California Polytechnic State University, San Luis Obispo

SNMP Integration
into the CygNet
SCADA System

In Satisfaction of the Senior Project Requirement

Paul Fake
6/10/2010

Table of Contents

(@ o= o) =Y o A 1o oo U o o TP PPPPPPRTPR 4
Problem STatemMENT.......coo i e e 4

o oY [T A =TSP PPPPPPRPTPPIRt 4

(@ P o1 T g Al = 7-Tol =4 o TU T o PP PPPPPPRTP 4
Simple Network Management ProtoColo iiieieccce e e e e e e e e e e e e e e e eeeeeaeees 4
Management INFOrMation BASEuuiiiiiiiieiiiiiiieiieeeieeeeeeeeeeseeeee et bbb e rreaaeesbrsrssesaraseaeaaaaaaaaees 5

(0] oT=Totf Fo 1= oY i) 1= S U 5

RV T oo OO TP PPP PP 6

(@ = =Y Yo] TV o PP PUPPRRPRR 6
FCHI ISttt e e s 6
POINES ettt et e e e e e e e e s e e 7
UNITOIM Data COUBuiiieiiiiieeite ettt ettt ettt e sttt e et e e sab e e e aabe e e e sababee e sabeeesbeeessanbeeenabeeeeeanes 7
REMOTE DEVICE EIE et e e e e e e e 7
Device Definition SEIVICEoiiiiiiiiiii e 7
UNiversal INterface SEIVICE......ooviiiiiiiii i 8
Chapter 3: Implementation Details..........ccccciiiiiiiiiiiieiie e rerr e e e aeeaaaaaaaaaeeeas 8
N NV] o) =T V=] =T o o P UUUUURRRN 8
RAW PrOTOCOIeeeieiei ittt ettt e ettt e e e s st e e e e e s s e e e s e s nne e e e e e e e snnreeeeeseaannnes 8
WINSNIMIP ..ottt et e s be e e s sr bt e e sab et e e sn et e sanbee e s sanaeesnreeas 8
NEE-SNIMIP ..ottt e st e sttt e s sba e e s san et e e s be e e s s r bt e e nr e e e e nanes 8
NEtSNIMP EIE DEVEIOPMENT .ceiiiiiiiieiie ettt e e e e e e e e e e e e e e e e es e s s s s aan s e s snsssassabssananeeeeeeees 10
0T N (= A gV e] o] DT 5 1V/=] (PPN 10
CUISNEtSNMPDIAVEIDLLADPD .. iitettiet ettt e ettt e et s e e e e e taa e e e e e aaas e e et seaeesbanaeesnennns 12

CUISNetSNMPREMOTEDEVICE .. ceviiii i e e et s e e e e e e e e aaa s e e e aneaeees 12

CUisNetSNMpPReMOtEMESSAZEFACTONYciiiiiiiii i e e e aaa s 12

CGenericMsg and CSINGIEOTAMSE.......c.vviuiiiiiiiie e e e e e e e e e e e e e srre e eeaeeeaaaees 12
({0 Lo K\ L=T Y gV Y o] o [e Y-S 12
(ol { B Lo NIy Y Y] o] o [o] PP UUUPPRRPIORt 13
CDASNELSNMPDEVPIOPPAGE ... ettt iee et ree et e e tee e e e e e e e et e s sse s taeeaebresaeeeeeeeesareaereeeeeaaeaaeeeees 13
SNIMIP INTEEIAtION ...ttt e et e ettt ess e e s e e e e e e eeaeeesaseeeaeeaeesesaebesanansaeesaaanannes 13
Creating @ DeVICe TEMPIATE ..uvviiiiieeeieeee s e e eannneenes 14
(00) Y iT={U T o= TN DN T - TSP UUUUUUU N 15
RETIIEVING DAt ..ciiiiiiiiiiiiiiiiiiiie e e et e ettt s s e e s e e e e e eeeaeees saseseaeeaaeeenesbesansaneeeaaeaanens 15
TaAbUIAr IMIIB SUPPOIT. ...ttt ee e e e e e e e eeeeeeesees s s e benbeaaaae e sbaasbenaeeaneeeeeeaeeasaaeeeseanens 17
Y7o LS O 11 DI U] o] oo L o PP UPUPPT PR 18
B =L 1 = 2SSO PP UPPPPPPPTN 19

