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ABSTRACT

An adaptive expert scheduler was developed that learns
by itself and adapts to the dynamic FMS environment.
This hybrid system uses a symbiotic architecture composed
of expert systems (ESsj and artificial neural networks
(ANNs) and provides a learning scheme guided by past
experience. The artificial neural networks recognize pat-
terns in the tasks to be solved in order to select the best
scheduling rule according to different criteria. The expert
systems, on the other hand, drive the inference strategy and
interpret the constraints and restrictions imposed by the
upper levels of the control hierarchy of the flexible manu-
Sacturing system. The level of self-organization achieved
provides a svstem with a higher probability of success than
traditional approaches.

INTRODUCTION

Flexibic manufacturing systems (FMSs) are auto-
mated manufacturing systems consisting of computer
numcrical control (CNC) machinc tools, matcrial handl-
ing devices, automated inspection stations, in-process
storage arcas, and a computational (hardwarec-
software ‘processing-communications) scheme to provide
databasc handling, supervisory, and monitoring func-
tions. Flexible manufacturing systems are characterized
by high ftlexibility and complexity. Conscquently, the
scheduling of jobs, machines, and other resources in an
FMS to achieve the production goals assigned, taking
into consideration their decision making time frame, is a
difficult task (4.,6).

-As an approach to solve the FMS scheduling problem,
several rescarchers have stressed the nced for real-time
scheduling systems designed with an augmented level of
intelligence, using Artificial Intelligence (Al) including
O’Grady and Lee (9), Gross (4), Alptekin and Rabelo
(1), Park ct al. (10), and Kusiak (7). However, the most
common use of Al in FMS scheduling is the development

of expert systems which emulate intelligent behavior.
Ncvertheless, the concept of FMS scheduling incorpo-
rates scveral Al disciplines such as feature extraction,
data interpretation, distributed decision-making, and op-
timization. Therefore, it is appropriate to integrate se-
veral Al technologics to form systems that can meet the
requirements of such an environment.
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In this paper, we present the design and implementa-
tion of an intclligent scheduling system for FMS
(ISS/FMS) that utilizes Al technologies so that expected
performance levels can be accomplished. ISS/FMS uti-
lizes ESs, distributed knowledge bases, and artificial
ncural networks (ANNS) in order to find a good solution
for the FMS scheduling,/rescheduling problem.

ANNs arc uscd as a method for predicting the behav-
ior of the dispatching rules available in ISS/FMS rather
than utilizing rules based on statistical models (15).
Their ability to learn from examples provides a self-
acting strategy to thc knowledge acquisition process and
therefore a  direct contribution to support sclf-
organization schemes. Expert Systems are utilized to in-
terpret the goals and commands from the different
clements of the hicrarchical FMS architecture, interact
with the user, monitor the performance and develop re-
training stratcgics to cnhance the artificial ncural nct-
work structures, and to implement sophisticated
scheduling procedurcs.

BACKGROUND ON ARTIFICIAL NEURAL
NETWORKS

Artificial ncural networks (ANNs) are
information/processing systcms whose development has
been motivated by the goal of reproducing the cognitive
processcs and organizational models of neurobiological
systems. By virtuc of their computational structure,
ANN:Ss feature attractive characteristics such as graceful
degradation, robust recall with fragmented and noisy
data, speed inherent to parallel distributed architectures,
generalization, and the most interesting one: learning. In
this scction, basic concepts about ANNS, derivation and
an example of the usc of the learning scheme utilized in
this rescarch will be presented.

General Description

Artificial neural networks are information/processing
systems composcd of a large number of interconnected
processing elements (PEs). The characteristics of an

ANN is a product of the network paradigm. The net-
work paradigm is given by the network architecture and
the neuro-dynamics utilized.




Network Architecture. The network architecture defines
the arrangement of processing clements and how they are
interconnected. This establishes which PEs are
interconnected--inputs  from and outputs to PEs, the
groups or layers of PEs, and how the information flows
in the network. For example, a sequential network will
feedback its output to the input units of the network, in
a feed-forward network the information will flow strictly
from the input to the output (Sec Figures 1 and 2).

