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Abstract 

As computational fluid dynamics matures, researchers attempt to perform numerical simulations on increasingly complex 
aerodynamic flows. One type of flow that has become feasible to simulate is massively separated flow fields, which exhibit high levels 
of flow unsteadiness. While traditional computational fluid dynamic approaches may be able to simulate these flows, it is not obvious 
what restrictions should be followed in order to insure that the numerical simulations are accurate and trustworthy. Our research group 
has considerable experience in computing massively separated flow fields about various aircraft configurations, which has led us to 
examine the factors necessary for making high-quality time-dependent flow computations. The factors we have identified include: grid 
density and local refinement, the numerical approach, performing a time-step study, the use of sub-iterations for temporal accuracy, the 
appropriate use of temporal damping, and the use of appropriate turbulence models. We have a variety of cases from which to draw 
results, including delta wings and the F-18C, F-16C, and F-16XL aircraft. Results show that while it is possible to obtain accurate 
unsteady aerodynamic computations, there is a high computational cost associated with performing the calculations. Rules of thumb and 
possible shortcuts for accurate prediction of massively separated flows are also discussed. 
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1. Introduction 

While there has been a great deal of research into the 
development of accurate time-integration methods, very 
little work has taken place into quantifying the time steps 
necessary for accurate predictions of realistic unsteady flow 
fields. The importance of being able to predict time-
dependent flows goes far beyond the time-integration 
methods chosen, and requires detailed physical knowledge 
about the flow features being computed. Typically for 
unsteady flow simulations, researchers perform a grid 
sensitivity study for a steady flow case, choose a grid, and 
then (perhaps) perform some level of time-step study on 
that grid, an approach which may not correctly model the 
flow. In order to find a more universal method for 
performing grid and time-step studies, we will present a 
physical basis for choosing grids and time steps. The 
following sections will include a description of the 
importance of accurately predicting unsteady flow fields 
about complex configurations, as well as an overview of the 
common methods used to predict such flows. Finally, a 
discussion about the time steps required for these flow 
predictions will be undertaken. 
1.1. Importance of accurately predicting unsteady flows 

Many current military vehicles exhibit vortex-dominated 
flow fields. At a NATO air vehicle technology conference 
held in 2001, D. A. Lovell presented a review of ‘‘military 
vortices,’’ where he discussed the importance of under
standing the phenomena for the success of current and 
future aircraft. He classified vortex flows into three 
categories [1], ‘‘those designed into a vehicle to improve 
performance, those which cannot be avoided and whose 
adverse affects must be minimized, and those that were not 
expected to occur.’’ He gives examples of many of these 
vortex-dominated flow fields: tip vortices on wings having 
low sweep, leading-edge extension vortices from the F-18 
and F-16 aircraft, foreplanes on the Rafale, and flow over 
the MK-82 bomb (and other stores), to name just a few. 
Since the aerospace industry often concentrates on cruise 
conditions for optimization of commercial aircraft, these 
unsteady or vortical flow fields common in military aircraft 
are often not fully understood or able to be properly 
predicted. This is occurring at a time when the three largest 
US fighter development programs (F/A-18E/F, F-22, and 
F-35) incorporate twin tail configurations and high angle
of-attack maneuvering. We believe it is clear that accurate 
prediction of unsteady flows for aircraft at non-cruise 
conditions is essential for future military aircraft develop
ment. 
1.2. Unsteady flow prediction methods 

Until recently, the state of simulation technology has not 
allowed for accurate prediction of vortex breakdown, and 
the unsteady flow downstream of breakdown, at flight 
Reynolds numbers. Because of this, researchers have spent 
time computing flows over simpler geometries, such as 
slender forebodies and delta wings, to improve their 
simulation capabilities. However, the advent of hybrid 
turbulence models may finally allow for accurate prediction 
of full aircraft flow fields at high incidence. While advances 
have taken place in areas such as grid generation and fast 
algorithms for solutions of systems of equations, computa
tional fluid dynamics (CFD) has remained limited as a 
reliable tool for prediction of inherently unsteady flows at 
flight Reynolds numbers. 
Current engineering approaches to prediction of un

steady flows are based on solution of the Reynolds-
averaged Navier–Stokes (RANS) equations. The turbu
lence models employed in RANS methods necessarily 
model the entire spectrum of turbulent motions. While 
often adequate in steady flows with no regions of reversed 
flow, or possibly exhibiting shallow or steady separation, it 
appears that RANS turbulence models are unable to 
accurately predict flows characterized by massive separa
tion. Unsteady, massively separated flows are characterized 
by geometry-dependent and three-dimensional turbulent 
eddies. These eddies, arguably, are what defeat RANS 
turbulence models from predicting flows of such great 
complexity. 
To overcome the deficiencies of RANS models for 

predicting massively separated flows, Spalart et al. [2] 
proposed detached-eddy simulation (DES) with the objec
tive of developing a numerically feasible and accurate 
approach combining the most favorable elements of RANS 
models and large-eddy simulation (LES). The primary 
advantage of DES is that it can be applied at high 
Reynolds numbers, as can Reynolds-averaged techniques, 
but DES also resolves geometry-dependent, unsteady 
three-dimensional turbulent motions as in LES. Recently, 
Spalart et al. [3] proposed delayed detached-eddy simula
tion (DDES), which has the advantage of using a physical 
method for switching from RANS to LES (DES requires 
grid spacing to act as the switch). These hybrid models 



 

provide the tools that make the accurate prediction of 
massively separated flows possible. 

1.3. How small a time step? How fine a grid? 

In spite of the fact that the numerical tools exist for 
simulating massively separated flows, it is not clear how the 
tools should be used. How small should the time step be, 
and how fine should the grid be, in order to accomplish 
these calculations? These questions must be answered in a 
systematic way before researchers can confidently use the 
numerical tools that are now available. 

Perhaps the first person to consider the question, ‘‘how 
much information is enough’’ was Harry Nyquist, a 
pioneer in the field of information theory. Nyquist was 
trying to determine the bandwidth requirements for 
transmitting information over telegraph wires and postu
lated that the bandwidth had to be twice the size of the 
amount of information being transmitted per unit time [4]. 
Extension of this concept led to the development of the 
famous Nyquist sampling theorem, which states that the 
sampling rate for accurate description of a transmitting 
wave has to be at least twice as fast as the frequency of the 
wave [5]. Examples of proper and improper sampling rates 
based on Nyquist’s approach are shown in Fig. 1. A
practical outcome of these early developments in informa
tion theory has been the unbelievable growth in telecom
munications over the past decades, but we look to these 
concepts to find a minimum sampling rate (or maximum 
time step) for unsteady flow predictions. And while we are 
not ‘‘sampling’’ a transmitted wave, but rather computing 
an unknown unsteady flow, our restrictions will probably 
have to be even more confining than those of Nyquist. 