(0P o) T o o] Vol [V 1 o] o PP 20

Chapter 1: Introduction

In order to satisfy Cal Poly’s Senior Project requirement, | have developed a software device that collects
data from network-attached hardware using the Simple Network Management Protocol (SNMP). This
software interfaces network-attached hardware with the project’s client’s data acquisition system,
creating a useful tool for IT data analysis and monitoring. The client for this project is CygNet Software,
Inc., a San Luis Obispo-based company that develops Supervisory Control and Data Acquisition (SCADA)
software for oil well and gas pipeline companies. Part of their standard product consists of software
devices, called “EIEs”, which facilitate communication with remote hardware. The data from the
hardware (typically meters attached to pipelines, which measure flow rate, temperature, gas
composition, etc.) is collected into the SCADA system, and can be tracked in “Points” to be graphed
and/or alarmed accordingly. | used this EIE model to create an SNMP device that collects management
data from any type of hardware device on the network that supports SNMP. The device collects this
data into CygNet Points and allows the tracking and graphing of historical data.

Problem Statement

IT departments in business enterprises tend to rely on third-party SNMP client software to remotely
monitor routers, UPS’s, CPU’s, hard drives, and other hardware on the enterprise’s network. This
software may be expensive, depending on the quality, and it will have a learning curve. Enterprises
running the CygNet SCADA system will be able to easily collect, store, and view SNMP data without the
need to purchase and learn separate software.

Project Stages

The project consisted of 4 stages: research, SNMP library selection, CygNet EIE (the software device)
development, and SNMP integration. In the research stage, | learned the SNMP protocol, as well as the
CygNet EIE Remote Device model. In the SNMP library selection stage, | developed a test application to
determine the best SNMP library to use. In the final two stages, | integrated the Net-SNMP library with
the CygNet SCADA system via a Remote Device EIE.

Chapter 2: Background

Simple Network Management Protocol

SNMP is an application-layer protocol that utilizes the User Datagram Protocol (UDP) for communication
[1]. SNMP is used to extract all sorts of diagnostic information from managed hardware. For example,
one may use SNMP to monitor the battery levels of a UPS, or the disk usage of a server (referred to as
“managed objects”, or just “objects” for short). The protocol requires SNMP agent software to be
running on the managed device from which data will be extracted, referred to here as the host. The
SNMP agent stores all of its data into a tree of Management Information Bases (MIBs), which contain

variables that hold the numerical or text values representing system information. In order to request
data, the client must send to the host an SNMP packet containing a path to the appropriate MIB, called
an Object Identifier (OID), as well as the op code (which is SNMP_GET for the purposes of this project)
[3].

Management Information Base

MIBs are text files representing collections of information about the objects which a host monitors. A
MIB file contains individual entries for each MIB object in that particular set of data. The entry for the
sysUpTime object in its MIB file looks like this:

sysUpTime OBJECT-TYPE

SYNTAX TimeTicks

ACCESS read-only

STATUS mandatory

DESCRIPTION
"The time (in hundredths of a second) since the
network management portion of the system was last
re-initialized."

n={system3}

Figure 1: Example MIB object [1]

OBJECT-TYPE is a human-readable name (here, “sysUpTime”) for an object. Aside from describing an
object in a concise way, the OBJECT-TYPE string assists the client in translating this human-readable
name to an OID. This is described in detail in the next section. SYNTAX tells the client how to interpret
the data returned from the host. Here, TimeTicks means that the data will be a bit string representing a
count of deci-seconds [3]. Other common SYNTAX types are “Integer” and “DisplayString.” ACCESS tells
the client whether or not the object can be manipulated. For our purposes we can just ignore this, since
the project is only concerned with reading data from the host. STATUS is equally unimportant, so we
can ignore it as well. DESCRIPTION is what it looks like — a more detailed description of the object than
OBJECT-TYPE. The last line is a short-hand way of representing the object’s OID. From this we can
determine that the object is the third entry in the “system” branch [1].

A source of some confusion with SNMP is that a MIB, as defined above, is different from the actual
database of values maintained by the agent, which is called the “MIB tree.” The MIB tree is where the
agent goes to look up the current value associated with a particular object when given an OID.

Object Identifier

An OID string is simply a unique string of integers representing an object’s location in the MIB tree [1].
For example, the OID which retrieves the system’s description is “.1.3.6.1.2.1.1.1.0"”. Each integer in the
string specifies the branch to take at a given level of the tree to get to the desired object. Spelled out
with the textual names of the branches, this OID would look like: iso.org.dod.internet.mgmt.mib-

2.system.sysDescr.0 [1]. The vast majority of objects lies in the (root).iso.standard.org.internet branch,
and will therefore begin with .1.3.6.1.