INPUT

Figure 1. A scquential network

INFORMATION FLOW

A feedforward network

Neuro-Dynamics. The PEs (also called ncurons) have a
number of inputs which are modified by adaptive coeffi-
cients (weights) and generate an output signal (See Fig-
ure 3). Neuro-dynamics specifies how the inputs to the
PL arce going to be combined together, and what type of
function or relationship is going to be used to develop the
output, and how the weights are going to be modificd.

The inputs to the PE arc weighted and often arc com-
bined together using the summation function. This is
also called “internal activation”. This internal activation
is utilized to generate the output of the neuron using a
continuous or noncontinuous transfer function.

The learning mechanism which handles modifications
to the weights and any other organization of the nctwork
can be classified ynder supervised learning, unsupervised
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learning, or self-supervised learning (14). Supervised
learning takes place when the network is trained using
pairs of input and desired outputs. In unsupervised
learning, inputs are cntered and the network is able to
self-organize its own categories. Self-supervised learning
adds feedback to unsupervised learning to correct errors
in the pattern classification process.

Among the different rules and procedures developed,
it is possible to mention: The Generalized Delta Rule
(13), Counterpropagation (5), Adaptive Resonance The-
ory (2), Hopficld (8). They have their limitations and
strengths and it is possible to identify suitable applica-
tions arcas for which they are intended. In the next
subsections, the generalized delta rule, a supervised
training method for feedforward networks, is explained.

The Generalized Delta Rule

The generalized delta rule is a learning procedure de-
veloped by Rumelhart (13) which learns adequate
internal representations using deterministic units to pro-
vide a mapping from input to output. This procedure
involves the calculation of a set of output vectors O using
the current weights W (set composed of matrixes
W. 5..W,, where W, , would be the matrix of
weights between the input and the first hidden layer and
W, , the matrix of weights between the last hidden
layer and the output layer) and 8 (set composed of ma-
trixes 6, 2...0.,., where 8,,., would be the matrix of bi-
ases of the first hidden layer and 6, the matrix of
biases corresponding to the output layer) state of the
network and a given set of input vectors I. This set of
calculated output vectors will be compared to a target set
of output vectors T and an error is estimated by using an
error function. This error function is defined for an spe-
cific 7, and T, as follows:

E, = 125(; — 04
where the index p represents each input vector/target
output vector that conforms the input vector set I and



target output vector set T, i represents the output nodes
of the output layer in the network, and I is the total
number of layer§ (ie., layer m=1 is the output layer,
layer m =1 is the input layer). tis the targeted output for
the ith output node and o is the response obtained from
the ith output node using the corresponding I, Thus the
total error will be determinate as:

E=3%FE,

P

The learning procedure minimizes E, by performing
steepest descent and  therefore obtaining appropriate
W and 0.

As cxplained above, the net input to a neuron is cx-
pressed as:
Helim = > WijnOjmoy + Oim
where W represents the weight between the jth unit of
layer m-1 and the ith unit of layer m. In addition. the
activation function utilized is the logistic function given
by:
Oim = 1](1 + (e7mem)).

[t is possible to conclude that to minimize E, and
achieve convenient Wand 6 it is necessary to make ad-
justments to previous W and 6 obtained until the error
tolerance imposed by the final desired mapping accuracy
is accomplished. Therefore, it is possible to establish
AWyt — CEJCW jm

A0,,% — CE,[00,, .

Then the partial derivative of E with respect to the
weights and biases could be expressed as:
CEOWm = (CE,[Enetin)(netim 0w )
CE 0., = (CE,[dnetiy)(Bnet;n[C0,,,)
and the partial derivative of the error to the net input
could be stated as:
CE[Cnet,, = — din

It is possible to replace and get the following terms:
CESCW = = Qi 1

CE[C0. = — i

The variable § defined above could be calculated by
backpropagating the error through the network starting
with the output layer where the partial derivative of the
error to the output is defined as:

CE o, = (12X(1; — 0y))doa
=— (1 04)

and J; (output laver) is

du= — (DE,[d0,)(d0afOnety)
= {t; = 0)0i(1 — 0y)

and the adjustments are cqual to
Avwy = 16,404 1
Ay = oy

where i is the learning rate.
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Learning of an ANN is achicved through a sequence
of iterations or cpochs (13). An cpoch is a pass through
the cntire training set.  The operations to update

wand @ can be done in two modes:
a. For cach pattern.
b. For the input vector sct.

