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In this paper, wc present the design and implcmenta- 
tion of an intclligcnt scheduling system for F M S  
(ISS, FMS) that utilizes AI technologies so that expccted 
performance levels can be IssiFMs uti- 
lizes ESs, distributcd knowledge bases, and  artificial 
ncural net‘”orks 
for the FMS schedulingirescheduling problem. 

ABSTRACT 

An adaptive expert scheduler was developed thcit learns 
by itself and adapts to the dynamic FMS environment. 
Tilis fQj)rid systctn uses a synbiotic architecture composed 
of expert systems ( ESs j and artificial neural networks 
fA,Y,Ys I atid provides a learning sclietne girided by past 
esprricwc’e. The artificial neural networks recognize pat- 

in Order to find a good 

tcrm iri the tasks to-he s01w.l in order to select the best 
scfichliiig riilc according to d@rent criteria. The e p e r t  
sJ’.c’ttvtis, on the other hand. drive the inference strategv and 
iritcvpsct the constraitits cind restrictions ittiposed by the 
irppcr 1cvcl.q .J‘ the control hierarchy of the fTexible manu- 
jiwtiwitig sJ*stctn. The level oj‘ sclj-organizatiori achieved 
pForicli*r t i  s!~stctn with a higlier probnbility of sirccess than 
tr~trtlitiorrtil ap~~roccc~lrcs. 

INTRODUCTION 

Flciiblc manufacturing systems (FMSs) arc auto- 
niatcil manufacturing systcms consisting of computer 
numcrical control (CNC) machinc tools, matcrial handl- 
ing tlc\.iccs, automatcd inspection stations, in-proccss 
storagc arcas, and a computational (hardwarc- 
soft\varc ‘proccssing-communications) schcmc to provide 
databasc handling, supervisory, and monitoring func- 
tions. Flcsiblc manufacturing systcms arc charactcrizcd 
hy high tlcsibility and complcsity. Conscqucntly, thc 
scheduling of jobs, machines, and othcr resources in an 
FMS to achic1.c the production goals assigncd, taking 
into consideration thcir dccision making time framc, is a 
cl i ffic u It task (4.6). 

As an approach to solvc thc FMS schciluling problcm, 
se\ cral rcscarchcrs havc strcsscd thc nccd for rcal-timc 
schcduling systcms dcsigncd with an augmcntcd lcvcl of 
intclligcncc, using Artificial lntclligencc (AI) including 
O’Grady and Lcc (9), Gross (J), Alptckin and Rabclo 
(I), Park ct al. (IO), and Kusiak (7). Howcvcr, the most 
common use of AI in FMS schcduling is thc dcvelopmcnt 
of cxpcrt systems which emulate intelligent behavior. 
Ncvcrthcless, thc concept of FMS scheduling incorpo- 
rates scvcral AI disciplincs such as  fcaturc cxtraction, 
da t a  intcrprctation, distributcd dccision-making, and op- 
timization. Thercforc, it is appropriate to integrate se- 
vcral AI tcchnologics to form systcms that can mcct thc 
rcquircmcnts of such an cnvironmcnt. 
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A N N s  arc used as  a method for predicting the behav- 
ior of the dispatching rulcs available in ISSiFMS rathcr 
than utilizing rules bascd on statistical models (IS). 
Their ability to learn from esamples provides a self- 
acting stratcgy to thc knowlcdgc acquisition process and 
thcrcforc a direct contribution to support sclf- 
organization schcmcs. Expcrt Systcms arc utilizcd to in- 
terpret the goals and commands from the different 
clcmcnts of thc hierarchical FMS architccturc, intcract 
with thc uscr, monitor thc pcrformancc and dcvclop rc- 
training stratcgics to cnhancc thc artificial ncural nct- 
work structures, and to  implement sophisticated 
schcduling proccdurcs. 

BACKGROUND ON ARTIFICIAL NEURAL 
NETWORKS 

Artificial ncural networks (ANNs) are 
informationi’proccssing systcms whosc development has 
bccn motivated by the goal of reproducing the cognitive 
proccsscs and organizational models of neurobiological 
systcms. By virtuc of thcir computational structurc, 
A N N s  fcaturc attractivc charactcristics such as  graceful 
degradation, robust recall with fragmented and noisy 
data ,  spccd inhcrcnt to parallcl distributcd architecturcs, 
gcncralization, and the most intcrcsting one: learning. In 
this scction, basic conccpts about ANNs,  dcrivation and 
an example of the usc of the learning scheme utilized in 
this rcscarch will bc prcscntcd. 