In terms of establishing time-step limits for unsteady 
flow calculations, amazingly little has been published over 
the years. Research into determining time-step require
ments has been so lacking, Spalart stated in [7] that, 
‘‘space–time error balancing also leaves the most room for 
experimentation.’’ Spalart [7] suggested a ‘‘rule of thumb’’ 
Fig. 1. Example of sampling rates: (a) a proper sampling rate for the given 
signal, (b) reproduced signal from the proper sampling rate, (c) too low a 
sampling rate for the given signal, and (d) reproduced signal from the 
improper sampling rate [6]. 
for DES computations, stating that a CFL number of 
approximately one was necessary for accurate prediction of 
large eddies, which was a requirement in both grid spacing 
and time step. Specifically, Spalart stated that Dx0/Dt ¼ 
Umax, where Dx0 is the grid spacing in the LES focus region 
and Umax is the maximum velocity in that region (which 
could safely be assumed to be 1.5 to 2 times higher than 
UN). Also, Spalart [7] and Schiff et al. [8] showed that at 
least five grid points (or cells) were required to model a 
large-scale flow feature correctly, meaning that Dx0 needs 
to be at least five times less than the smallest flow structure 
resolved by LES. 
Strelets [9] performed excellent simulations of massively 

separated flow fields using DES and determined that a non-
dimensional time step of Dt * 

¼ 0.025 (Dt * 
�Dt UN/l, where 

l is a characteristic length of the vehicle) was necessary for 
accurate prediction of massively separated turbulent flow 
fields. Gö rtz [10] found that a time step of approximately 
Dt * 
¼ 0.006 was required for accurate prediction of vortex 

breakdown over a delta wing at high angles of attack. 
Another study of high angle-of-attack flow over a delta 
wing by Schiavetta et al. [11] showed good results with a 
time step of Dt * 

¼ 0.01. All of these researchers showed 
excellent physical and numerical appreciation in their 
approaches, yet they all used somewhat different non-
dimensional time steps, leading us to believe that the choice 
of time step is quite complex and is affected by the 
algorithm, the grid being used, and the flow being 
simulated. 
As we progress through the discussion about how to 

choose a grid and a time step for successful simulation of 
aerodynamic flows, we will follow the advice of Spalart [7], 
who said that, ‘‘gridding guidelines will be based on 
physical and numerical arguments, rather than on demon
strations of convergence to a ‘‘right’’ answer.’’ We will not 
concentrate on comparisons with experimental data or 
theories; rather, we will see how choices made in the 
simulation effort impact the results. 

2. Physical basis for time-step refinement 

While it would be nice to have a simple rule for choosing 
the time step required for accurate prediction of flows over 
aircraft, the next section shows that the flow features often 
found around aircraft flying at high angles of attack do not 
allow for a single time step to be used for all cases. A 
physical discussion about delta wing flow features will lead 
to a choice of a maximum non-dimensional time step for 
high angle-of-attack unsteady flow predictions. Research
ers performing numerical simulations of other flows would 
need to understand the time scales for their flow geometries 
in order to find adequate time steps, which may differ from 
the results presented here. In addition, knowledge about 
the numerical methods of the particular Navier–Stokes 
solver being used is important as well. Solutions for the 
following studies were computed with the Navier–Stokes 
solver Cobalt developed by Cobalt Solutions, LLC [12]. 



Cobalt solves the unsteady, three-dimensional, compressi
ble Navier–Stokes equations on a hybrid unstructured grid. 

2.1. High angle-of-attack flow over a delta wing 

As an example of determining the physically correct time 
step for a flow computation, we will use high angle-of
attack flow over a delta wing as an example. A large 
number of researchers have described the unsteady nature 
of various flow features found in high angle-of-attack delta 
wing flows, and a good summary of their findings was put 
together by Schiavetta et al. [11]. The summary of these 
results is outlined in Table 1 and Fig. 2, where flow features 
such as the helical mode instability, vortex shedding, and 
vortex breakdown oscillation are shown with their 
corresponding Strouhal numbers (St�fl/UN). Notice that 
the oscillation frequencies for the various flow features 
vary by several orders of magnitudes, which makes 
accurate prediction of these flows even more complicated. 

2.2. Physical time step for delta wing flow computations 

Based on the results presented for vortical flow fields (as 
shown in Table 1 and Fig. 2), the highest Strouhal number 
likely in this high incident flow approaches StE20, which 
would be found in a shear layer instability. Assuming that 
the flow being computed contains a shear layer, and further 
utilizing the Nyquist sampling rate of at least twice the 
frequency of interest, a computation for such a flow as 
shown in Fig. 2 should have a non-dimensional time step of 
Dt *p0.025, a value which was used in the initial DES 
computations of Strelets [9]. 
Table 1 
Frequencies corresponding to important unsteady features of vortical 
flows over delta wings [11] 

Phenomenon Strouhal number 

Helical mode instability 
Shear layer instabilities 
Vortex shedding—TE 
Vortex shedding—high a 
Vortex breakdown oscillation 

1–2 
8–10 and higher 
E8 
0.2–0.5 
0.01–0.08 

Fig. 2. Types of unsteadines
This validates the earlier time-step results for similar 
flow fields [8–10], but also points out that there should be a 
general ‘‘rule of thumb’’ for the choice of time step: the 
time step should be determined by the temporal aspects of 
the flow feature(s) of interest in the computation. For 
example, Table 1 shows Strouhal numbers ranging from 
0.01pStp10+, so it might be possible to use a much 
higher time step than Dt * 

¼ 0.025, depending on the flow 
features of interest. However, our research has shown that 
the flow features described in Table 1 are often interrelated, 
meaning that in order to accurately predict the vortex 
breakdown oscillation (where StE0.01, requiring a time 
step as high as Dt * 

¼ 50) the shear layer instability must 
also be accurately modelled first (requiring a time step as 
low as Dt *p0.025). We use Dt * 

¼ 0.01 as a starting point 
for our calculations. If you are not sure what the time step 
should be, then taking the time to perform a time-step 
sensitivity study is worth the effort. 

