
Employee Time Scheduling

A Senior Project
presented to

the Faculty of the Computer Science Department
California Polytechnic State University, San Luis Obispo

In Partial Fulfillment
of the Requirements for the Degree

Bachelor of Science

by

Mark Peter Smith
June, 2010

2

ABSTRACT

Small business managers face the common problem of employee time scheduling. There is a

solution to this problem in the form of an application called Lemming Scheduler. Lemming

Scheduler is a Java based employee time scheduling program. Its features include a desktop

based application that stores employee and business information as well as a web interface for

employees to view schedules and update availability. The desktop application uses employee

and shift information to automatically generate schedules. The generated schedules are

viewable by employees outside of work by way of the web interface. Lemming Scheduler

provides a light weight interface for small business owners to manage scheduling problems

without the need for a great deal of technical knowledge.

3

TABLE OF CONTENTS

Abstract ..2

Problem Description / Motivation ...7

Previous Work ...8

Lemming Scheduler ...8

Lemmings schedulers feature set: ...8

similar work ...9

DRoster...10

ScheduleWall ..11

TimeCurve ..12

Requirements ...13

Design ...15

Goal ...15

Process ..16

My approach ..17

Two Components of Design: Desktop Changes and Web Client ..17

Time Line ..18

4

Solving Design Problems ...19

Tradeoffs ...19

Technology ...19

Features ...21

Design ...22

Implementation ..25

Process ..25

Implementation Stages ..27

Stage 1: GWT web client + desktop changes ...27

Stage 2: Applet as web client ..27

Stage 3: GWT web client + database integration ...28

Testing ..29

Problems Encountered ..29

Issue 1: GWT – need servlets to access Google docs ..29

Issue 2: Applets – Google Spreadsheet API cannot connect to Google Doc servers through

Applets ..30

Issue 3: Applets – database access through an Applet is Unsecure ...30

5

Results ..31

Known Issues ...31

General Feelings ..32

Current Feature Set ...32

Did we meet requirements? ..33

Sample Usage ..33

Desktop Application ..33

Web Client ..33

Future Work ..34

Adapting for businesses ...34

Email Support & Google Calendar Support ...35

Lessons Learned ..35

Prototype and Research Everything ...36

Steps I will take in the future ...36

Conclusion ..36

Bibliography ..37

Appendices ...38

6

Installation Guide ...38

Desktop Application ..38

Web Client ..38

Tomcat Deployment ...38

Database Setup ...39

7

PROBLEM DESCRIPTION / MOTIVATION

The purpose of this project was to upgrade an existing student developed project called

Lemming Scheduler. The original Lemming Scheduler set out to create an employee scheduling

application for a small business. Created during CSC 308/309, Lemming Scheduler represented

the work of Jeff Holden, Erik Carpenter, Ramya Jagarlamundi, Carl Taylor, Abhi Vaishnav, and

Mark Smith.

Jeff Holden and I decided to enhance Lemming Scheduler with a new data storage model and a

web client for employees to interface with scheduling data. Jeff worked on the project through

one quarter of independent study and I worked on the project through both quarters of senior

project.

Jeff and I were motivated to do this because we enjoyed working on the original program and

felt that we could make positive changes. We also felt that by upgrading Lemming Scheduler we

could create a project with real life business potential.

Upgrading Lemming Scheduler offered a way to work on a number of key skills for any

computer scientist. Firstly, Jeff and I were offered the opportunity to work on an existing

project with a large code base written by in large part by other people. We were faced with the

challenge of reading and understand other peoples code as well as dealing with adding

upgrades and handling general maintenance. Secondly, this project allowed us to work with a

large number of different technologies. During 2 quarters of senior project, Jeff and I used the

Google web tool kit, the Google Spreadsheet API for Java, a MYSQL database, and Java Applets.

8

Lastly, Jeff and I faced managing deciding design trade-offs. We balanced multiple factors

including quality, development time, and technology choices.

PREVIOUS WORK

The following section gives a brief description of the original Lemming Scheduler and

investigates similar scheduling products on the market. The similar products were chosen on

the basis of comparable features to those already offered by Lemming Scheduler as well the

features Jeff and I planned on implementing.

LEMMING SCHEDULER

The original Lemming Scheduler was completed by a team of students during the winter

quarter of 2008 in CSC 309.