As alluded to above, MIBs have a secret job of making object lookup easy by providing “nice-name
translations.” It would be inconvenient to have to type (and memorize!) a long string of integers to
retrieve a simple object like a system description. So, nice SNMP clients and libraries will search through
a local MIB directory in order to map a terminating leaf MIB name to an entire OID string. For example,
the nice-name OID of .1.3.6.1.2.1.1.1.0 is simply “sysDescr.0.”

Notice the “.0” at the end of the OID string, which does not have its own branch name. Each OID will
end in an integer value, which specifies whether the object at that node is a scalar value or a table of
objects. All scalar nodes are singular objects, and will end in “.0.” Tabular objects will end in a number
greater than zero, which specifies the column of data requested in the table [2]. The table entry (or
row) is specified directly before the column, and varies based on the type of table. A good example of
this is the ipRouteTable node. This table contains all of the information about IP routing that the system
has collected. In order to retrieve the next hop IP address for 74.125.19.104 (a Google server), assuming
this entry actually exists in the host’s IP routing table, one must use the OID
.1.3.6.1.2.1.4.21.74.125.19.104.7. The first part of the string, .1.3.6.1.2.1.4.21, is the location of the
ipRouteTable branch, which is followed by the entry, 74.125.19.104, and lastly by the location of the
datain the ipRouteNextHop column, .7. Some tables are static; that is, they do not have mutable
entries keyed by complex strings like IP addresses. These tables can be thought of as simple groups of
related ordinalized entries [2].

Versions

There are three versions of SNMP: SNMPv1, SNMPv2c, and SNMPv3. The main differences between the
versions are mostly related to security implementation [4]. As most managed devices still use SNMPv1
[1], this project is limited to supporting only SNMPv1. The security model of SNMPv1 is very simple.
Agents are given a “community name,” which acts as a password for any incoming requests. All
requests must contain the correct community name in order for the request to be accepted by the agent

[1].

CygNet Software

In order to understand how the project integrates SNMP with CygNet, it is important to first understand
some key components of the CygNet SCADA data model, namely facilities, points, Uniform Data Codes
(UDCs), Remote Device EIEs, the Device Definition Service (DDS), and the Universal Interface Service
(UIs).

Facilities
In CygNet, a facility is a logical grouping of data that represents a thing such as a gas measuring device,
which can be modeled as a collection of identification, status, and measurement data. For our

purposes, a facility is a representation of a managed network device. A router, for example, might be
characterized by its device name, network name, IP routing tables, etc. For this project, each of the data
elements of a managed device facility is mapped to an OID.

Points

CygNet points represent the values for data elements in facilities. A point has one of four possible data
types: analog, digital, string, and enumeration. Points can be configured to trigger alarms based on data
values and trends. A point’s record contains current value and history, current alarm state and history,
and various configuration parameters, including associated facility and UDC.

Uniform Data Code

In order to associate a point with a facility’s data element, the two must be tied together with a UDC,
which is a standardized 10-character name. A UDC is mapped to a facility’s data element, and a point is
configured and resolved with both the UDC and facility name (in other words, a point can be uniquely
identified by its UDC and facility). A single UDC can be created to represent the same type of data on
multiple facilities. For example, a single UDC can be created to name CPU usage data, and every server
on the network can associate this UDC with the appropriate data element.

Remote Device EIE

In CygNet, a Remote Device EIE (or “Equipment Interface Engine”) is a driver that can communicate with
a specific model of hardware. This driver knows the protocol and data format of a single device. The
Remote Device model makes sense for managed network devices, as all network devices can be thought
of as generic devices that communicate using SNMP. Thus, the Remote Device EIE created for this
project (the NetSNMP EIE) is a driver that facilitates communication with any device that speaks SNMP.

A Remote Device instance is a software representation of a physical device which uses the EIE driver for
communication. For all practical purposes, “facility” and “Remote Device instance” are synonymous. A
Remote Device’s data elements are configured via device templates (.dtf files). Templates are XML files
which contain device definition data, such as device model name and type (the “type” of our EIE being
“NetSNMP EIE”), and data groups. Each data group contains some number of data elements, referred to
as Data Element IDs, or DEIDs. A DEID contains any information necessary to map the logical data
element to an actual hardware data item, such as byte order, bit mask, and scale factors. For our
purposes, a single Remote Device instance can be created to represent an entire multi-layered system
such as a PC, with separate data groups for each piece of individual hardware on the system, or a
separate Remote Device can be created for each part of the system, each with only one data group.