3. Physical basis for grid refinement 

While it is essential to find an appropriate time step for 
accurate prediction of time-dependent flows, it is also 
important to know how fine to make the grid. While it may 
be possible to simply refine the grid until all appropriate 
flow features emerge, this approach can be computation-
ally quite expensive, and in fact may not lead to more 
accurate flow predictions. A physical basis for choosing the 
appropriate grid is important for accurate flow prediction. 

3.1. Flow gradients and cell size 

What makes a given numerical prediction spatially 
accurate? Of course this is determined both by the 
numerical methods being used, the grid itself, and the flow 
being predicted, as can be demonstrated with a flow shown 
in Fig. 3. Assume that the numerical prediction method 
uses a finite difference approach with a second-order 
accurate, one-sided first derivative, where the leading 
truncation term is of the form: Dx 2 q 3f/qx 3 (where f is 
some physical property such as pressure, density, tempera
ture, or velocity). What will make the truncation term 
small (and therefore lead to an accurate flow prediction)? 
s in delta wing flow [11]. 



If q 3f/qx 3 -0 (small flow gradient region of Fig. 3) then 
Dx can be ‘‘large’’ and still retain accuracy. If Dx-0 then 
q 3f/qx 3 can be ‘‘large’’ (large flow gradient region of Fig. 3) 
in order to retain good accuracy. Alternatively, a limit of 
the error can be obtained by finding appropriate levels of 
grid spacing to correspond to various flow gradients. 

These results correspond directly to the various flow 
structures described in Fig. 2 and Table 1. Knowledge 
about the frequencies of the various types of flow 
unsteadiness is essential, but so is knowledge about the 
size and location of the various flow structures. Obviously, 
the vortices shown in Fig. 2 require appropriate levels of 
grid support (at least five cells across the width of the 
vortex, as well as five cells across the width of secondary 
vortices and separation locations as well), but if the shear 
layer instability is also being simulated, the cell size might 
need to decrease by an order of magnitude or more in that 
region. Likewise, many computations do not concentrate 
Large flow 
gradients 

Small flow 
gradients 

Fig. 3. Relationship between flow gradients and grid size [13]. 
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Fig. 4. Velocity profile throughout a
on the wake region of a delta wing, but an accurate 
prediction may require that the trailing-edge wakes also 
be predicted well. This leads to another rule of thumb 
in accurate flow prediction: it is essential to understand 
the spatial aspects of the fluid dynamic processes being 
simulated in order to obtain accurate flow predictions. The 
situation can even be made more difficult if dynamic 
motion is involved in the simulation, since the fluid 
structures can also be reacting to unsteadiness of the 
boundary conditions. 

3.2. Reynolds-averaged Navier–Stokes simulation 

In addition to knowledge about various flow structures 
being resolved in the numerical simulation, knowledge 
about the boundary layer (including the state: laminar or 
turbulent) is also essential when using RANS simulations. 
Since RANS requires modelling of all turbulence scales 
(both spatial and temporal), the grid support required to 
accomplish good simulations must be understood. Fig. 4 
shows the velocity variation in a typical turbulent 
boundary layer (u + is the velocity within the boundary 
layer and y + the distance from the surface in wall units). 
The upper portion of Fig. 4 shows the velocity profile on a 
linear length scale, and the lower portion shows the same 
velocity variation on a logarithmic scale. The lower portion 
shows that each region of the boundary layer has a 
different velocity variation, which requires that each layer 
needs appropriate grid resolution in order for turbulence 
models to work appropriately. Some rules of thumb 
commonly employed when simulating a boundary layer 
include that the first grid point away from the surface 
should be located at y +E1, with at least two or three grid 
points within the viscous (or laminar) sublayer, and 
y+ 

00 2500 3000 3500 
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 turbulent boundary layer [14]. 



Fig. 5. Vortex shedding from the trailing edge of a NACA 6512 airfoil. 

Table 2 
Comparison of NACA 6512 airfoil grids 

Grid name Number of points Number of faces Number of cells 

Coarse 
Medium 
Fine 

11,101 
25,648 
78,907 

25,990 
62,771 
220,513 

14,897 
37,131 
141,615 
� � 

a maximum grid-stretching ratio of approximately 1.25. 
These rules produce at least 20 grid points within the 
boundary layer, another common rule for accurate predic
tion of a boundary layer using RANS methods. 

3.3. Direct numerical simulation and large-eddy simulation 

LES and DES require special care in creating grids and 
choosing time steps. Understanding the capabilities of sub
grid-scale turbulence models is essential in understanding 
the needs for resolving large eddies. 

Since direct numerical simulation (DNS) resolves all 
levels of turbulence scales, it requires knowledge about the 
spatial and temporal scales of turbulence. The Kolmogorov 
turbulence microscales for length (Z) and time (t) are given 
by 

� �1=43 � �1=2u u 
Z ¼ ; t ¼ 

where u is the kinematic viscosity and e the turbulence 
dissipation rate per unit mass [15]. Since these relationships 
define the spatial and temporal scales of turbulence, they 
therefore set the requirements for grid spacing and time 
steps for DNS. For example, the grid spacing must be less 
than the turbulence length scale and the time step must be 
less than the turbulence time scale. This leads to a three-
dimensional calculation requiring Re9/4 grid points and the 
number of time steps is proportional to Re3 [16]. These 
requirements result in massive computer storage and long 
run times in order to perform DNS calculations, especially 
as the Reynolds number is increased. 

LES can be seen as a compromise between DNS and 
RANS. The basis of LES is that the flow is decomposed 
into small and large length scales. The small scales are 
modelled while the large scales (large eddies) are solved for 
numerically. The cost of computation is greater than 
RANS, but less than DNS. Since the small scales are 
modelled, the Reynolds number restriction of DNS is eased 
a great deal. 

4. Generic results for a two-dimensional airfoil 

In an attempt to outline some of the issues that are 
important for accurate prediction of time-dependent flows, 
a basic study for a two-dimensional airfoil was undertaken. 
Specifically, the NACA 6512 airfoil was used to perform a 
fairly comprehensive time step, grid, and numerical 
algorithm properties study. 