LEMMINGS SCHEDULERS FEATURE SET:

 The ability to manage employees, shifts, and positions

 Generate schedules based on available employee, shift, and position data

 Format schedules into different reports including report by staff and report by individual

 Store all aforementioned scheduling data through serialization

The original application was lacking in the area of data management. Lemming Scheduler used

serialization for data storage. Jeff and I proposed upgrading the data model to use Google Docs

spreadsheets and then later a database. Serialization, while easy to implement, lacks the

advantages typically found in a database, namely ACID: atomicity, consistency, isolation, and

9

durability (1). Additionally serialization suffers from performance issues in relation to memory

management (2). Serialization works on small scale, while professional scale scheduling

programs utilize a database as the Similar Work section will show.

Another area found lacking in the original Lemming Scheduler involved employee schedule

viewing. The only means of viewing a schedule available to an employee involved receiving a

hard copy from an employer. A problem arises in which a new week’s schedule is generated

and an employee is unavailable to receive a hard copy. Jeff and I attempted to rectify by making

schedules available online.

SIMILAR WORK

This section details the features of three employee time scheduling products on the market

I focused on scheduling applications that were either open source or offered free versions. I

studied the following products: DRoster by Kappix, Schedulewall by Arb Design, and TimeCurve

Scheduler by TimeCurve Software Inc.

DRoster and TimeCurve offered a myriad of services and were by the far the most robust of the

three programs. They also required a great deal of overhead as far as database management.

Schedulewall is a light weight alternative that is purely web based. Schedulewall takes data

management out of the hands of the employer.

I think Lemming Scheduler compares favorably to these three scheduling applications. Lemming

Scheduler offers automatic schedule generation, something missing from all three. I feel that

10

Lemming Scheduler stands as a middle ground between Schedulewall’s purely web based

nature and DRoster and TimeCurve’s robust feature sets.

DROSTER

Figure 1 - View of DRosters hourly schedule view page

DRoster is a full featured desktop scheduling product. It offers a suite of tools including: daily

and hourly planners, schedules based on location, templates, and multiple report options. The

templates model the auto schedule generating algorithm used in lemming schedule. DRoster

handles data storage using the open source Firebird database. Much like Lemming Scheduler’s

earlier Google Docs support, DRoster can export schedule information into a number of

different forms: txt, pdf, htm, rtf, xls, tiff, gif, jpeg, and bmp.

DRoster seems like a more advanced version of Lemming Scheduler. It offers all of the features

of Lemming Scheduler and then some. On the downside, it lacks a schedule generating

11

algorithm and requires a considerable amount overhead. The overhead results from an

employer having to administer his or her own database. Lemming Scheduler eliminates this

overhead by handling database management on our own server thereby eliminating the need

for a user to install a local database.

SCHEDULEWALL

Figure 2 - Schedulewall schedule view

Schedulewall is a simple scheduling tool focused on serving individuals and small businesses. It

is purely web based; Arb Design hosts the product on its own web server. Beyond scheduling

options, Schedulewall offers a personal day planner. Schedulewall lacks a scheduling algorithm;

schedule generation is handled through a drag and drop interface. Additionally, Schedulewall

uses shift templates to handle commonly occurring schedule configurations.

12

As far as employee interaction is concerned, Schedulewall uses a commenting system. A

Manager can post on a message board and employees can comment on the resulting post. The

product also offers a chat service, allowing employees to hold basic meetings online.

When compared to Lemming Scheduler, this product seems more like a suite of business tools.

Schedulewall offers more in regards to inter business communication. Much like DRoster,

Schedulewall lacks the ability to auto-generate schedules using a scheduling algorithm.

Lemming Scheduler is purely dedicated to scheduling, while Schedulewall handles a range of

operations with less focus on a single aspect. Lemming Scheduler and Schedulewall share a

similarity in terms of the light weight nature of their design. Neither requires a client to install a

local database

TIMECURVE

Figure 3 - Overall view of TimeCurve software

13

TimeCurve is probably the most robust of the three options. Unlike the other two products,

TimeCurve features payroll support. Schedules can be integrated with QuickBooks to handle

financial information. TimeCurve interfaces with a telephone service to handle punch clock

operations; an employee dials a toll free number to punch in and out. Again, unlike Lemming

Scheduler TimeCurve does not use a scheduling algorithm. Instead, TimeCurve uses a

scheduling engine that notifies a manager of scheduling mistakes such as uncovered shifts,

under/over booking, and overlapping schedules. The engine merely verifies an employer’s

scheduling choices, rather than handling actual schedule generation.

TimeCurve uses a database to manage employee data. It does not feature a web component

although it does have email support. TimeCurve does feature an integrated web browser to use

within the desktop application, but its focus is to provide helpful resources for managers.

