' where SI' S2"" are iid, P(Sn == 0)

== P(Sn == 1) == 1. Then for an == (nloglog(n/2»1/2 and D == {I}, limsuPn->ooSn/an
== 0 f/:. D a.s., but PIl(w)(B) == 1 a.s. for

B = {r E Roo: -I :so;; r, :so;; I for all i, and lim sup (r, + ... + rn )/an = I } .
n-oo

Via (7), this proves (1).
EXAMPLE 3. Let SI' S2"" be independent with P(Sn == Iii) == P(Sn == -Iii) == 1

and let Yn == Sn - Sn-I (Y1 == SI)' From the definition of Sn' one has that lim Sn/n
== 0 a.s. There are only two possible conditional laws for '!Tn' namely

'IT~+) = (s( J; + ;;;-=1) + s(-J; + ;;;-=1) )/2,

and

Construct {Zn} as in the proof of Theorem 1. Then the unconditional distribution of
{Zn} is independent with law

p( Zn = J; + ;;;-=1) = p( Zn = J; - ;;;-=1) = p( Zn = -J; + ;;;-=1)
== p( Zn == -J; - ;;;-=1) == i.

It will now be shown that

(10)

To see (10), consider the following theorem of Revesz [6, p. 65 or 7, p. 167]:

If ZI' Z2"" are independent with IZn I~ n a.s. and £(Zn) == 0
(11) for all n ~ 1, then (ZI + ... +Zn)/n ~ 0 a.s. implies

lim n -> oo[~n£( Z?/i 2)]/log n == O.

Since £(Z;) == 2n - 1 for all n, then lim n ->ooL
n£(Z,2/i2)/log n == 0 which by

(11) implies (10). Since lim n -> 00 Sn/n == 0 a.s., this establishes (2). (Informally, (2)
says that "Sn/n does not converge to zero" is not a "property B" for which (S1)
holds for every property A.)
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