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1. Introduction 

 Interplanetary space travel is an extremely complicated endeavor that is severely 

limited by our current technological advancements. The amount of energy required to 

transport a spacecraft from one planet to the next, or even further, is extraordinary and in 

some cases is even impossible given our current propulsive capabilities. Due to these 

complications, the search for other means of exchanging energy became imperative to future 

space exploration missions. One particularly powerful method that was discovered, and the 

most commonly used one, is referred to as planetary gravity assist.  

 Planetary gravity assists, or planetary flybys for short, involve exchanging energy or 

momentum with a planet as a spacecraft flies past it. As long as an approaching spacecraft does 

not crash into the planet or get captured into a parking orbit, it will continue past the planet on 

a hyperbolic trajectory (Curtis 375). The idea is that, during this hyperbolic trajectory, there will 

occur a momentum exchange between the spacecraft and the planet. Since the mass of the 

planet is so massive, the small subtraction or addition of momentum results in a negligible 

change its net velocity. However, since the mass of the spacecraft is extremely light compared 

to the planet, the velocity imparted on the spacecraft from the planet can amount to sizeable 

quantities. Whether the spacecraft gains momentum or loses momentum entirely depends on 

the direction that it flies past the planet. If the spacecraft crosses in front of the planet's 

direction of motion, the flyby is referred to as a leading-side flyby and the spacecraft will lose 

heliocentric velocity. On the contrary, if the spacecraft crosses behind the planet's direction of 

motion, it's called a trailing-side flyby and the spacecraft gains heliocentric velocity (Curtis 376). 

In addition, the magnitude of the momentum exchange can be varied depending on the 



direction of the approach vector of the spacecraft. Thus, simply by flying past a planet, a 

spacecraft can choose to either gain or lose scalable quantities of velocity for practically free.  

 The attractiveness of planetary flybys to space exploration is obvious given our current 

space propulsion limitations. They offer a controllable, powerful, and repeatable method of 

changing the orbital energy of a spacecraft which allows for a much broader range of solar 

exploration. However, the unfortunate downside of planetary flybys is their inherent 

dependence on the proper alignment of planets. Precise timing and control is required in order 

to launch a spacecraft into orbit so that it flies past a desired planet in the right direction at 

exactly the right time. These complexities escalate tremendously when several planetary flybys 

are desired to be linked together, as they commonly are. In order to plan out multiple gravity 

assisted trajectories, complex and robust computer simulations are required to filter through 

the continuum of possibilities and select trajectories that optimally satisfy the mission 

requirements. This paper discusses one such computer simulation which seeks to minimize the 

propulsive delta v requirements of a spacecraft for a trajectory between two specified planets 

utilizing a specified number of planetary flybys along the way. It is important to note that this 

optimizer is not finished and this paper serves only as a mere precursor to an ensuing Master's 

Thesis. For this reason, this paper provides only a basic overview of the inter-workings of the 

optimizer and provides no conclusive evidence of its validity. 

2. Methodology 

2.1 Introduction 

 There are currently multiple approaches to gravity assisted orbit optimization. The 

approach outlined in this report is referred to as a patched Lamberts problem and utilizes a 



brute force tactic. The underlying principle of this strategy involves breaking down a trajectory 

into separate segments or legs and analyzing each leg one at time with respect to the leg prior 

to it. Each leg is defined as an orbital trajectory between planet A and planet B, where planets A 

and B can be either the same planet or different ones. The legs are analyzed with respect to 

constraint criteria which are established prior to running the simulation. If the criteria are 

satisfied, the next leg is analyzed and so forth until a complete and valid trajectory is found. 

2.2 System Variables and Initial Conditions 

 The initial inputs to the system consist of many factors. Firstly, a planet itinerary must 

be chosen. This itinerary details the initial departure planet, the order of planetary flybys, and 

finally the desired arrival planet. The total number of legs in the trajectory is defined by m and 

therefore the total number of flyby planets is always m-1. 

                   

 
  
 

  
 

                
              

 
              

 
                

               
  
 

  
 

                                                   

Next, a range of possible departure Julian dates must be selected. These dates represent all the 

possible launch dates from the initial planet. Also, each leg utilizing the Lamberts Problem 

Algorithm must establish its own range of time of flights, or TOFs. The number of intervals 

within these ranges is defined by the global fidelity number, N.  