Like DRoster, TimeCurve is more robust than Lemming Scheduler. TimeCurve requires a lot of

overhead to manage and is more suitable for large businesses. Lemming Scheduler has the

edge in terms of being lightweight and easy to install.

REQUIREMENTS

Updates on the Lemming Scheduler necessitated the creation of a new set of requirements to

cover additional features. Jeff and I followed the steps taken by PolyCron during 308/309. We

updated the existed SRS to include the following new features.

 A web client for employee availability editing and schedule displaying

14

o Allows Employees to view a week’s schedule at any time, requiring only an

internet connection

o Employers obtain another vehicle for schedule delivery, limiting

miscommunications

 Incorporate a database into the desktop applications data model

o Remove parts of the serialization model to prepare Lemming Scheduler for

remote data management

 Integrate with Google Calendars (not completed)

o Employees could view schedules in Google Calendar form, allowing them to

integrate work schedules with general day schedules

o Extends access to mobile devices

We devised our feature set over a series of meetings. We developed a series of use cases that

seemed applicable to our project, dividing them into two sections, one for employees and one

for managers. (use cases and meeting minutes available in appendix)

We also constructed a number of prototypes to test the various technologies used on the

project. Prototyping allowed us to gauge the viability of the various features. It also helped in

development scheduling, as Jeff and I bettered our abilities to estimate the amount of time

certain features would require.

I personally wrote a prototype using the Google web toolkit to test availability entry on the web

client. I also developed a prototype to test the Google spreadsheet API’s ability to connect to

Google’s servers and read information from a spreadsheet file. Similarly, Jeff created a

15

prototype to test document creation in Google Docs as well as a testing how to represent

schedules in a spreadsheet.

DESIGN

The design section looks at our ultimate design goal with this project and the process we used

to achieve that goal.

GOAL

The goal of this project is to end up with two components: a desktop application for use by a

manager at a small business and web client for use by an employee at the same business.

The desktop application handles all of the schedule data management which includes:

employee, shift, skill, and availability data. The desktop application uses said data to generate

schedules by matching shifts with employee availabilities and skills. A user downloads the

desktop application to manage employee scheduling for a small business. Managing data was

originally to be done through Google Docs spreadsheets, but ultimately migrated to a database.

Desktop applications distributed to multiple businesses all interface with the same database

operated by Jeff and I. Each business receives a unique id number to insure security between

businesses all storing information in the database. Minimal data storage was still handled

locally, but all data involving positions, employees, and schedules would reside in the database.

The web client allows an employee limited access to data used in schedule generation.

Specifically an employee can change their availability over a week and then save those changes

to the database. Employees can also view any schedules that have been generated for the

16

current week. That being said, the desktop application is more than capable of handling

employee availabilities and can stand alone from the web client.

Figure 4 - Lemming Scheduler data flow diagram

The above diagram illustrates how our web client and desktop application communicate with

one another. The database acts as an intermediary between the web client and desktop

application by storing availability, employee, and schedule data. Employees use the web client

to view schedules and alter availabilities. Managers use the desktop app to input employee

information, shifts, and positions. The manager then generates schedules which are in turn

stored in the database.

PROCESS

17

Design decisions were made during meetings. Jeff and I divided the design into two parts:

changes needed in the desktop app and the web client. The desktop changes involved fixing

bugs left over from 308/309 as well as adding database/Google doc support. Design on the web

client focused on user interface development.

MY APPROACH

 I approached the design phase through reading online documentation and taking notes in my

developer journal. Technology selection necessitated reading available online documentation.

Google provides a wealth of material in regards to its Data API and Web Toolkit, and by reading

this documentation I grasped the general limitations of the individual technologies. Online

research served an additional purpose of providing Jeff and I with the technical resources

needed during implementation. I used my developer journal as a brainstorming mechanism.

The journal proved especially helpful during meetings in which Jeff and I would suggest a wide

range of design solutions, only to narrow them down as the meeting proceeded. I would

document the various design solutions in order to keep my thinking clear on a particular issue.

TWO COMPONENTS OF DESIGN: DESKTOP CHANGES AND WEB CLIENT

The desktop changes needed on the project dealt with bug fixes and Google Docs/database

support. There were a couple of minor bugs left over from last quarter mainly dealing with null

pointer exceptions. We looked through previous documentation from 308/309 as well as

carrying out some basic testing on the original desktop app to discover any lurking bugs.