Device Definition Service
The DDS stores the configuration records for all Remote Device instances, and associates directly with a
single UIS service.

Universal Interface Service
The UIS is the “workhorse” of CygNet. It hosts all of the EIE driver processes and all of the device
instance threads, which in turn collect data for devices in the DDS, and stores records for points.

Chapter 3: Implementation Details

SNMP Library Selection

In order to begin integration of SNMP with CygNet, | needed a way to communicate with a managed
device. | was faced with three options: raw protocol, the WinSNMP library, and the Net-SNMP library.

Raw Protocol

Implementing raw SNMP consists of writing software which constructs packets of data in the correct
protocol format and sending them over the network to the host, waiting for a response, and parsing the
returned packet. This method is the most complicated and time-consuming of the three, and | decided
it would not be useful to re-write code that has already been written in SNMP libraries. Thus, | needed
to decide which library best suited the project’s needs.

WinSNMP

WinSNMP, part of the Windows API, is a Microsoft-developed SNMP library. Initially, WinSNMP was an
attractive choice since CygNet is Windows-based, and using WinSNMP is as simple as including the
correct header file as opposed to downloading and linking to an outside library. However, as | was
becoming familiar with the WinSNMP library, | came to realize that the library did not have a concept of
OID nice-name translation. That is, the string “sysDescr.0” was unrecognized by the API as a valid OID,
so all requests had to be made with long-form OIDs. This turned out to be very inconvenient, as |, and
any users of the software, would need to look up or memorize long OID strings for each requested
object. Moreover, this API is actually fairly old and no longer updated, the MSDN documentation is
confusing and thin, and there are very few examples of its use on the Internet. These shortcomings
caused me to look elsewhere for my SNMP needs.

Net-SNMP

The open-source Net-SNMP library is the most widely-used library for SNMP development. | ultimately
settled on this library because of its extensive documentation and the plethora of example code online,
in addition to the lack of adequate alternatives. One downside of this library compared to WinSNMP is
that it depends on outside source. My initial attempt to link dynamically to a DLL version of the library
proved unsuccessful when | discovered that an author of the library redefined memory allocation
functions (malloc(), realloc(), free(), etc.) to point to the Net-SNMP versions of these functions, which
manage memory only in the DLL’s memory space. What this means is that if memory is allocated in, for
example, the UIS, and free() is called on that memory in a C++ file that includes a Net-SNMP header, the
free() call will be reinterpreted as the special netsnmp_free(), causing a runtime memory exception. |

was able to get around this by downloading the source and linking to it statically, after fixing the
redefines. The issue here is that the project now depends on a large amount of outside source instead
of a simple DLL, increasing code size and reducing manageability, since updating the library is no longer
as simple as downloading a new DLL and headers.

One requirement of the SNMP library was that it must be thread-safe, as the Net-SNMP EIE must allow
multiple instances of Remote Devices to use the library at the same time. The Net-SNMP API is not
inherently thread-safe, but it is possible to use it in a thread-safe manner. The README.thread
document on the Net-SNMP website lists the following restrictions on the API’s multi-threaded use [4]:

1. Invoke SOCK_STARTUP or SOCK_CLEANUP from the main thread only.

2. The MIB parsing functions use global shared data and are not
multi-thread safe when the MIB tree is under construction.
Once the tree is built, the data can be safely referenced from
any thread. There is no provision for freeing the MIB tree.
Suggestion: Read the MIB files before an SNMP session is created.
This can be accomplished by invoking snmp_sess_init from the main
thread and discarding the buffer which is initialised.

3. Invoke the SNMPv2p initialisation before an SNMP session is created,
for reasons similar to reading the MIB file.
The SNMPv2p structures should be available to all SNMP sessions.
CAUTION: These structures have not been tested in a multi-threaded
application.

4. Sessions created using the Single API do not interact with other
SNMP sessions. If you choose to use Traditional API calls, call
them from a single thread. The Library cannot reference an SNMP
session using both Traditional and Single API calls.

5. Using the callback mechanism for asynchronous response PDUs
requires additional caution in a multi-threaded application.
This means a callback function probably should probably not use
Single API calls to further process the session.