                                                                        

                                                                       



Legs involving a same-planet flyby do not require inputs other than N since the apse line 

rotation angle, η, will always be varied from zero to 360 degrees. 

                                        

                                                                                                     

Using the TOF and η vectors, the TOF/ETA matrix is assembled. In this matrix, each row is 

defined as a different leg within the trajectory. For legs that utilize the Lamberts Problem 

Algorithm, the row that corresponds to that leg in the TOF matrix is replaced by the TOF vector, 

otherwise the row is replaced by the η vector. For example, given the scenario of a mission 

involving a departure from Earth, two Venus flybys, and a arrival at Mercury, the TOF/ETA 

matrix would be assembled as follows 

                          
                          

                  

                          

                 

 Here, the first row corresponds to the TOFs between Earth and Venus, the second row 

corresponds to the apse line rotation angles for the Venus-Venus flyby, and the third row 

corresponds to the TOFs between Venus and Mercury. Lastly, each planet specifies a minimum 

altitude that is acceptable during a flyby as shown below. Note the first and last entries are left 

not applicable because a flyby is not performed on the departure and arrival planets. 

                 

 
 
 
 
 

   
               

 
                 

    
 
 
 
 

                                                      

 The next set of inputs deal with the acceptance criteria and constraints that connect 

each leg. For the departure leg, since there are no legs preceding it, the only constraint is that 



the departure v-infinity vector magnitude remain below a specified threshold. For the 

subsequent legs involving flybys,  there are two pivotal criteria that must be satisfied. Firstly, 

the difference in approach v-infinity and departure v-infinity for that flyby planet must be 

below a specified tolerance. Secondly, the turn angle required by the spacecraft during the 

flyby must be greater than the minimum turn angle derived from the planet's lowest acceptable 

flyby altitude. Finally, for the arrival leg, the same set of criteria exists as the flyby legs with a 

couple additions. Similar to the departure leg, the arrival v-infinity vector magnitude and the 

total delta-v for the entire mission must be below their respective tolerances. Table 2.2.1 

summarizes these acceptance criteria. 

Table 2.2.1. Acceptance Criteria 

 Departure Leg Flyby Legs Arrival Leg 

Criteria Launch Vinf
+ ΔVinf 

δMax 

ΔVinf 

δMax 
Arrival Vinf

- 

Total Mission ΔV  

 

2.3 Program Logic and Flow 

 The fundamental logic in this program utilizes a brute force method. A trajectory is 

constructed one leg at a time under the directive of the respective departure, flyby, and arrival 

protocols as shown below in figure 2.3.1. 
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Figure 2.3.1. General Logic Diagram Overview 

 To begin, the first departure date from the vector outlined in equation 2.2.2 is chosen 

along with the first entry of the TOF/ETA matrix, similar to that of equation 2.2.5. With these 

inputs, the first trajectory is constructed using either the Lamberts Problem or Apse Line 

Rotation Algorithms depending on whether the second planet is different or the same as the 

first respectively. After the trajectory is defined, the constraint criteria are checked. In this case, 

if the departure v-infinity is less than the tolerance, the optimizer moves on to the flyby 

protocol. However, if the current trajectory fails to meet the criteria, the next sequential TOF or 

η is chosen from the first row of the TOF/ETA matrix and a new trajectory is formulated. This 



process continues until a valid departure trajectory is found or until all entries in the first row of 

the TOF/ETA matrix have been exhausted. In this latter case, in which the Nth TOF or η is still 

invalid, the optimizer backtracks to the initial simulation variable, the departure date, and 

selects the next sequential entry. It then selects the first TOF or η again from the first row of the 

TOF/ETA matrix and the process begins again. If no departure trajectory is found for all 

departure dates then the optimizer returns zero results. Figure 2.3.2 summarizes the logic of 

the departure leg protocol. 
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Figure 2.3.2. Departure Leg Protocol Block Diagram 

Given that a valid departure trajectory is found, the optimizer then moves on to the flyby leg 

protocol. The flyby leg protocol is very similar to that of the departure leg, however, this 



protocol has slightly different constraint criteria and runs a variable number of times depending 

on the number of flybys selected. To begin, just as with the departure leg protocol, a TOF or η is 

chosen depending on whether the next planet is different or the same. The appropriate 

algorithm is then run to generate a trajectory connecting the two planets. At this point a new 

series of constraints must be checked.  