4.1. NACA 6512 geometry and grid 

A two-dimensional airfoil with high camber (6% of 
chord) and moderate thickness (12% of chord) was selected 
to perform a grid sensitivity study and calculate the 
laminar vortex shedding that takes place from the trailing 
edge of the airfoil at low Reynolds numbers, as shown in 
Fig. 5. The airfoil flow field was computed at a Reynolds 
number Rec ¼ 1.0 � 105 and at an angle of attack a ¼ 01. 
Under low-Reynolds conditions, Karman vortex shedding 
takes place in the vicinity of the trailing edge of the airfoil, 
establishing a well-known unsteady flow with experimen
tally measured Strouhal numbers that vary depending on 
the angle of attack and Reynolds number [17]. In fact, the 
experimental data show that transition would take place 
under the conditions shown here, but the results serve the 
purpose of finding a grid and time step that resolve the flow 
features. 
A joint time-step/grid resolution study will be shown, 

which was performed on three grids, with the character
istics shown in Table 2. The three grids were created to give 
a wide variation of cells in the flow field (especially in the 
wake region of the airfoil), with the number of cells ranging 
from approximately 15,000 to nearly 150,000 for the coarse 
to fine grids, respectively. All grids had nearly identical grid 
spacing near the surface, with an average initial spacing of 
þy � 0:7, which is certainly adequate for a laminar avg 

boundary layer at low Reynolds number. The airfoil was 
simulated for a free-stream Mach number MN ¼ 0.1 and a 
chord-based Reynolds number Rec ¼ 1.00 � 105. 

4.2. Time-step and grid density study 

A time-step/grid density study was performed with the 
airfoil grids presented in Table 1. The grids were run at five 
or six time steps (depending on how many reductions in 
the time step were required in order to reach time-step 
‘‘convergence’’). The time steps used were Dt ¼ 0.00040, 
0.00020, 0.00010, 0.00005, 0.000025, and 0.0000125 s, 
which correspond to non-dimensional time steps of 



Dt * 
�Dt UN/c ¼ 0.01325, 0.00662, 003312, 0.001656, 

0.000828, and 0.000414, respectively. These values were 
initially chosen based on our ‘‘rule of thumb’’ for 
aerodynamic flows, such as those described in Table 1, 
which are usually modelled with a non-dimensional time 
step of Dt *E0.01 (shown on Fig. 6). This non-dimensional 
time step meets the Nyquist sampling rate requirement 
mentioned earlier and usually aids the researcher in 
performing a reasonable time-step study. 

Each solution was run for the same amount of physical 
time in second-order accurate mode, in this case t ¼ 0.4 s, 
which means that for Dt ¼ 0.00040 s cases the solution was 
run for 1000 iterations in time, for Dt ¼ 0.00020 s cases the 
solution was run for 2000 iterations, etc. Three Newton 
sub-iterations were used for all cases, and the damping 
levels were set to default values (damping levels will be 
discussed later). The simulations had been initiated with 
500 iterations of first-order accurate simulations (in order 
to reach a converged flow field), and then each case was run 
from the same steady flow solution. Once the solutions 
were obtained, time-accurate normal force variations were 
used to perform a power spectrum density (PSD) analysis, 
which resulted in the wave numbers shown in Fig. 6. 

Notice that each of the grids shows a reduction in the 
wave number (assumed here to be the inverse of the 
Strouhal number), as the time step is reduced enough (say 
to Dt ¼ 0.00010s for the coarse grid). As the grid is refined, 
the time step must be reduced further in order to reach 
time-step convergence, until two grids converge to the same 
wave number, in this case when the medium and fine grids 
reach a wave number of approximately 0.6. Note that this 
wave number corresponds to a Strouhal number of 
StE1.67, which corresponds to the experimental value 
for vortex shedding. In this case the results show that either 
the medium grid (at Dt ¼ 0.000025 s) or the fine grid 
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Fig. 6. Time-step and grid convergence study for NACA 6512 airfoil. 

1 
(at Dt ¼ 0.000050 s) can simulate a reasonably accurate 
vortex shedding from the airfoil, and the user would decide 
between them based on computer resources or possibly 
other accuracy considerations. Another note of caution can 
be found in these results: each grid required a different time 
step to obtain time independence, a fact that should make 
those who do not perform a joint time-step/grid density 
study wary. 

4.3. Impact of temporal damping 

Another important factor in the accurate prediction of 
time-dependent flows is the numerical damping that is 
often added to the time-integration schemes. Damping is 
often required in order to maintain temporal stability, but 
too much damping can degrade the accuracy of the 
simulation. As with the time-step study, it is important to 
determine the appropriate levels of temporal damping 
being used, and to use the least amount of damping 
feasible. 
An example of such a temporal damping study is shown 

in Fig. 7 for the NACA 6512 airfoil. In this case, the 
medium grid was used with a time step of Dt ¼ 0.000050 s 
(a case that gave good results for the time-step study shown 
in Fig. 6) and three Newton sub-iterations; all solutions 
were started from the same converged time-accurate 
computation and run for 8000 iterations. The advection 
damping coefficient (which damps the inviscid fluxes) was 
varied from 0.050 to 0.005 while holding the diffusion 
damping coefficient (which damps the viscous fluxes) 
constant at 0.01. At the largest value of advection damping 
coefficient (0.050) the results showed the expected high-
frequency oscillations, but a lower frequency was also 
evident (note the decrease in the normal force as a function 
of time). As the temporal damping was decreased (say from 
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Fig. 8. Coarse grid normal force variation with time [18]. 
0.050 to 0.020) the lower frequency oscillation was less 
evident, but a change in the high-frequency Strouhal 
number also took place. Not until the temporal damping 
was reduced to 0.010 and 0.005 did two identical time 
integrations take place (in both amplitude and frequency). 
The NACA 6512 airfoil flow calculations would therefore 
have to be performed with the temporal damping at 0.010 
or lower in order to achieve the best accuracy at this time-
step and sub-iteration level. Lower time steps or more sub-
iteration levels would make a higher damping level equally 
as accurate. 

5. Grid refinement and time-step study for laminar flow over 
a delta wing 

The previous descriptions show the need for performing a 
grid convergence and time-step study whenever computing 
unsteady flow fields. While there are probably numerous 
ways to achieve such a study, we have developed a systematic 
method for determining the time step and sub-iteration 
levels required for accurately computing time-dependent flow 
fields. The method will initially be described in this section, 
and then used in subsequent sections on more complex 
aircraft. 