In spite of the capabilitics of this proven algorithm,
the rate of convergence might be very slow. This rate of
convergence is dependent on many factors such as initial
weights, learning rates, complexity of the mapping to be
performed, number of hidden layers, connections, hidden
units, data samples, identification of relevant data sam-
ples, etc. Hence a great deal of research is on progress
to speed up the rate of convergence and improve the
mapping accuracy provided by the generalized delta rule.
Onc of the most used heuristics to speed up the rate of
convergence is the utilization of a momentum factor that
weights the contribution of the past AW and Af. The
updating cquations will be modificd as follows:

Wim(1) = Wyt — 1) + Awyn{t) + aAwy(t — 1)
0:in(t) = Ot — 1) + ABin() + aAG(r — 1).

Once a training session of an ANN has accomplished
the constraints of the mapping accuracy, it should be able
to relate input vectors with the appropriate output vec-
tors. If this is not achicved modifications have to be im-
plemented to the network architecture, with the
possibility of changes to the input feature space and

training sct, and the applicability of the learning
paradigm to the problem should be evaluated. If the

previous step was fulfilled, the next step to satisfy is the
utilization of the ANN as a predicting mechanism. This
is exercised using patterns that were not previously
taught and recording the performance exhibited by the
traincd ANN. In this step, the generalization capabilities
of the network will be an important indication that it is
dependent on the architecture achieved, features repres-
ented in the input feature space, and the suitability of our
training sct.

An ANN for Diagnostic in Robotics

To illustrate the backpropagation paradigm an exam-
ple has been developed in the area of robotics and diag-
nosis. This example has been designed utilizing real data
from a GE P60 robot and it is a small scale version of a
larger implementation of an “cxpert conncctionist net-
work” (16). In the case of “expert connectionist net-
works” (3) the knowledge is not stored by facts or
IF-THEN rules or in a specific knowledge base location.
Patterns of activation levels in the neurons inherited from
the connection strengths and the distributed structure
provides the knowledge representation scheme.  This
representation scheme has several advantages, such as
the creation of models with limited knowledge engincer-
ing participation and naturally built of fuzzy predicate
functions.

In this robotics application, an artificial feedforward
neural network was trained on the functional relation-
ships between specific events (symptoms), diagnosces, and
recovery. The input parameters for the ANN could be
collected using different sensory techniques or human



input--in this case the analog characteristics of ANNSs
provides significant benefits to interface and develop a
real-time system.” In order to get a responsc, all the
input-questions should be answered at once (Sce Table

I). The ANN performs the classification task based on
the features of the problem. The result of this classifica-
tion task is the type of malfunction and the error recov-
cry strategy.

INPUT
10 DIFFERENTIAL VOLTAGE DOES NOT COME TO OV.
11 ARM IS MOVING EVEN THOUGH NO COMMAND TO MOVE IS

12 MOTORS ARE TURNED ON.
13  EXCESSIVE CURRENT FLOWED IN MOTOR.
14  STROKE END LIMIT SWITCH ACTUATED.
15 THE AXIS CAN NOT BX MOVED FARTHER.
16 PLAYBACK MODE

RECORD MODE.
18 MANUAL MODE.

TEACH MODE.
110 TEMPERATURE RISE ERROR.
111 STOP SWITCH ON OPERATION PANKL IS DEPRESSED.
112 STOP SWITCH ON THE TREACHING CONTROLLER 1S DEPRESSED.
113 TRANSISTOR HEAT SINK IS OVER HRATED.
OUTPUT