 The underlying principle of the optimizer is linking together different trajectories with 

the planetary flyby serving as the joint between them. By definition, the magnitude of the v-

infinity vector of a spacecraft approaching a planet will be the same as the v-infinity vector 

leaving it after the flyby. Therefore, in order to perfectly link together two separate trajectories, 

the approaching v-infinity vector of the first trajectory must have the same magnitude as the 

departing v-infinity vector of the second trajectory. In reality however, it is nearly impossible to 

find two trajectories that perfectly satisfy this condition and a small difference in delta v will 

exist between the arriving and departing v-infinity vectors. In order to overcome this delta v, 

the spacecraft is required to make up the difference using its own propulsive capabilities during 

the flyby. The maximum delta v the spacecraft is allowed to administer during a given flyby is 

defined by the ΔVinf tolerance as mentioned in Table 2.2.1. This is one of the two constraint 

criteria that must be satisfied in order to accept a trajectory within the flyby protocol. The other 

constraint is the maximum turn angle experienced by the spacecraft during the flyby which 

depends on the minimum flyby altitude of each planet as shown previously in equation 2.2.6. If 

these criteria are met, the optimizer moves on to the next flyby leg until the final flyby leg is 

reached in which it proceeds to the final arrival leg protocol. If however, the criteria is not met 

the optimizer backtracks and advances the soonest available variable. For example, if the 



constraints are not met during the first flyby leg, the next subsequent TOF or η will be chosen 

from the second row of the TOF/ETA matrix. If all TOFs or η's are exhausted in the second row, 

the optimizer backtracks to the departure leg protocol and selects the next TOF or η from the 

first row. If, instead, the optimizer exhausts a row of the TOF/ETA matrix during subsequent 

flyby legs, it then backtracks to the previous flyby leg and advances the TOF or η for that leg. In 

this way, the brute force methodology of the optimizer becomes clear as the optimizer 

continuously marches forward with one trajectory until it exhausts all of its current options and 

is forced to backtrack to and advance a previous variable. Figure 2.3.3 summarizes the flyby leg 

protocol. 
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Figure 2.3.3. Flyby Leg Protocol Block Diagram 



Once the optimizer obtains a trajectory that satisfies the departure leg and flyby leg protocols, 

it advances to the final arrival leg protocol. This protocol is very similar to the two prior, 

however once again it has slightly different constraint criteria. During the arrival leg protocol, a 

trajectory from the last flyby planet to the final arrival planet is formulated. For this trajectory, 

two sets of constraint criteria must be satisfied. Firstly, the departing v-infinity vector must 

satisfy the delta-v tolerance for the flyby and the max turn angle must not be exceeded as 

mentioned previously. Secondly, the arrival v-infinity vector approaching the arrival planet and 

the total delta v of the entire mission must be below their respective specified tolerances as 

outlined in table 2.2.1. The total delta v is found by summing the initial departure v-infinity 

magnitude, to the required delta v's during each flyby, to the final arrival v-infinity magnitude.  

                  
  

      
                     

  
      

   

   

                                

If all of these conditions are met, a valid trajectory has been realized and the optimizer records 

the necessary data needed to reconstruct the trajectory in a separate text file. With a trajectory 

found, the optimizer advances its current local variable, if possible, or backtracks to and 

advances the variable proceeding it in order to look for more solutions. In this manner, the 

optimizer systematically pursues every possibility feasible given the initial conditions. Figure 

2.3.3 summarizes the arrival leg protocol. 
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Figure 2.3.4. Arrival Leg Protocol Block Diagram 

3. Conclusion 

 This paper outlined the method behind a powerful and effective interplanetary gravity 

assisted trajectory optimizer. This method utilizes a robust brute force tactic that constructs 

highly complicated multi-flyby trajectories by analyzing one leg at a time and constantly 

adhering to specified constraint criteria. The primary tools for the trajectory formulation consist 

of the widely utilized Lamberts Problem Algorithm and a homebuilt Apse Line Rotation Angle 

Algorithm. The meat of the optimizer resides in the protocol directives for each of the three 

main phases of the trajectory: departure, flyby(s), and arrival, which serve to navigate flow of 

the optimizer either forwards or backwards as it searches for a valid and optimum trajectory. In 

the future, this optimizer will be expanded to include the possibility of performing deep space 



maneuvers, it will feature a robust graphical user interface, and will provide sufficient evidence 

validating its accuracy. 
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