A flat-plate delta wing with a leading-edge sweep of 701 
and a 251 bevel on the lower surface was investigated in the 
US Air Force Academy 38 cm � 110 cm free-surface water 
tunnel. A companion numerical simulation was also 
performed [18]. The wing had a chord length of 298 mm 
and was set at an angle of attack a ¼ 351, and was used for 
a study to determine the practicality of using periodic 
suction and blowing as a flow control method. The 
experimental free-stream velocity was 0.126 m/s, and the 
corresponding root-chord Reynolds number was Rec 

¼ 4.07 � 104. The free-stream Mach number for the 
computations was set to MN ¼ 0.1, with the free-stream 
pressure and temperature chosen to match the Reynolds 
number of the experiment. 

In order to determine the appropriate grid density and 
time step for numerical simulations, a study was carried 
out for the highly unsteady flow field caused by vortex 
breakdown above the delta wing. Fig. 8 shows the 
variation of normal force on the delta wing as a function 
of time step for the coarse grid at three time steps, 
Dt ¼ 0.020, 0.010, and 0.005s (a solution was also obtained 
for Dt ¼ 0.0025, but is not shown for clarity). As can be 
seen, the vortex breakdown has a high-frequency content 
as well as a second, lower frequency variation with time. 
Also, it should be obvious that while the three time steps 
yield somewhat similar results, the frequency content for 
each is not exactly the same. We have resorted to using 
PSD analysis for these types of computations to determine 
the magnitude of frequencies seen in Fig. 8. 

The PSD of the coarse grid solutions were obtained 
using MATLAB and plotted in Fig. 9a. Each of the four 
time steps used produces a different primary frequency 
(shown as the wave number). Clearly, the dominant 
unsteady feature of the flow (the vortex breakdown) is 
not properly resolved if each time step yields a different 
primary frequency. In order to determine whether or not a 
‘‘converged’’ time step is being approached, the wave 
number for each time step is plotted against the logarithm 
of the time step in Fig. 9b. While the incremental change in 
wave number decreases with a decrease in time step, the 
appropriate time step has probably not been attained (with 
the best wave number computed being approximately 10). 
In addition to the lack of time-step convergence, the 
coarseness of the grid probably will not allow for an 
appropriate vortex frequency to be modelled. 
A similar study was then conducted using a finer grid. 

Four time steps (starting with values comparable to those 
used for the coarse grid) are shown in Fig. 10a. The 
computations were all performed for the same physical 
time (10 s) by varying the number of iterations for each 
time step (2500 iterations for Dt ¼ 0.004 s, 5000 iterations 
for Dt ¼ 0.002 s, etc.), and each computation was com
pleted with two Newton sub-iterations. The calculations 
were carried out so that at least 10 full cycles of the 
frequencies of interest were included in the results in order 
to facilitate power spectrum analysis. The resulting wave 
numbers show an improvement over those resulting from 
the coarse grid, with the lowest wave number (highest 
frequency) of approximately 3, as shown in Fig. 10b. 
Details of the frequency spectrum are also much more 
complex for the fine grid compared to the coarse grid, as 
evidenced by the multiple power spikes in the vicinity of the 
primary frequency (compare Fig. 10a with Fig. 9a). These 
solutions clearly show a second, higher frequency fluctua
tion in the flow field. For Dt ¼ 0.004 s (Dt * 

¼ 0.45) the 
primary frequency takes place at a wave number of 
approximately 23, and the second frequency takes place 
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at a wave number of approximately 9. For Dt ¼ 0.001 s 
(Dt * 
¼ 0.11) the primary frequency takes place at a wave 

number of approximately 6, and the second frequency 
takes place at a wave number of approximately 2, 
vastly different values than for the higher time step. 
Similar results can be seen for all four cases shown in 
Fig. 10a. 

These results are consolidated and shown as a function 
of time step in Fig. 10b. As can be clearly seen, both the 
primary and secondary frequencies are converging to a 
constant value as the time step decreases. In addition to 
both variations decreasing asymptotically, the difference 
between wave number variations decreases as the time step 
decreases. While it is not obvious that the two frequencies 
will asymptote to the same value, it is possible. However in 
this case the secondary frequency was found to correspond 
to oscillations in the breakdown of the secondary vortex 
[18]. Also, while a converged time step has not been 
attained, it is clear that the appropriate wave number is 
somewhere in the range of 0.5 (which corresponds to a 
Strouhal number St ¼ 2). 
An additional temporal study was then performed to 
determine the effect of number of Newton sub-iterations 
on the solution. Fig. 11 shows the wave number variation 
for five Newton sub-iteration levels (nsub ¼ 1, 2, 3, 4, 
and 5), all at a time step of Dt ¼ 0.00005 s (Dt * 

¼ 0.006). 
Once again, two frequencies can be seen for each time step 
(for nsub ¼ 1 the primary frequency takes place at a wave 
number just below 9, with a second frequency evident 
above 3). This is repeated for all four Newton sub-iteration 
levels shown. Similar to the results seen in Fig. 10, the wave 
number for both primary and secondary frequencies 
decreases with increasing levels of Newton sub-iterations. 
In fact, the secondary frequency seems to have nearly 
converged, while the primary frequency is very nearly 
converged at nsub ¼ 4. While neither of the studies (time 
step and Newton sub-iteration) have been shown to be 
completely converged, the essential features of the flow 
field are appropriately modelled for the purposes of this 
comparison with a time step of Dt ¼ 0.0001s (Dt * 

¼ 0.011) 
and a Newton sub-iteration level of nsub ¼ 3 using the 
fine grid. Certainly, slightly improved solutions would be 
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Fig. 12. Delta wing model with 701 leading-edge sweep [19]. 
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Table 3
 
Grids used in 701 leading-edge sweep delta wing computations [19]
 

Grid Name Number of cells (millions) 

1 
2 
3 
4 
5 

Coarse 
Medium 
Fine 
Very fine 
AMR 

1.2 
2.7 
6.7 
10.7 
3.2 
obtained by using Dt ¼ 0.00005s and nsub ¼ 4, but very 
little essential information would be gained for the added 
computational cost. 