General Description 

Artificial neural networks are informationiprocessing 
systems composcd of a large number of interconnected 
proccssing elements (PES). The characteristics of an 
A N N  is a product of the network paradigm. The net- 
work paradigm is given by the network architecture and  
the neuro-dynamics utilized. 



Network Architecture. The network architecture defines 
the  ari'angcmcnt of processing elements and how they are 
intcrconncctcd. This establishes which PES are 
intcrconncctcd--inputs from and outputs to PES, the 
gr-oups o r  layers of PES, and how the information flows 
i n  the network. For example, a sequential network will 
fccdtxick its output to the input units of the network, in 
;I fccd-foinvard network the information will flow strictly 
I'roiii the  input to the output (Sec Figures 1 and 2). 

INPUT 
LAYER < HIDDEN 

Figure I .  A cquential  nctwork 
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Figure 2.  A feedforward network 

& u ~ o - I ) y I ~ a I i i ~ .  The PES (also called neuronsj have 3 
ritiinhcr- 01' inputs  ivhich arc modified by adapti\.e cocffi- 
cicn[\  (\\.eighth) and gcncratc a n  output >ignal (Sec Fig- 
I I I .~  3 ) .  Ncu~-o-dynaniics hpccifics how the inputs to the 
I ' t  : IK going to bc combined togcthcr, and what type of 
I'uiiction o r  rclation\hip is going to be usecl to de\rlop the 
o u r p i i t ,  a n d  how the weights arc going to be modified. 

Tlic inputs  to the PE arc wcightcd and often arc com- 
i,inctl togethcr using the summation function. This is 
; i I \ o  c:iIIcd "internal activation". This internal activation 
i \  utilized to gcncratc the output of the  neuron using a 
L'I 11 ti n 11 ( ) t i  \ o r  n o n  continuous trans fer function. 

l ' h c  learning mechanism which handles modifications 
t o  t h e  Lvcights 2 n d  any othcr organization of the network 
c:in he classified under supervised learning, unsupervised 

BIAS 

I 
01 

Figure 3. A processing eicment 

learning, or self-supervised learning (1 4). Supervised 
learning takes place when the network is trained using 
pairs of input and desired outputs. In unsupervised 
learning, inputs are entered and the network is able to 
self-organize its own categories. Self-supervised learning 
adds feedback to unsupervised learning to correct errors 
in the pattern classification process. 

Among the different rules and procedures developed, 
it is possible to mention: The Generalized Delta Rule 
(1  3), Counterpropagation (3, Adaptive Resonance The- 
o ry  (3 ) ,  Hopfield (8). They have their limitations and 
strengths and it is possible to identify suitable applica- 
tions arcas for which they are intended. In the next 
subsections, the generalized delta rule, a supervised 
training method for feedforward networks, is explained. 

The Generalized Delta Rule 

The generalized delta rule is a learning procedure de- 
\ doped  by Rumelhart (13) which learns adequate 
internal representations using deterministic units to pro- 
\,ide a mapping from input to output. This procedure 
involves the calculation of a set of output vectors 0 using 
the current weights W (set composed of matrixes 

M',,-2 ....I.V',-, where W,,=2 would be the matrix of 
weights between the input and the first hidden layer and 

the matrix of weights between the last hidden 
layer a n d  the output layer) and  0 (set composed of ma- 
trixes H,, 2...0,.r where would be the matrix of bi- 
ases of the first hidden layer and Om=( the matrix of 
biases corresponding to the output layer) state of the 
network and a given set of input vectors 1. This set of 
calculated output vectors will be compared to a target set 
of output vectors T and an error is estimated by using a n  
error function. This error function is defined for an spe- 
cific Ip and Tp as follows: 
E,, = 1/2C(t, - 0~1) '  

where th'e index p represents each input vectorjtarget 
output vector that  conforms the input vector set 1 and 
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target output \ u x o r  ret T ,  i represents the output nodes 
of the output layer in the network, and 1 is the to ta l  
number of layers (i.c., layer ni = I  is thc output layer. 
laycr m = I is thc input layer). t is thc targeted output for 
the ith output node and o is the rcsponse obtained from 
the ith output noilc using the corresponding I, Thus the 
total crror Lvill bc dctcrniinatc as: 
E = SE, 

P 

The learning procctlurc minimizes Ep by performing 
steepest descent and therefore obtaining appropriate 
w and 0. 