Designing the new data management schemes proved a bit more difficult. We first laid out

18

what needed to be updated to account for the new data models. Employee information entry

and schedule generation were the two major components that needed updating. After deciding

what was going to change, we decided what new work was going to be needed to interact with

Google Docs. We would need two classes: a class to handle schedule importing and exporting

and a class to handle availability importing and exporting. With all those ideas in mind we set

about creating class skeletons for the new work.

On the web side of the project we undertook similar steps. First we decided on a general look

and feel for the web client. I documented some of our initial UI sketches in my journal. From

there we went about deciding what classes we would need to handle the page layout and

Google Doc communication. We used one central class to handle the page’s layout, formatting

items like drop lists and tables. Another class was designed to facilitate Google Doc

communication. We then populated those classes with method skeletons and wrote some

psuedocode.

TIME LINE

The majority of design decisions were made during the first quarter of senior project. We spent

the first four weeks designing the upgrades to Lemming Scheduler. Choices made on both the

desktop and web sides occurred at roughly the same time. There was no design order, so as

designed progressed on the desktop application the web client received an equal amount of

progression. Design extended into the second quarter of senior project to account for problems

during implementation

19

 SOLVING DESIGN PROBLEMS

When implementation issues forced Jeff and I to reselect technologies, we would undertake

impromptu miniature design phases to rework Lemming Scheduler. These design phases lacked

a general process and proceeded in rapid fashion to meet schedule deadlines. Generally, Jeff

and I would each undertake a rapid research session to make a technology related decision.

With the new technology in mind, we would then distribute the coding work to be done during

implementation. Once the work was assigned, coding would begin and any design decisions

would be noted in our journals. For the most part the design decisions were small enough to be

handled individually. If a large decision choice was needed, we communicated through email or

met in one of the labs on campus.

TRADEOFFS

The design process raised a number of tradeoffs which I documented in my journal and are

featured in some of the meeting minutes. Tradeoffs fall under three different categories:

technology, features, and design.

TECHNOLOGY

Technology tradeoffs involve the decision making process regarding which languages, API’s, and

data management paradigms were selected for Lemming Scheduler.

WEB TECHNOLOGY SELECTION – JAVASCRIPT AND AJAX USING GWT VS JAVA APPLET

What technology should be used for the web client?

20

 Applets have long load times compared to dynamic html generation in JavaScript

 Applets allow us to reuse code

 We have limited JavaScript experience, compared to a wealth of experience with Java

 GWT lessens the learning curve involved with JavaScript and Ajax

 Ultimately selected GWT on the basis of speed

GOOGLE WEB FORM INSTEAD OF WEB CLIENT

Would using a Google Web Form offer a better way for employees to update availability?

 Google Web Form would be easier

 Web client offers more control

 Technical Limitations in Google Web Form, namely selecting multiple cells in a table

 Decided on a web client because of the additional controls and extendibility

PHP VS SERVLETS VS APPLET

How should the web client be handled based on design problems?

 I’m relatively familiar with PHP and database interaction is a breeze

 Servlets are a bit more complicated, but still offer easy database interaction

 Applets are easy, but major security risks are involved with database access through and

applet

 Servlets are the best choice in the case, because I’m more familiar with Java than PHP

and applets are a security risk.

21

FEATURES

Feature tradeoffs focused on the selection process used when deciding new features to add to

Lemming Scheduler.

EMAIL SCHEDULES VS GOOGLE DOCS

Should schedules just be emailed or stored in Google Docs?

 Emailing schedules pretty much removes the need for a web client

 Google Docs are versatile, can be shared through email

 Decided on using Google Docs because of the added versatility

AUTO UPDATE VS ON DEMAND UPDATES FOR AVAILABILITY

When an employer updates employee information, is the Google Doc updated automatically or

does the employer have to click a button?

 Auto update could update when a manager actually doesn’t want to

 On demand requires an extra step from a manager

 Manager could forget to update

 Decided on auto update for ease of use on the part of the manager

WILL AVAILABILITY CHANGES BE REFLECTED IMMEDIATELY IN SCHEDULES

When an employee changes his availability does the current schedule change?

 Employees get instant feedback

22

 Schedules would not be concrete, meaning Employers could have a week’s schedule

change at the last minute

 Decided that they shouldn’t because it could lead to major scheduling issues for

employer

DESIGN

Design tradeoffs centered on the deciding the best methods to use when implementing

changes to Lemming Scheduler

SHOULD AVAILABILITY APPLY ON A WEEK TO WEEK BASIS OR BE CONSTANT THROUGH TIME

Does and employee need to update his availability on a week to week basis?