While this example was one of our first attempts at a 
formalized time-step study, a number of important 
concepts were learnt. First, a time-step study makes no 
sense when separated from a grid resolution study, since 
the fineness of the grid determines the flow features as 
much as the time scale. Second, it is not easy to look at 
force variations and determine when two computations are 
similar or different in terms of frequency content, so a 
power spectrum analysis helps a great deal in determining 
details of the flow. Finally, time-step accuracy is also a 
function of time-integration method accuracy, and must 
be researched in addition to the actual time step used. 
These results are now taken and applied to more complex 
configurations. 

6. Grid refinement study for turbulent flow over a delta wing 

The delta wing model in this study has a 701 sweep angle 
and root chord c ¼ 950 mm. The delta wing has a span 
b ¼ 691.5 mm at its trailing edge, is 20 mm thick, and is 
beveled on the windward side at an angle of 151 to form 
sharp leading edges (see Fig. 12). The experimental data 
presented in this paper was acquired in ONERA’s 
1.4 m � 1.8 m subsonic wind tunnel (F2) at test conditions 
of a ¼ 271 and UN ¼ 24m/s (Rec ¼ 1.56 � 106). Due to 
the relative symmetry of the flow field over the leeward 
surface of the delta wing, only the portside flow field 
was examined. Details of the model, the wind tunnel, and 
LDV system, as well as the computational study are 
specified in [19]. 
Four semi-span grids were created for the delta wing 
(as described in Table 3) of 1.2 (Grid 1), 2.7 (Grid 2), 6.7 
(Grid 3), and 10.7 million cells (Grid 4). Each grid in the 
series is refined in all three coordinate directions by a factor pffiffiffi 
of 1= 2 from the previous grid in the series. Results from 
the grids were presented in [19], including a fifth grid 
created with adaptive mesh refinement (AMR) that had 3.2 
million cells (Grid 5). 
All of the grids in this study consist of an inner region of 

approximately 13 layers of prisms for the boundary layer, 
with a wall normal spacing in viscous wall units less than 1 
(y +p1), and an outer region of tetrahedra. The prism 
dimensions on the surface were a factor of approximately 
200 times larger than the wall normal dimension for all 
grids. 
Pirzadeh’s AMR method [20] was applied to the 

ONERA delta wing configuration in this study. A steady-
state flow solution was computed for a grid with surface 
resolution between the coarse and medium grids described 
above (Grids 1 and 2, respectively), and then was used to 
create an AMR grid by eliminating all cells within an iso
surface of vorticity at a particular level. The grid was then 
grown inside the iso-surface with a scale factor of 0.5. This 
procedure was performed twice to create a vortex core and 
shear layer with one fourth of the cell sizes (in all 
coordinate directions) of the original grid. The new grid 
was then used to compute unsteady DES for the flow field. 
Figs. 13a–d depict crossplanes of the very fine and AMR 

grids (Grids 4 and 5, respectively), at four chord-wise 
stations, x/c ¼ 0.53, 0.63, 0.74, 0.84. It is apparent from 



Fig. 13. Crossplanes of Grid 4 (10.7 million cells) at four chordwise stations [19]: (a) x ¼ 400 mm; (b) x ¼ 500 mm; (c) x ¼ 600 mm and (d) x ¼ 700 mm. 

Fig. 14. Crossplanes of Grid 5 (3.2 million cells) at four chordwise stations [19]: (a) x ¼ 400 mm; (b) x ¼ 500 mm; (c) x ¼ 600 mm and (d) x ¼ 700 mm. 

Fig. 15. Comparison of grids without and with AMR [19]: (a) grid 4 and 
(b) grid 5 (AMR). 
Figs. 13a and b that a consistent grid refinement has 
occurred with very little emphasis on the vortex core or 
shear layer. In contrast, the AMR grid (Grid 5) depicted in 
Fig. 14 shows a concentration of points in the vortex core 
and leading-edge shear layer regions with cell sizes smaller 
than even Grid 4 of Fig. 13. It should be noted that the 
shear layer loses resolution for the chord-wise stations of 
0.74 and 0.84. Fig. 15 depicts a downward look on a plane 
passing through the surface of the delta wing grid. The left 
side is the very fine grid (Grid 4) and the right side is the 
AMR grid (Grid 5). It is apparent that Grid 4 has refined 
cells outboard of the leading edge in a region that, 
arguably, has little impact on the solution. It is also clear 
that the trailing-edge region is much more refined in Grid 
4, making it superior to Grid 5 for resolving the unsteady 
wake region emanating from the blunt trailing edge. Grid 
5, however, has approximately one third the cells of Grid 4, 
which makes Grid 5 computationally more efficient for a 
similar level of simulation capability. 

Typical simulations were run for 10,000 iterations, 
starting from free-stream conditions, and time averages 
were computed starting after the 2000th iteration to 
eliminate transients. Figs. 16a–e show a top view of the 
delta wing for the five grids discussed previously. An iso
surface of vorticity magnitude colored by the spanwise
vorticity component is displayed for each of the grids (all 
vorticity components and iso-surfaces were defined the 
same for these figures). It is apparent in Figs. 16a–d that 
consistent grid refinement provides a significant increase in 
the number of flow field structures resolved. In the pre-
breakdown region of the vortex core, substructures wind
ing around the core are observed as the grid is refined. 
Also, there is a significant increase in the number of struc
tures observed in the region of the core, post-breakdown, 
as the grid is refined. Trailing-edge spanwise vortical 
structures begin to be resolved as the grid is refined, and 
for Grid 4, three-dimensional structures emanating from 
the blunt trailing edge that transit to spanwise coherent 
vortices are also captured. The trailing-edge coherent 
vortices also have an effect on the leading-edge shear 
layer, creating an instability at the leading edge that 



Fig. 16. Iso-surfaces of vorticity magnitude colored by spanwise vorticity; a ¼ 271, Rec ¼ 1.5 � 106 [19]: (a) grid 1; (b) grid 2; (c) grid 3; (d) grid 4 and 
(e) grid 5. 
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Fig. 17. Resolved turbulent kinetic energy non-dimensionalized by the 
square of the velocity along the core; a ¼ 271, Rec ¼ 1.5 � 106 [19]. 
propagates forward as more of the trailing-edge vortices 
are resolved. 