As csplaincci abo\.c, the net input to  a neuron is ex- 
pressed as: 

where \V represents the weight between thc jth uni t  of 
I:t>.cr m-l and tlic ith unit of layer m. I n  addition. the 
actii.ation function utilized is the logistic function given 
b>-: 

= ylL-,,,&.! + B,,, 

It is possible to conclude that to minimizc EP and 
achici.c conicnient W and 0 i t  is necessary to makc ad-  
ju>tmeiits to prciious W ancl 8 obtained until the error 
tolerance imposed by- thc final desired mapping accuracy 
is accomplished. Therefore, it is possible to establish 
A I I :,r,,z - 2 Ep/2 TI '!,, 

AO,,,,? - C7Ep/L38,, 

Then the partial derivative of E with respect to the 
u.cights a n d  hiascs could b e  cspi-csscd a.;: 
?C,,/?n.,,, = (,?E,/arlct,,,)(~net,,/l~~l',,,n) 
?E,,/;o.>n = (;iE,/~nc.t,,)(i7,1cr,,,/c?0,,,) 
antl  the partial dcri\,ati\.c of the error to the net input 
CClLIld he s t a t e d  as: 
;E,,/?/l~~t ," = - tS,,,. 

I t  is possible to replace and get the following terms: 
~ € / , / ? I L , , , ~  = - , 
?€/>/CO = - (j,,n. 

Thc \ ari:iblc Ci defincd aboic  could be calculatetl by 
hac k p in i pnga t i ng the er ror through t he ne  tuvr  k s t I  t ing 
i v i t h  tlic output l a y x  where the partial  tlcri\ a t iw  of thc 
crroi-  t o  the ou tpu t  is defined :I\: 

where t~ is thc Icarning ratc. 

Learning of an A N N  is achie\.cd through a sequcncc 
of iterations or epochs (13). An epoch is a pass through 
the entire training set. The operations to update 

w a n d  8 can be done in two modes: 
a. For each pattern. 
b. For the input \ector set. 

In spite of the capabilities of this pro\en algorithm, 
the riitc of coni'crgencc might bc \'cry slow. This ratc of 
con\'crgcncc is dependent on many factors such as initial 
w igh t s ,  learning rates. complexity of thc mapping to  h e  
performed, number of hidden layers, connections. hidden 
units, data samples, identification of r c b a n t  data sam- 
ples, etc. Hence a great deal of research is on progress 
to speed up the rate of convcrgcncc and improw the 
mapping accuracy provided by the gencralizcd delta rule. 
One of the most used heuristics to speed U D  the rate of 
convergencc is the utilization of a momentum factor that 
\wights the contribution of the past AW and AB. The  
updating equations will  be modified as follow: 
\ v l jm( t )  = IL',j,(f - 1) + A~t',,,,(t) + icA\t',,(t - 1)  
e,,,,([) = B t m ( f  - 1) + Afl,,(t) + icAO,,(t - 1). 

Once a training session of an  A N N  has accomplishcd 
the constraints of the mapping accuracy, it should be able 
to relate input \ w t o r s  with the appropriate output \'ec- 
tors. If this is not achiciwl modifications h a w  to be im- 
plemented to the nctnork architecture, with the 
possibility of ch:ingcs to the input feature space and 
training set, a n t l  the applicability of the learning 
p:ir:idigni to thc prohlcm should be c\,aluated. I f  the 
pi-ci ious step \vas fulfilled, the nest step to satisfy is the 
utilization of the A N N  as a predicting mcchanisni. This 
i \  cserciscd using patterns that \\.ere not pre\.iousI>- 
taught ancl recording the performance cshibitcd by the 
trained A N N .  In this step. the generalization capabilities 
of the nct\vork \vi11 he :in impor-tant indication that i t  is 
dcpcnclcnt o n  the architecture achie\.cci. features reprcs- 
cntecl in the input feature space. and the suitability of our 
training set. 