 Week to week means additional work for the employees as they would need to update

their availability online before every schedule generation

 Availability settings applying to every week can lead to inflexibility and requires a

manager to set limits on when an altered availability will affect schedule generation

 Decided on one availability applying to all weeks on the basis of it being easier for

employees and managers

ENHANCE LEMMING SCHEDULER OR G1’S SCHEDULING APPLICATIONS

Lemming Scheduler has a few bugs where as G1’s application was seemingly more stable. G1

worked on a separate scheduling application during the same 308/309 courses as PolyCron.

23

 Greater learning curve: while I didn’t write every piece of code in Lemmings Scheduler,

I’m still familiar with the design.

 Making changes would be more difficult: again because I’m unfamiliar with their design

 Their project is more stable

 Ultimately I choose to stick with my project because its familiar and for the most part

isn’t that buggy

ONLY STORING AVAILABILITY DATA IN GOOGLE DOCS VS AVAILABILITY ALSO BEING STORED

LOCALLY IN DESKTOP APP

Does the desktop app need to store availability locally?

 Storing locally wouldn’t require an active internet connection

 Storing it just in Google Docs prevents and consistency errors from arising

 Decided on just storing in Google Docs because storing it locally as well was superfluous

and not having an active internet connection shouldn’t be a problem for a small

business

DATA ENTRY IN TABLE: ONCLICK OR MOUSE OVER

When selecting availability slots in a table should selection be handling by mousing over a cell

or by clicking on cell?

 Mouse over is quicker than onclick

 Mouse over behavior could be erratic

 On click offers greater control

24

 Ultimately, the added control outweighs the slight speed increase

WHAT HAPPENS TO A TABLE CELL WHEN SELECTED

How should table selection be handled: click and drag? click on every cell? click on one cell to

mark the beginning and one cell to mark the end?

 Click and drag is a common behavior, but could proof difficult to code

 Click on every cell is easy to code, but unwieldy

 Click on cell to mark the beginning and one cell to mark the end would be easy to code,

but could be confusing for a user

 The third option seems better because of the ease of coding combined with quick entry

for a user. Any confusion could be cured with a tooltip on help dialog box.

HOW TO REPRESENT AVAILABILITY IN DATABASE

Should availability be represented as a giant table or broken up into multiple tables?

 Representing availability as a giant table models the object representation

 Using a giant table could prove unwieldy as you would need to have 24 x 7 columns for

individual hours

 Breaking it up over multiple tables could be equally complicated

 Best solution is to just have one large table, it models the availability object.

HOW TO REPRESENT SCHEDULES IN DATABASE

Should a schedule also be stored in one table or should it be broken up over a couple of tables?

25

 Breaking it up in this case makes sense because of the dynamic nature of shifts and shift

assignment: for example, 3 people can work over the same time period one day and the

next day only two

 Decided to break it up for the reason stated above

IMPLEMENTATION

This section is divided up into two main sections: Process and Implementation Stages. The

Process section covers the general implementation philosophy I practiced at each stage. The

Implementation Stages section covers the steps undertaken during development and details

the unique work associated with each stage.

PROCESS

My implementation philosophy followed a general pattern. I did not code using a particular

known process, but rather I approached each stage with my own unique method.

The first step I usually undertook was to write out all the data structures I would be using. In

many cases I would be using upwards of 10 different data structures for a given module. The

web client used upwards of 15 different data structures to handle the various tables, list, and

maps being used. This forced me to think ahead and plan out the type of interactions occurring

in the program.

The next step would involve one of two processes. When dealing with GUI programming, I

would handle visual layout and instantiate data structures with empty data. I am a very visual

thinker and seeing a clear model of what I was aiming for helped with the logically process.

26

When dealing with non-GUI programming, mainly database and Google docs related work, I

would pseudo code for whatever algorithms I was going to handle. Pseudo code was especially

important when writing database statements to ensure that I completed the proper DML and

DDL commands.

The third step involved the actual coding. My approach was straight forward. When pseudo

code existed, I matched my preplanned logic; otherwise, I used my knowledge of the design to

match the planned functionality of a section of code. When problems would arise I would either

consult Jeff or use one of the myriad of resources available to me, including: Javadocs, sun Java

tutorials, and reference sites like w3schools.

The forth step focused on testing previous work. My testing was limited to an ad hoc approach,

I did not utilize unit tests or any other structured form of testing. Instead I would do things like

test whether a database statement retrieved the appropriate data by executing commands and

testing the effect on the database.