The AMR grid (Grid 5) depicted in Fig. 16e displays 
some significant differences in the pre-breakdown region. 
The vortical substructures are very coherent relative to the 
other grids and persist even downstream of the breakdown 
position. The trailing-edge vortices are evident but the 
coarseness of the grid in this region impedes the propaga
tion of these coherent structures downstream. The lack of 
leading-edge instability related to the trailing-edge coherent 
structures may be due to the decrease in shear layer 
resolution for Grid 5, post-breakdown, discussed above. 
Consistent with the fact that the core of the vortex is even 
more refined than Grid 4, there is a tremendous amount of 
three-dimensional structure in the region of the core, post-
breakdown. 
The resolved turbulent kinetic energy in the vortex core 

is shown in Fig. 17. Note that only Grid 4 was able to 
match the experimental peak of 0.5. It should be noted that 
the AMR grid (Grid 5) also produced a peak turbulent 
kinetic energy of 0.5, meaning that the grid with well-
placed cells in the vortex (Grid 5) was equivalent to the 
very fine grid (Grid 4) in this situation. 

7. Accurate simulation of full aircraft at flight Reynolds 
numbers 

In order to verify that the features we have discussed lead 
to accurate prediction of highly unsteady flows, we will show 
examples from three military aircraft flying at full-scale 
Reynolds numbers: the F-18C, F-16C, and F-16XL. 

7.1. High angle-of-attack flow over the F-18C 

Another important feature in the accurate prediction 
of time-dependent flows is the turbulence model used, as 
is demonstrated with computations done for the F-18C 
at a ¼ 301, MN ¼ 0.2755, and Rec ¼ 13.0 � 106. The half-
body mesh was created using AMR and the calculations 
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were done with Dt * 
¼ 0.012, which is our baseline time 

step. For these conditions the F-18C experiences vortex 
breakdown over the wing, which causes highly unsteady, 
massively separated flow in the vicinity of the vertical tails, 
as shown in Fig. 18. These computations were reported in 
[21], including comparisons with flight-test data. 

Three turbulence models were used to compute the flow 
over the F-18C: Shear stress transport (SST), Spalart– 
Allmaras (SA), and Spalart–Allmaras with detached-eddy 
simulation (SADES). The lift and drag forces for these 
three turbulent models are shown in Fig. 19, and while the 
magnitudes for all three turbulence models are quite similar 
(within 0.1% of each other), the time variation is very 
different. The frequency content of the SADES contains a 
great deal more information, and we found that the 
frequencies on the vertical tail matched flight-test data 
when SADES was used [21]. 

The SADES solutions were used to perform a PSD 
analysis, and the results are presented in Fig. 20. While the 
power levels are different (due to a lack of knowledge 
about the reference conditions for the flight-test data), the 
SADES simulation accurately predicted the unsteady flow 
over the vertical tails for the aircraft. 
Fig. 18. F-18C with vortex breakdown over the wing; a ¼ 301, 
MN ¼ 0.2755, Rec ¼ 13.0 � 106 [21]. 
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Fig. 19. Lift and drag variation for F-18C; SST ¼ shear-stress transport, S
simulation; a ¼ 301, MN ¼ 0.2755, Rec ¼ 13.0 � 106 [21]. 
7.2. High angle-of-attack flow over the F-16C 

One of the issues that was discussed earlier was the 
impact of temporal damping (or any type of artificial 
damping) on simulations that involved separated flow. 
Schiff et al. [8] showed that damping levels need to be 
reduced by several orders of magnitude before consistent 
results were obtained, and our experiences show that 
inappropriate levels of damping can have significant effects 
on separated flow predictions. 
Flow over the F-16C was computed for a ¼ 01, 

MN ¼ 0.6, Rec ¼ 43.0 � 106 as a test case for the effects of 
temporal damping. Fig. 21 shows the damping effect, where 
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Fig. 20. Power spectrum density for vertical fins on F-18C; a ¼ 301, 
MN ¼ 0.2755, Rec ¼ 13.0 � 106 [21]. 

SST 
SS 
SADES 

D
ra

g 
(lb

s)
 

18500

18000 

17500 

17000 

16500 

16000 

2.6 2.8 3 3.2 3.4 3.6 3.8 4 
Time (sec) 

A ¼ Spalart–Allmaras, SADES ¼ Spalart–Allmaras with detached-eddy 



1400 

(a) 1st order time accuracy, CFL = 1x106, 1 subiteration, adv = 0.05/diff = 0.00	 F16C, M = 0.6, Re = 43x106, α = 30deg
(b) 2nd order time accuracy, Δt* = 0.029,3 subiterations, adv = 0.05/diff = 0.00 
(c) 2nd order time accuracy, Δt* = 0.029,3 subiterations, adv = 0.01/diff = 0.00	 Determination of how many iterations 

should be averaged
1700 to compute total lift, drag, etc.

136000 

1600 
(b) 

1340001500 

N
or

m
al

 F
or

ce
 (l

b)

(c)
(a) 

1300 

1200 

1100 

1000 
3000 4000 5000 6000 7000 8000 9000 10000 

Number of Iterations 

Fig. 21. F-16C normal force variation for steady and unsteady flow at one 
damping level, and for unsteady flow at a lower damping level; a ¼ 01, 
MN ¼ 0.6, Rec ¼ 43.0 � 106. 
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Fig. 22. Impact of simulation interval on time-averaged results. 
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Fig. 23. F-16XL PSD for normal force, a ¼ 11.891, MN ¼ 0.304, 
Rec ¼ 44.4 � 106. 
the advection damping has been changed from 0.05 (green, 
(b)) to 0.01 (red, (c)). The initial steady-state computations 
are shown in blue (a) and have a damping value of 0.05. 
Note that after the damping level was decreased, the 
magnitude of the average normal force was decreased by 
approximately 10%, a significant difference in force. 

Another issue was discovered that showed how impor
tant it can be to appropriately choose the computational 
interval when looking at PSD or other statistical informa
tion. The insert graph in Fig. 22 shows the normal force 
variation for the F-16C at a ¼ 301, MN ¼ 0.6, Rec 

¼ 43.0 � 106, where it is apparent that the unsteady flow 
field has not been established until after several thousand 
iterations of start-up. The red line in the outer figure shows 
the average normal force based on the number of iterations 
used to take the average. The averages are taken starting 
with the last iteration computed and then averaging 
backward in time. The initial values oscillate quite a bit, 
as would be expected for an unsteady flow, but then the 
normal force settles down to a fairly constant level. 
Statistical information for the last 6000 iterations would 
probably yield reasonable results. However, if averages 
were taken that included the 6000–8000 iteration range 
(which would begin to include the start-up results for the 
simulation), a largely different result would be obtained. 
This may seem trivial, but shows the importance of using 
information only once an established flow is computed. 