00  SYSTEM ERROR.

01 OPERATOR ERROR

02 THE SERVO SYSTEM EXCEEDS THE ALLOWABLE OPERATOR
SHOULD NOT BE FORCING THE BRAKES WHILE TURNING ON.

03 EICESSIVE WEIGHT ON THE ARM. KICESS PAYLOAD SHOULD
BE REMOVED.

04 THE ROBOT HAS CRASHED. ERROR RESET PROCEDURE SHOULD
BE PERFORMED.

05 THE DASE ROTATION AXIS HAS EXCHEDED THE ALLOWABLE
STROKE. JOG AXIS AWAY OPERATION.

06 THE BEND AXIS HAS EXCEEDED THE ALLOWABLE STROKE. JOG
AZIS AWAY OPERATION.

07  ARM ANGLE IS TOO LARGE OR TOO SMALL. MOVE THE AXIS
IN THE OPPOSITE DIRECTION OR ADD EXTRA POINTS.

08 TEMPERATURE IN THE CONTROLLER EECEKDS 55 C. SUCTION
PORTS OF THE HEAT ERCHANGE AND THE AIR DIXX SHOULD
BE CHECKED.

09 VENTILATING DUCK FAN 1S NOT WORKING PROPERLY.
VENTILATING DUCK FAN SHOULD Bi CHECKED.

010 STOP BUTTON AND START COMMAND ARK GIVEN AT THE
SAME TIME. REMOVE STOP SIGNAL AND RESTART.

Table 1. Input Output for the diagnostic system

Training a One-Hidden Layer Architecture This architec-
ture has 14 inputs that correspond to cach specific event,
11 outputs that identify diagnostic and rccovery proce-
dures, and two hidden units in the hidden layer (Sec
Figurc 4). The training was performed using the training
data shown in Table II.

The following two steps were utilized to train the
ANN:

(Step 1: Initialization)

1. A standard backpropagation architecture was se-
lected. The output of the input layer is cqual to its input,
the hidden and the output layers uses a sigmoidal logistic
as activation function:

A1+ ¢ Frre)

where, for our case, A=1and ff=1.

2. The weights and biases were initialized using random
values between -0.5 and +0.5.

3. The updating mode for W and 8 to be utilized is by
training sct.

4. For this specific network a learning rate of 0.25 and
a momentum of 0.9 yiclded cxcellent results (See Figure
5).

0z 03 04 05 06 07 Of 09 O10

00 01

Figure 4. ANN architecture with a hidden layer

5. The constraints to satisfy were the total root mean
squarc (RMS) crror and the maximum output error.
These errors are defined by:

Total RMS error = /Z > (t-00)*/(#patterns x #output
Maximum output ertor="]¢ — oyl.

(Step 2: Training)

1. An input vector is presented to the network from the
input vector set. The output of each unit of the network
is calculated starting from the lowest layer to the output
layer. This will requirc computations of the net input to
cach neuron and the logistic function for the hidden and
output layer units. For the input layer, the outputs of the
units will be equal to the input values themselves.

2. Calculation of é is performed for the output and
hidden layer units in that specific order:

dis(output) = (t; — 0s)oi(1 — 053)

d2(hidden) = 0p(1 — 0p)Y (8is(output)w;s)

3. Calculation of w' ahd 6’ for the output and hidden
layer units as follows:

\V’I/m = éx'm 'jm—1

im = Oim-

nput 100000000000

110000000

nput

1B
[}
00110000000000
0011000000

L]
01

nput
output

111001000000
000t10000
nput  00100000001000
10000000100

fnout o
output 0
°

nput
output
fnput  00100101000000
01000001000
hput 00000000000001
10000000010
input 00100000000100
01000000001

nput
outout

00100000000010
01000000001

Table II. Training set
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Figure 5. Lecarning curve

4. Repeat 1, 2, and 3 for the next input pattern and ac-
cumulate w and § for the output and hidden layer units
until the cntire training set has been processed.

5. Update w and 8 using the following equations:
Win(0) = Wya(t — 1) + 1AW (1) + aAwy,(t — 1)

Ol 8) = 0,00 = 1) + nA0" () + aAOL(2 — 1).

6. Culculations of the total RMS error and the maximum
output crror. Comparison with the accuracy requested
and decision to stop or continue training.

Results of the training session arce shown in Figure 5.
It is clear that both criteria, the total RMS error and the
maximum output error are important to determine when
a network has learned.

INTELLIGENT SCHEDULING SYSTEM FOR FMS

The Intelligent  Scheduling  System for  FMS
(ISS, FMS) is designed to support the intcgration of
scheduling  and  control functions in FMSs (1,12).
Theretfore scveral functions are required and arc ex-
plained as follows (Sce Figure 6):

Communication. The higher hicrarchical level sends data
such as the number of jobs to be scheduled, process
plans, processing times, due dates, and production goals.
This system ‘also communicates with the lower fevels of
the hicrarchy.