The fifth and final step dealt with integration. I would ensure that methods in a newly written

class integrated with methods in another already implemented class. A good example of this

was in the Desktop application. I would be reading and writing information to and from the

database that needed to update a local object. If an object in the employee frame was updated,

I would have to ensure that object remained updated when a schedule was created. Similarly, I

would test the interactions between web client and desktop application. I had to ensure that

availability changes in the web client were reflected in the desktop app.

27

Throughout my implementation process, when a problem appeared particularly difficult or I

coded a significantly smart section of code I would document it in my project journal. I used my

project journal throughout implementation to reference logic used in one section that could be

matched in other.

IMPLEMENTATION STAGES

Development proceeded along in three stages. Each stage accounts for a change made in

design due to technical difficulties.

STAGE 1: GWT WEB CLIENT + DESKTOP CHANGES

Changes to the desktop were completed rapidly and without difficulties. We fixed lingering

bugs and integrated Google Doc support into key components. We made minor UI changes to

account for new Google Docs related operations, but in general the UI remained untouched.

The GWT prototype was adapted to handle web client duties. Unfortunately, we ran into major

integration issues at this point and had to stop development on the web client.

See Issue #1 from the Problems Section for a detailed explanation

STAGE 2: APPLET AS WEB CLIENT

After discovering our problems with the GWT web client, we made a design decision to use an

applet instead. This proved to work in our favor in some regards. The similarities between

working with applets and general Java swing programming allowed us to reuse a great deal of

code. The only critical thinking that was needed was deciding how to layout the applets UI.

28

Logic for Google Doc communication was already written as was the table cell selection

algorithms we needed.

While everything worked well in our NetBeans test environment, we discover some crippling

issues once we tested elsewhere. Google Doc support in applets was lacking and required us to

rethink our data model. In response, we decided to go with a database.

Using a database did not solve our problems. In fact it unleashed a slew of new issues involving

applet security and SQL support. It seemed that applets just couldn’t be relied on in the

capacity we needed them for this project. Knowing that Java and SQL played fine in servlets and

that the GWT used servlets I decided to return to where I first began my web client work. While

I lacked experience using servlets, I was able to use online resources to supplement.

See Issues #2 and #3 from the Problems Section for additional details

STAGE 3: GWT WEB CLIENT + DATABASE INTEGRATION

The first step I underwent was to write the database schema. I wrote out everything that I

would need stored in the database and began deciding the appropriate relations between

tables. The schema was relatively simple and was mostly complete on the first try. I did revise it

a number of times, but they were all relatively trivial revisions.

With that done I began writing the servlet classes I would need. Servlets require multiple

modules to handle asynchronous access. I coded a database manager class that handled all of

the database operations for the web client. The servlet class would interface with the database

manager, forwarding any database operations needed by the client.

29

TESTING

Testing was very limited. Problems encountered during implementation caused scheduling

issues, limiting the time available for testing. Any testing that was done was Ad Hoc and

undertaken by the developer during code implementation and after code completion. There

was no organized system testing.

PROBLEMS ENCOUNTERED

We suffered through numerous setbacks during implementation. Three issues in particular

called for major revisions. The first problem involved Google Web Tool Kit and the way it

translates Java code into AJAX and JavaScript. This problem caused us to abandon our work on

the GWT. The next problem involved Google Doc support in Java applets. We switched to using

a MYSQL database as a result. The third and final problem involved security concerns with

applets and SQL. I decided to drop applet support and return to using the GWT.

ISSUE 1: GWT – NEED SERVLETS TO ACCESS GOOGLE DOCS

After completing the various prototypes and beginning implementation, we ran into a major

problem with the GWT. We discovered that the GWT does not support Google’s Data API. The

problem boiled down to the GWT not knowing how to translate the Java code using the Data

API into JavaScript and AJAX. While we had prototypes testing both the GWT and Data API, we

neglected to test them together, which was a major oversight. The only solution involving the

GWT was to implement Java servlets to handle all Google Document operations on the server

side.

30

In response to this issue, Jeff and I decided to scrap using the GWT. Neither of us had much

experience with servlets, so for the sake of time we switched to using Applets. While this meant

that we had to abandon the code done thus far on the web client, we were able to recycle code

from the desktop app to use in the web client applet.