7.3. Medium angle-of-attack flow over the F-16XL 

Calculations for the F-16XL were undertaken as part of 
the NATO RTO Task Group 113, which used the F-16XL 
as a test bed for current CFD capabilities [22]. While 
performing the original time-step study, the aircraft normal 
force was used, resulting in the PSD analysis shown in 
Fig. 23. Note that there are no consistent results for this 
analysis: different time steps yield primary frequencies that 
do not form any discernable pattern. It became apparent 
that when looking at the full aircraft integrated forces 
(such as normal force), there were too many inputs into 
the resulting force. The integration process is probably 



masking important flow information from various loca
tions on the aircraft. 

Pressure ‘‘taps’’ were created in the flow field at various 
locations where pressure was saved for each iteration so 
that the PSD could be performed with localized informa
tion in the region of interest. Specifically, pressure taps 
were located in the region of unsteadiness for the leading-
edge vortex, as shown by the white dots in Fig. 24. 

The resulting PSD analysis is shown in Fig. 25a. There is 
now a consistent set of results, with the primary frequency 
‘‘converging’’ as the time step is decreased. The primary 
frequencies are shown in Fig. 25b, which clearly shows that 
a non-dimensional time step of Dt * 

¼ 0.01 is probably 
adequate for obtaining physically realistic results in the 
leading-edge vortex region shown in Fig. 24. If other 
Fig. 24. F-16XL with pressure ‘‘taps’’ located in the region of interest 
(shown by white dots) [22]. 
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Fig. 25. F-16XL PSD for the first pressure tap and resulting wave number, a 
and (b) wave number variation with time step. 
regions of the flow about the aircraft were also deemed 
important, then pressure taps could be located in those 
regions in order to expand the PSD study. In this way a 
single time step could be found that accurately resolved all 
of the flow features of interest. 
8. Proposed overall approach 

Obviously, the first step in our approach to accurately 
predict time-dependent flows is to create a grid for viscous 
calculations with appropriate grid spacing near the surface 
(turbulent flows should have y +E1, for example). We use 
the following theoretically based formulation to calculate 
the initial grid spacing, which seems to work very well for 
all Reynolds numbers we have investigated: 

þ	 þ Þ
0:8751:3016 y	 ð13:1463yave	 aveDlam ¼ L ; Dturb ¼ L	 . 

Re0:75	 Re0:90 
L	 L 

Once the initial grid spacing is determined, it should be 
insured that the growth rate away from the surface is not 
higher than approximately 1.25, which should result in at 
least 20 grid points (or cell layers) in the boundary layer; 
this should be an adequate grid for a boundary layer. At 
least three grid levels should be created (coarse, medium, pffiffiffi 
fine), where we usually use a 2 multiplication in all 
directions, which creates grids that have approximately a 
factor of 2 size difference (due to recombination of the 
viscous layer to create pyramids near the surface). Often 
additional grids may be required in order to obtain 
reasonable results, depending on the flow being simulated. 
Now a time-step study on each grid has to be performed 

to see the impact of grid size and time step on the results, 
which assumes that the grids are reasonable to begin with. 
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Fig. 26. Proposed poor man’s ‘‘steepest descent’’ method for time-step 
study. 
Unfortunately, this can be quite expensive, as has been 
shown with the various examples in this paper. The airfoil 
study results shown in Fig. 6 required 88 CPU hours, 
running on a Linux cluster with eight processors for each 
case! A possible way to avoid this expense would be to use 
a poor man’s ‘‘steepest descent’’ method, which takes 
advantage of the fact that our experience shows the wave 
number always decreases with decreasing time step until a 
‘‘converged’’ time step is reached. This would allow for 
an approach as shown in Fig. 26 to be used, which uses 
the airfoil study results as a starting point. Using this 
approach, 15–18 converged solutions for three grids could 
be replaced by six solutions on three levels of grids at a 
lower computational cost (in this case, about 50 CPU 
hours). Use Dt * 

¼ 0.01 (essentially the Nyquist sampling 
rate) as a starting point for the calculations: our results 
show that the correct time step is usually close to this value. 
Use time steps that are one-half order of magnitude larger 
and smaller than this value. Use DES for turbulent flow 
calculations with highly unsteady results. It is conceivable 
that some sort of optimization routine could be used to find 
the correct grid size and time step, but the additional 
difficulty and cost may not be worth the effort. 

The overall approach shown in Fig. 26 could be 
summarized like this: 
� 
Points 1 and 2: Dt1 should be used on the coarse grid 
(Point 1) followed by another calculation with Dt2 ¼ 

Dt1/2 (Point 2); 

� 
Points 3 and 4: Dt3 ¼ Dt2/2 should be used on the 

medium grid (Point 3) followed by another calculation 
with Dt4 ¼ Dt3/2 (Point 4); 

� 
Points 5 and 6: Dt5 ¼ Dt4/2 should be used on the fine 

grid (Point 5) followed by another calculation with 
Dt6 ¼ Dt5/2 (Point 6); 
� 
if results from 4–6 are essentially the same, then the 
medium grid could be used to perform the calculations. 

This would significantly reduce the computational time 
associated with finding the right grid and time step, but 
taking the time to perform these studies early on is worth 
the effort. 

9. Conclusions 

Results from several basic flow types as well as three full-
scale aircraft have been presented for computing time-
dependent flows. A number of important lessons were 
learnt while performing these studies, including: 
� 
understand what is important for your calculation and 
know the physics involved: the grid and time step should 
be determined by the flow region of interest; 

� 
perform grid and time-step study in conjunction with 

one another; 

� 
vary time step and number of iterations so that all 

computations are for the same physical time; 

� 
compute at least 10 cycles of the frequencies of interest; 

� 
use appropriate averaging over a reasonable simulation 

interval; 

� 
perform PSD for frequency analysis; 

� 
evaluate time-integration method (including sub-itera

tions) and damping for their impact on accuracy; 

� 
use the least amount of damping possible in simulations; 

� 
use taps instead of integrated forces if necessary for 

PSD; 

� 
use hybrid turbulence models if possible, including DES 

or DDES. 

Our experience shows that good results can be obtained 
if this overall approach is taken, although there certainly 
could be other ways to insure that time-dependent flow 
computations are accurate. 
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