Scheduling. A schedule is gencrated for the jobs to be
manufactured at different work stations. This schedule
takes into consideration the dynamic status and satisfics
the performance criteria imposed by the shop controller.

Human Machine Interface. A uscr fricndly environment
should be provided.

Learning. The lcarning’supervisory functions should
check the performance of the problem solving architec-
ture.
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Figure 6. Scheduling and control model for FMS

General Description

The architecture of the ISS/FMS consists of the fol-
lowing subsystems (Sce Figure 7):
Expert Scheduler;
Heuristics Programs; .
Acrtificial Neural System for Heuristics;
Expert Look-Ahead Scheduler;
Artificial Neural System for Coefficients;
Learning Unit;

Decision Support Unit;
Databascs.

This intelligent system has been designed using modu-
larity principles. The ISS/FMS subsystems will be ex-
plained in the following subsections.

The Expert Scheduler

The Expert Scheduler is the knowledge controller of
ISS,FMS. In order to perform its high order functions
the Expert Scheduler consists of several rule-basced mod-
ules utilizing backward/forward chaining. It is composed
of the following rule-based modules: Interpretation and
Feasibility, Control of Scheduling Resources, and Dis-
crimination and Evaluation.

Interpretation and Feasibility. This rule-based module
interprets the request from the shop level for scheduling.
This request is stated by commands and databases. The
job database and objectives to be achieved in this sched-
uling are analyzed using updated information of the cur-
rent status, and availability of resources and materials of
the given FMS cell. If there exists incomplete informa-
tion, this is requested to that specific level.



SCHEDULER

Figure 7. ISS/FMS architecture

Constraints imposed by the shop level can be stated in
three categories:
1. Perfomance measure(s) optimization desired;
2. Constraints imposed by the performance measure(s);
3. Time in which the result is expected.

The Interpretation and Feasibility modulc based on
the information obtained concludes whether the gener-
ation of a suitable outcome is possible. If the degree of
feasibility is pereeived to be lower than the required by
the request, a message will be sent with possible changes
to be done before developing a schedule.

The current implementation of ISS/FMS is strictly
based on tardiness, but future enhancements will include
minimization of in-process inventory and maximization
of machine utilization.

Controller. The Controller is a rule-based module in the
Expert Scheduler that takes into consideration the output
of the ANN(s). The Controller, based on the request of
the higher level and the relative heuristic ranking pro-
vided by the ANN(s) develops a criterion. This criterion
is uscd to call specific heuristic(s). Also, based on the
time frame provided, the Expert Look Ahead Scheduler
(ELAS) will be called.

Discriminator and Evaluator. Thc Discriminator is a
rulc-based module in the Expert Scheduler.  The
discriminator receives the answers to the scheduling
problem from the sclected heuristics and the Expert Look
Ahcad Scheduler (ELAS). It sclects the best among
them, and proceeds to send the answers to the appropri-
ate levels. If the final schedule does not meet some of the
high priority constraints, the Discriminator checks the
decision time frame available to determine the time con-
straints. It then makes changes to the job database and
recursively procceds with the process.
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Dispatching Rule Programs

The dispatching rules utilized in this research proto-

type are:

SPT: Shortest Process Time;

EDD: Earlicst Due Date;

CR: Critical Ratio;

SLACK: Slack Time Remaining;

S;/OPN: Slack;/Operation;

LWR: Least Work Remaining.

New dispatching rules could be simply added because
of the modularity design of ISS/FMS.

Artificial Neural System for Heuristics (ANSH)

The Artificial Neural System for Heuristics, according
to the parameters passed by the Interpretation and Fea-
sibility module, decides what ANN(s) to use. The Arti-
ficial Neural System for Heuristics has several ANNs
basced on the number of machines, number of jobs uti-
lized, and performance measure desired. These arc
three-layer feedforward networks trained using the gen-
eralized delta rule. The average size of each ANN is
about 15 input units, 65 hidden units, and 6 output units.