ISSUE 2: APPLETS – GOOGLE SPREADSHEET API CANNOT CONNECT TO GOOGLE DOC

SERVERS THROUGH APPLETS

After scraping the GWT work we set about adapting our project to use an applet for the web

client. We were able to get everything up and running with relative ease, but discovered a

problem once we tried to access our applet outside the confines of NetBeans. The applet would

generate an access violation being thrown from the Data API. After doing some research we

realized that the Data API featured major development obstacles when working with applets.

While we could connect using our test environment in NetBeans, once we tried to access

Google’s servers elsewhere the errors occurred. The only way to fix the problem we discovered

was digitally sign all of the jar files being included in the applet. This turned out to be a major

hassle and we dropped Google Doc support.

The decision to drop Google Doc support was also influenced by the poor performance and

slow load times we were experiencing when read and writing from a Google Spreadsheet.

Saving changes was especially time consuming. We dropped doc support in favor of database.

I’ve used databases on a number of projects and felt that they could make up for the faults

found with the Data API.

ISSUE 3: APPLETS – DATABASE ACCESS THROUGH AN APPLET IS UNSECURE

31

The switch to a database on the desktop side was handled quickly and with ease. I ran into a

stumbling block when trying to use the mySQL jdbc connector in an applet. By nature, applets

run on the client side, after doing some research I discovered that handling SQL commands in

an applet was a highly questionable move. First of all, it cannot be done easily and requires a

number of hacks to work properly. Second of all, it’s highly insecure. In order to get it to work a

port must be opened on the client side to the server to talk with the database, which is totally

unreasonable and insecure. With these facts in mind, I choose to scrap the applet and return to

using my work from the GWT.

I did this for a number of reasons beyond just security concerns. One of my biggest gripes with

the applet was how slow the download process was on the client side. Additionally, the applet

was not aesthetically pleasing. Using GWT solves both of these issues by using servlets to

increase speed and by allowing a developer to design nice looking UI’s through cascading style

sheets.

RESULTS

The following sections covers my feelings on the current state of Lemming Scheduler as well a

concrete look at Lemming Scheduler’s feature set.

KNOWN ISSUES

A number of known bugs are present in the current form of Lemming Scheduler.

 Shift templates are not stored in the database and still require serialization.

32

 Updates to availability made from the web client aren’t visible in the desktop app until

the app is closed and reopened.

 The web client doesn’t display employees based on company.

 Updating the availability on the web client can cause data lose issues in relation to

employee email address, phone number, and positions.

GENERAL FEELINGS

I generally feel that the final project works well and could offer a small business benefits.

However, in its current form Lemming Scheduler is not ready for release. The following steps

need to be undertaken to ensure a quality product:

 In depth system testing

 Individual unit testing

 Full database integration and a complete removal of serialized data

 Performance analysis of database algorithms and web client interaction

CURRENT FEATURE SET

 Employee’s can view their own weekly schedules and edit availabilities

o Schedule viewing and availability editing can all be completed within 60 seconds

of opening the web client.

 Employee, skill, and schedule data are all stored in a database

o The database is remotely operated on the Dahl virtual machine.

 Managers can save schedules to the database

33

o Schedules are automatically stored to the database on generation.

DID WE MEET REQUIREMENTS?

The final product met all of the requirements Jeff and I laid out during the first quarter of senior

project. We did not manage to include Google Calendar support, but that was a bit of an ideal

goal from the start.

SAMPLE USAGE

The section displays the amount of time required to complete all of the actions associated with

the desktop application and web client.

DESKTOP APPLICATION

Action Time (seconds)

Enter one skill 10

Enter information for one employee 45

Enter one shift 30

Generate Schedule 10

Total: 95

WEB CLIENT

Action Time (seconds)

Select name from drop down list 3

34

Alter availability information 30

Total: 33

FUTURE WORK

The section details the business application of the Lemming Scheduler.

Figure 5 - Lemming Scheduler business model: each company recieves the desktop app that communicates with the remotely run database

ADAPTING FOR BUSINESSES

One business model Professor Dalbey and I discussed for this project was to deliver the desktop

app to small businesses and then manage all database operations on our end. This allows a

business to avoid having to set up a database and would only require an active database

connection. The advantages of this setup include:

Remote
Lemming
Scheduler
Database

Company
A

Company
B

Company
D

Company
C

35

 Rapid Deployment

 Ease of Use

 Data integrity

An employer could simply download a copy of desktop app via web, fill out some simple online

registration forms with business information, and then begin scheduling. Some of the related

work I researched required the user to download and set up a database. This requirement is

well outside the technical skills of an average small business owner. Lemming Scheduler

removes the database requirement and supplies an algorithm for automated schedule

generation, another feature lacking from current products on the market.