An AIC" for Diagnostic in Robotics 

To illustrate the backpropagation paradigm an  esani- 
ple has been developed in the area of robotics and diag- 
no\is. This csamplc has been designed utilizing rcal data 
from a G E  PhO robot and it is a small scale \ax ion  of a 
larger implementation of an "cspcrt connectionist nct- 
Lvork" (16). In the c a x  of "expert connectionist net- 
works" ( 3 )  thc knowledge is not stored by facts or 
IF-THEN rule\ or in a specific knowledge basc location. 
Patterm\ of activation lc\cls in the neurons inhcritcd from 
the connection strengths and the distributed structure 
pi-o\.iclc\ the knonlcdgc rcprcscntation scheme. This 
rcprc\cntation schcmc has several advantages, such a> 
the creation o f  models Lvith limited knowledge engineer- 
ing participation and  naturally built of fuzzy predicate 
fu ii  c t i c) n s. 

In  this robotics application, a n  artificial fcedforn.ar-d 
neural network was trained on the functional rclation- 
ships bctn.cen specific cvents (symptoms), diagnoses. and 
recovery. The input paramctcrs for the A N N  could be 
collected using ctiffcrcnt sensory techniques or human 
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input--in this case the analog characterisrics of ANNs 
pro\,idcs significant bcncfits to intcrfacc and dcvclop a 
real-tinic systcm.' In ordcr to get a responsc, all the 
input-questions should be ans\vcrcd at  once (Sce Table 
I). The  A N N  performs the classification task b,ased on 
the fcaturcs of the problem. Thc  result of this classifica- 
tion task is the type of malfunction and the crror rccov- 
crv strategy. 

IO 
I I  

If 
I3 
I4 
15 
I6 
17 
I b  
19 
I IO 
I l l  
I I2 
113 

00 
01 
o a  

0 3  

0 4  

0 5  

06 

07 

08 

09 

Table I .  Input Output for thc diagnostic systcm 

Training a One-Hidden Layer Architecture This architcc- 
turc has 1.4 inputs that corrcspond to cach spccific cvcnt, 
I 1  outputs tha t  identify diagnostic and rccovcry procc- 
durcs, and  t tvo  hiddcn units in the hiddcn layer (Sec 
Figurc 4). Thc training was pcrformctl using the training 
tlat:i shown in Tablc 11. 

I 

The following two steps were utilizcd to train the 
A N N :  

(Stcp I: Initialization) 
I .  A \t:indartl backpropagation architccturc was se- 
Icctcd. The  output of thc input laycr is cqual to its input,  
thc hidden and the output laycrs uses a sigmoidal logistic 
:IS :icti\,ation function: 
? . / ( I  + oxme' )  
\vhcre. Cor our caw, i. = I and /I = I .  
2. Thc ivcights and biases wcrc initialized using random 
kalucs bctwccn -0.5 and +0.5. 
3 .  Thc updating mode for W and 0 to be utilized is by 
training sct. 
4. For this spccific nctwork a Icarning rate of 0.25 and 
a niomcntum of 0.9 yicldcd cxccllcnt rcsults (SCC Figurc 
5) .  

HlDMll 
LAYER 

Figure 4. ANN architecture with a hidden layer 

5.  Thc  constraints to satisfy were the total root mean 
squarc (RMS) crror and the maximum output error. 
These crrors are defined bv: 
Total RMS error = /E C(t,_o,l)2/(#patterns x #output 
Maximum output crbIp=II ti - oil] .  

(Stcp 2: Training) 
I .  An input vcctor is presented to thc nctwork from thc 
input vector set. The output of each unit of the network 
is calculated starting from the lowest laycr to the output 
laycr. This will rcquirc computations of the net input to 
cach neuron and the logistic function for the hidden and 
output layer units. For the input layer, the outputs of the 
units will be cqual to the input valucs themselves. 
2. Calculation of 6 is pcrformcd for the output and 
hiddcn layer units in that specific ordcr: 

h,:(hidden) = oJ2( 1 - o,:)C(s,,(output)lv,,) 
3. Calculation of w' ahd 8' for the output and hidden 
layer units as follows: 

Ofzm = 6,m. 