Input Feature Space for Tardiness. One has to develop
appropriate ways to represent the problem to be Icarned
in order to make it understandable for the network.
Without this key feature, the neural network will fail to
fcarn the rclationship desired with the efficiency and ac-
curacy desired. For FMS scheduling and tardiness, the
input the following dimensions were selected (See Figure
8):

1. Group Technology;

2. Time Remaining Until Due Date;

3. Number of Jobs.

In the current ISS/FMS research prototype data have
been sclected from an FMS cell with capacity to manu-
facture starting with three process plans.

NUMBER OF JOBS

&

TIME REMAINING URTIL DUE DATE

Figure 8. Input feature space



Training. The ANN'’s were trained with data generated
from simulations performed for that purpose. A normal
training scssion was able to spend on average more than
85 hours and using training data files of 32 Kb in a IMB
6152 workstations equipped with INTEL 80286/80287
MiCroprocessors.

Expert Look Ahead Scheduler (ELAS)

This expert system implements a new feedback-based
heuristic scheduling procedure. This heuristic procedure,
which was utilized mainly for the tardiness criterion (6),
has been proven to be cffective for the FMS scheduling
problem (11). ELAS calls the Artificial Neural System
for Cocfficients (ANSC) which are utilized to provide
cocfficicnts to accelerate the performance of the algo-
rithm and improve its real-time capabilitics. ELAS also
calls the feedback heuristic algorithm and has a set of
rules based on heuristics to make an intelligent search
from the results provided by the algorithm using the co-
cfficients predicted by ANSC. This rule-based module is
fired when the decision making time frame permits its
utilization.

Units Under Development

The Decision Support Aid Unit and the Learning Unit
in the current ISS/EMS research prototype are under
development.  They will provide innovative features to
ISS. FMS.

Decision Support Aid Unit. The Decision Support Aid
Unit currently provides the gencration of Gantt Charts,
line charts, and bar charts. Also, it is possible to query
the system about possible scenarios and input data from
commercial spreadsheets.

Learning Unit. The learning unit is another example of
the integration of ESs and ANNs. This unit implements
a feedback mechanism needed to identify how well the
knowledge encoded in the different ANNs is performing.

The cnvisioned unit will have a backup of the different
artificial neural networks that the FMS scheduler uses.

An ES could be used to support the monitoring, diagno-
sis, and recovery strategy of this unit.:

The functions of the ES arc the monitoring and diag-
nosis of the FMS scheduler. If the solution of the FMS
scheduler does not meet the required performance level,
the supervisory/learning unit will impose a strategy to
update the problem solving system. This strategy implics
retraining a backup copy of the artificial ncural ncural
structurc that performed below accepted limits.
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AN EXAMPLE

The following is an example that embodics some of the
ideas behind ISS/FMS.

Problem Definition

Supposc that there is a type of four-machine and ten-
job scheduling problem. A FMS which could produce
three basic products is given.

Training and Results

Simulations were carried out to gencrate a data set of
200 examples. An initial architecture was selected based
on cxperiences. Trial and error procedures were used to
sclect the architectural parameters. Finally, a successful
topology was found. It had 1S input units, 68 hidden
units, and 6 hidden units. This network was tested for a
“new” set of 100 cxamples and yiclded consistently good
results (lowest tardiness in 83 out of {00 cases). Table
[T compares the tardiness values obtained.

LOWEST TARDINESS FREQUENCY - 100 problems

SPT LWR SLACK S/GPN CR EDD ANN

12 11 60 62 53 57 83

AVERAGE TOTAL TARDINESS - 100 problems

SPT LWR SLACK S/0PN CR EDD DRC ANN
82 83 729 726 73 76.3 696 71
DRC Dispatching rules combined

Table 1. Results of a ANN trained with 200 examples

SUMMARY

ISS/FMS has been designed based on the integration
of several technologies. Artificial neural networks have
been utilized as effective prediction tools and scheduling
pattern recognition mechanisms. Expert systems, on the
other hand, have been utilized as the higher order mem-
bers that interact with other elements of the FMS hicr-
archy providing guidance for problem-solving strategy,
monitoring the performance of the system, and automat-
ing the ANN learning process. As a result, the level of
responsiveness achieved may provide the necessary
strength for scheduling in FMS.
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