EMAIL SUPPORT & GOOGLE CALENDAR SUPPORT

There is room in this project for a lot of improvement in terms of schedule delivery to

employees. I feel that it would be helpful if the desktop app emailed schedules once a week or

updated them to Google calendar. I’ve worked with the Google Data API, so I wouldn’t expect

the Calendar API to be that much more difficult. This offers a lot of advantages for employees,

especially if they use smart phones.

These two changes together could make the Lemming Scheduler a viable product in the small

business arena

LESSONS LEARNED

36

PROTOTYPE AND RESEARCH EVERYTHING

The main lesson I learned was the importance of researching the technologies being used

thoroughly. That means reading source documentation and developer impressions of working

with the target technology. Along those lines, I also learned the importance of prototyping. In

depth prototyping would have saved Jeff and I countless hours on wasted development by

discovering technology compatibility issues early.

Research can stop a person from wasting time on ideas that won’t work together. Prototypes

can ensure that ideas that do work are feasible given various constrains like time and resources.

STEPS I WILL TAKE IN THE FUTURE

1. Decide what technologies will work for a given problem

2. Research whether said technologies will integrate with one another

3. Prototype technologies working together

4. Begin design and development

CONCLUSION

My senior project work impressed upon me the shear amount of technology required to run a

large scale application. From beginning to end, I used the following technologies: Google Data

API, Google Web Tool Kit, HTML, CSS, Java, MYSQL, SVN, NetBeans, and Eclipse. Often times in

course work you focus on a single technology for an entire quarter, without seeing how that

technology interfaces with something like a database.

37

Using multiple technologies hold many risks that adversely affected Jeff and I. We were forced

to undergo multiple design changes to compensate for these errors. I’ve learned an important

lesson on research and prototyping as a result. Work on the Lemming Scheduler has enhanced

my ability to handle multiple technologies and shown me the dangerous involved in doing so.

Development on the Lemming Scheduler prepared me for a real time work environment. I was

able to work with a large code base, much of which is written by other people. I dealt with

numerous deadlines and worked under stress. I dealt with technical setbacks and managed to

finish on schedule. Taking all of these factors into account, Jeff and I delivered a product with

actual business potential.

BIBLIOGRAPHY

1. Seshadri, Govind. What are the advantages and disadvantags of serialization? jGuru. [Online]

Jan 15, 2000. [Cited: May 20, 2010.] http://jguru.com/faq/view.jsp?EID=5068.

2. Chapple, Mike. The ACID Model. About.com. [Online] [Cited: May 20, 2010.]

http://databases.about.com/od/specificproducts/a/acid.htm.

3. Arb Design. Employee, Staff and Group Scheduling Software: Schedulewall. ScheduleWall.

[Online] 2008. [Cited: May 22, 2010.] http://www.schedulewall.com/.

4. TimeCurve Software. TimeCurve Software, Employee Scheduling Software. TimeCurve

Software. [Online] 2008. [Cited: May 22, 2010.]

http://www.timecurvesoft.com/tcdescription.jsp.

38

5. Kappix. Kappix - It's About Time. Kappix. [Online] 2010. [Cited: May 22, 2010.]

http://kappix.com/.

APPENDICES

INSTALLATION GUIDE

DESKTOP APPLICATION

1. Ensure that Java 1.6 or greater is installed on your computer

2. SVN checkout a copy of the repository at

https://wiki.csc.calpoly.edu/svn/PolyWebCron/Release/Desktop

3. Open up terminal(linux) or command line(windows)

4. Navigate to the directory you checked out Lemming Scheduler

5. Run the following command Java –jar LemmingScheduler.jar ‘companyid’

6. Click on the ‘To Do’ button of the desktop application

7. Follow the steps on screen

WEB CLIENT

1. Open a web browser

2. Navigate to dahl.csc.calpoly.edu:8080/markSP

3. Follow on screen steps

TOMCAT DEPLOYMENT

39

1. Retrieve latest war file for web client from SVN

2. Go to the tomcat homepage at dahl.csc.calpoly.edu:8080

3. Select the manager option

4. Enter user name and password

5. Navigate to the middle of the page

6. In the box label war file click and select the location of the war on your local machine

7. Click the deploy button

DATABASE SETUP

1. Retrieve database scripts from PolyWebCron website

2. Open a terminal and navigate to the folder containing the scripts

3. Start mysql

4. Enter username and password

5. Navigate to PolyCron database

6. Run the following command \. sp-db-setup.sql

7. The database is now ready