&(output) = (tl - o&,( 1 - o , ~ )  

lV'tJm 6 , , o ] m - ,  

IWl 1 1  l00000000000 
DucDut 1 0 1 1 0 0 0 0 0 0 0  

IWl 0 0 1 1 0 0 0 0 0 0 0 0 0 0  
MPln l 0 0 l l 0 0 0 0 0 0  

lWl 0 0 1 1 1 0 0 1 0 0 0 0 0 0  
M * l 1  0 I O 0 0  I I O 0 0 0  

InM 0 0 1 0 0 0 0 0 0 0 1 0 0 0  
ucpn 1 0 0 0 0 0 0 0 1 0 0  

0 0 1  0 0 1 0 0 1 0 0 0 0 0  
0 I 0 0 0 0 0  1 0 0 0  

(nprt 0 0  100  IO00 ~ 0 0 0 0  
UWC 0 IO 0 0 0 0 I 0 0 0  

lW1 0 0 1 0 0 1 0 1 0 0 0 0 0 0  
"vi 0l000001000 

IWl 0 0 0 0 0 0 0 0  0 0 0 0 0  I 
Mout 1 0 0 0 0 0 0 0 0 1 0  

lW1 00l00000000l00 
DucDut 0 l 0 0 0 0 0 0 0 0 l  

lWl 001000000000l0 
uloul 0 I00000000 I 

Table 11. Training set 
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Figure 5.  Learning tunc 

4. Repeat 1 ,  2,  and 3 for the next input pattern and ac- 
cumulate \v and 0 for the output and hidden layer units 
until the entire training set has been procciscd. 
5. Update w and 0 using the following equations: 
\ i ' , , , ,8 ( f )  = \V,,,n(f - 1) + ?/A\v'r,,n(f) + DA\V,,,, ,(f - I )  
O , , , ( r )  = O,, , ( t  - I )  + r/AO'i,,8(f) + uAO,,,,(t - I ) .  
6 .  Calculations of the total RMS crror and thc maximum 
output  error. Comparison with the accuracy rcqucstcd 
a n d  tlccision to stop or continue training. 

Results of the training session arc shown in Figurc 5 .  
I t  is clear th:it both criteria, the to ta l  RMS crror and the 
ni:isimum output error are important to determine when 
;I net\voi-k has learned. 

INTELLIGENT SCHEDULING SYSTEM FOR FMS 

The Intelligent Scheduling System for FhlS 
( I S S  F'hlS) is designed to support the integration of 
ichcduling and control functions in FMSs ( l , l 2 ) .  
7'herel'oi.e sc\.cral functions arc required and a x  cx- 
pl:iined a \  follo\vs (Sec Figure 6 ) :  

Coniniunication. The higher hierarchical level sends data 
such :I> t he  number of jobs to  be schedulecl, process 
plan\.  processing times, due  dates, and production goals. 
Thih s p t e m  'also communicates with thc lower icvcls of 
t h e h icrarc h y . 

Schetluling. A schctlulc is gcncratcd for thc jobs to be 
manufxturcd  a t  different work stations. This schedule 
tahci into consideration the dynamic status and satisfics 
the performance criteria imposed by the shop controller. 

Elirnian Machine Interface. A user fricntlly environment 
should be provided. 

Learning. The lcarning'supcrvisory functions should 
check the performance of the problem solving architcc- 
turc. 

<- SHOPLEVEL + 
FMS CELL 

Figure 6. Scheduling and control model for FMS 

General Description 

The architecture of thc ISS/FMS consists of the fol- 
lorring subsystems (See Figure 7): 
Expert Scheduler; 
Heuristics Programs; 
Artificial Neural System for Heuristics; 
Expert Look-Ahead Scheduler; 
Artificial Ncural System for Coefficients; 
Learning Unit; 
Decision Support Unit; 
Databases. 

This intelligent system has been designed using modu- 
larity principles. The ISSiFMS subsystems will he ex- 
plained in thc following subsections. 

The Expert Scheduler 

The Expert Schcdulcr is the knowledge controller of 
ISS,FMS. In order to perform its high order functions 
the Expert Scheduler consists of several rule-bascd mod- 
ules utilizing back\vard/forward chaining. It is composed 
of the following rule-based modules: Interpretation and 
Fca\ibility, Control of Schcduling Resources: and Dis- 
crimination and Evaluation. 

Interpretation and Feasibility. This rule-based module 
intcrprcts the request from the shop level for schcduling. 
This request is stated by commands and databases. The  
job database and objccti\w to be achicbcd in this schcd- 
uling are analyzed using updated information of the cur- 
r en t  status, and availability of resources and materials of 
the gi\-cn FMS ccll. If there exists incomplete informa- 
tion, this is requested to that specific level. 
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Figure 7. ISS 'FMS architccture 

Constraints imposed by the shop le\tl can be stated in 
three categories: 
1. Perfomance measure(s) optimization dcsircd; 
2 .  Constraints imposcd by the performance mcasure(s); 
3 .  Timc in lvhich the result is cspcctcd. 

The Interpretation and Fcasibility modulc bascd on 
the information obtained concludes whcthcr thc gcncr- 
ation or a suitablc outcome is possiblc. If  the dcgrcc of 
fcrisibility is pcrcci\.cd to be lomcr than thc rcquircd by 
the rcqucst, a mcssagc will be sent with possiblc changes 
to he clonc hcforc developing a schcdulc. 

The currcnt implcmcntation of ISSiFMS is strictly 
bawd on tardiness, but futurc cnhanccmcnts will include 
minimization of in-proccss in1,cntor-y and maximization 
of  ni:ichinc utilization. 

Controller. The Controller is a rulc-bascd modulc in the 
Espcrt Schcdulcr that takes into considcration the output 
of the ANN(s). The Controller, bascd on thc rcqucst of 
thc highcr lcvcl and thc rclati1,c hcuristic ranking pro- 
bided by thc ANN(s) dcvclops a critcrion. This criterion 
is uscd to call spccific hcuristic(s). Also, bascd on the 
timc framc provided, the Expert Look Ahcad Scheduler 
(ELAS) will bc called. 

Discriminator and Evaluator. The Discriminator is a 
rulc-bawd module in the Expert Schcdulcr. The  
d isc r i n i  in a tor rcccivcs t hc a n swcrs to t hc sc hcd u I i ng 
problcm from thc sclcctcd hcuristics and thc Expcrt Look 
Ahead Schcdulcr (ELAS). It sclccts thc bcst among 
them. a n d  procccds to send the answers to the appropri- 
ate Icvcls. If thc final schcdulc docs not mcct some of the 
high priority constraints, thc Discriminator chccks the 
dccision timc framc a\,ailablc to dctcrminc the timc con- 
straints. It then makes changes to the job database and 
rccursi\rly procccds with the proccss. 

Dispatching Rule Programs 

The  dispatching rules utilized in this research proto- 
type arc: 

SPT: Shortest Proccss Timc; 
EDD: Earlicst Due Date; 
CR: Critical Ratio; 
SLACK: Slack Time Remaining; 
SjOPN: Slack,'Operation; 
LWR: Lcast Work Remaining. 

Ncw dispatching rulcs could bc simply addcd because 
of thc modularity dcsign of ISSiFMS. 

Artificial Neural System for Heuristics (ANSH) 

Thc Artificial Neural Systcm for Heuristics, according 
to the parameters passed by the Interpretation and Fea- 
Fibility modulc, dccides what ANN(s) to use. Thc Arti- 
ficial Neural System for Heuristics has several ANNs  
bascd on thc numbcr of machincs, number of jobs uti- 
lized, and pcrformance measure dcsired. Thcse arc 
thrcc-laycr fccdforward networks trained using the gcn- 
eralized delta rule. The average size of each A N N  is 
about 15 input units, 65 hidden units, and 6 output units. 

Input Feature Space for Tardiness. One has to develop 
appropriate way\ to rcprcscnt the problcm to bc lcarncd 
in order to mahc it understandable for the network. 
Without this kcy feature, thc neural nctwork will fail to 
lcarn thc rclationship dcsircd with the cfficicncy and ac- 
curacy dcsircd. For FMS scheduling and tardiness, the 
input the following dimensions were selected (See Figure 
8): 
1 .  Group Technology; 
2. Timc Rcmaining Until Due Date; 
3 .  Number of Jobs. 

In thc currcnt lSSiFMS research prototype data  have 
bccn selected from a n  FMS cell with capacity to manu- 
facture starting with three process plans. 

TIME I L p u I l I l l G  URlIL DUE DATE 

Figure 8. Input featurc spacc 
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Training. The ANN'S wcre trained with data gcneratcd 
from simulations performed for that purpose. A normal 
training session was able to spend on average more than 
85 hours and using training data files of 32 Kb in a IMB 
6152 workstations cquippcd with INTEL S0286jS0287 
microprocessors. 

Expert Look Ahead Scheduler (ELAS) 

This espert systcm implcmcnts a new fccdback-bascd 
heuristic scheduling procedure. This hcuristic proccdurc, 
which \vas utilized mainly for the tardiness criterion ( 6 ) ,  
has been proven to bc effective for the FMS scheduling 
problem ( I  1). ELAS calls the Artificial Neural System 
for Coefficients (ANSC) which are utilized to provide 
coefficients to accclcratc the pcrformancc of thc algo- 
rithm and impro1.c its real-time capabilitics. ELAS also 
calls the fccdback heuristic algorithm and has a sct of 
rulcs based on heuristics to make an intclligcnt search 
from the rcsults provided by the algorithm using the co- 
efficients predicted by ANSC. This rulc-bascd module is 
fired when the decision making time frame permits its 
utilization. 

Units LJntler Developnient 

The Decision Support Aid Unit and the Learning Unit  
in the current ISS! FMS rcsearch prototype arc under 
de\ clopmcnt. Thcy will provide innovati\.c features to 
ISS FMS. 

Decision Support Aid Unit. The Decision Support  Aid 
Unit currcntly pr-ovidcs the generation of Gant t  Charts, 
line charts, anti  bar charts. Also, it is possiblc to query 
the system about possible scenarios and input  data from 
commercial spreadsheets. 

Learning Unit. The learning u n i t  i s  another csaniplc of 
the integration of ESs and ANNs. This unit implcmcnts 
a feedback mechanism needed to identify h o w  \vel1 thc 
knoivlcdgc encoded in thc different ANNs  is performing. 

The envisioned unit will h a w  a backup of thc different 
artificial neural networks that thc FMS scheduler LISCS. 

An ES could bc used to support the monitoring, diagno- 
sis, a n d  rccovery strategy of this unit. 1 

The functions of the ES arc the monitoring and diag- 
nosis of the FMS schcdulcr. If the solution of thc FMS 
scheduler docs not mcct thc rcquircd pcrformancc Icvcl, 
the supcrvisory!lcarning unit will imposc a strategy to 
update the problem solving systcm. This strategy implics 
rctraining a backup copy of the artificial neural neural 
structure that pcrformcd below accepted limits. 

AN EXAMPLE 

The following is a n  example that embodies sonic of the 
ideas behind ISSI'FMS. 

Problem Definition 

Suppose that there is a type of four-machine and tcn- 
A FMS which could produce job schedu!ing problem. 

three basic products is giwn. 

Training and Results 

Simulations mere carried out to generate a data set of 
200 examples. An initial architecture was selected based 
on cspcricnces. Trial and error proccdures were used to 
select the architectural parameters. Finally, a successful 
topology was found. It had 15 input units, 68 hidden 
units, and 6 hidden units. This network was tested for a 
"new"set of 100 cxamples and yielded consistently good 
results (lowest tardiness in 83 out  of 100 cases). Table 
Il l  compares thc tardiness values obtaincd. 

LOWEST TARDINESS FREQUENCY - 100 problems 

SPT LWR SLACK S/OPN CR EDD A" 

12 11 60 62 53 57 83 

AVERAGE TOTAL TARDINESS - 100 problems 

SPT LWR SLACK S/OPN CR EOD DRC ANN 

b2 63 72.9 72.6 73 76.3 69.6 71 

DRC Dirpalchirq rul- cumblnsd 

Table 111. Results of a A N N  trained with 700 examples 

SUM MARY 

ISS: FMS has been dcsigncd based on the integration 
of several technologics. Artificial neural networks ha\ e 
been utilized as effective prediction tools and scheduling 
pattern recognition mechanisms. Expert systems, on the 
other hand. have been utilized as the highcr order mcm- 
bel-s that interact with other elements of the FMS hicr- 
archy providing guidance for problcm-sol!lng strategy, 
monitoring the performance of the system, and automat- 
ing the A N N  learning process. As a rcsult, the l e i d  of 
responsiveness achieved may provide the necessary 
strength for scheduling in FMS. 
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