6. Each call to snmp_sess_open() creates an IDS. Only a call to

snmp_sess_close() releases the resources used by the IDS.
Figure 2: Net-SNMP multi-threaded use restrictions [4]
These restrictions guided certain design decisions of the EIE, which will be discussed later. In order to

test the multi-threaded capability of Net-SNMP, | developed a small test application, named
SnmpTester. The tester is a Windows MFC Dialog application that requires a host name or IP, an OID in

long or nice-name format, and a community name from the user. When the user executes the request,
100 threads are launched, each of which sends an SNMP_GET request for the given OID. The results
from the host are parsed and returned in an edit box.

SnmpTester

Host Mame or IP: | cygnetdl
OID: |sysDescr.0
Community Name: | CYGREAD

Responses:

{5/13/2010 13:27:48.542) Retrieved response from cygnetdl: £
STRING: Hardware: x86 Family 15 Model 3 Stepping 4 AT/AT COMPATIELE - Software: Windows Version 5.2 (Build 3790 Multiprocessor
(5/13/2010 13:27:48.557) Retrieved response from cygnet0i:

STRING: Hardware: x86 Family 15 Model 3 Stepping 4 AT /AT COMPATIELE - Software: Windows Version 5.2 (Build 3790 Multiprocessor
{5/13/2010 13:27;48,573) Retrieved response from cygnetD1:

STRIMNG: Hardware: x86 Family 15 Model 3 Stepping 4 AT/AT COMPATIELE - Software: Windows Version 5.2 (Build 3790 Multiprocessor
(5/13/2010 13:27:48.589) Retrieved response from cygnet0l:

STRIMNG: Hardware: x86 Family 15 Model 3 Stepping 4 ATfAT COMPATIEBLE - Software: Windows Version 5.2 (Build 3790 Multiprocessor
{5/13/2010 13:27:48.604) Retrieved response from cygnetdl:

STRING: Hardware: x86 Family 15 Model 3 Stepping 4 AT/AT COMPATIELE - Software: Windows Version 5.2 (Build 3750 Multiprocessor
(5/13,/2010 13:27:48.635) Retrieved response from cygnetd1:

STRING: Hardware: x86 Family 15 Model 3 Stepping 4 AT /AT COMPATIELE - Software: Windows Version 5.2 (Build 3790 Multiprocessor
{5/13/2010 13:27;48.651) Retrieved response from cygnetD1:

STRIMNG: Hardware: x86 Family 15 Model 3 Stepping 4 AT/AT COMPATIELE - Software: Windows Version 5.2 (Build 3790 Multiprocessor
(5/13/2010 13:27:48.667) Retrieved response from cygnetli: =
STRIMNG: Hardware: x86 Family 15 Model 3 Stepping 4 ATfAT COMPATIEBLE - Software: Windows Version 5.2 (Build 3790 Multiprocessor i

o T] b

OK Cancel

Figure 3: Screenshot of SnmpTester

SnmpTester successfully verified the thread-safety of the Net-SNMP API when the thread-safety
guidelines are followed.

NetSNMP EIE Development

All CygNet EIEs have two main facets: the actual driver code, which communicates with the UIS, and the
editor, which provides the user with an interface to create and manage devices in the DDS.

UisNetSnmpDriver
| developed the EIE driver by following the established EIE class hierarchy model, represented below in a
UML diagram:

CUisDeviceDriverDLLApp CiaOriver

Driveer deacription abstract
T T Legend
: B vsiwis
CUisNetSnmpDeviceDriverDLLA AR RS s
nmpD I PR mp‘m. D UisUtils
DriverCraatallsRemaoteDe a— DLl
(s B DL version D "¥fles\ElaDriverBasa
| m"wm‘r [usshietsampDasicebriver
I ClisRemoteDeviceDriver
—| Pointer o axported dovics
creation furiclion
_CI.III-Dﬂin'Oh:IIl:.t ClUisExecObjRolalser
CLrsDrivarh Fiots (TX Proc, PT_Proc)
T Dafings pricaity
quels abject
b CUisExecutionObject
ClisRemoteDeviceBase Timeastarg
Bequance Number
Drrvican 10
Davice header O
CulisDevicoStalisiics | *Manages UDCs and processas ponis
COstaGmuplnfalfap *Contains data group info and mapped UDCs ClUisRematoMsg
abstract
il
canl as
HetSnmpDeviceProperties ClUisRemoteMassageBasea
Emupa_l.lln'hhadl device Message status
propartiss Has command info 4 ClisMaseageRon
Pointer 1o creating devics —f=»CUBRamaleDavice®

Lised to sone iransactions ——=COdsConfigHisttiems

ClisRemoteMessageFactory
abstract
Provides acces|
CUisNatSnmpRemoteDovice Iis sl

CllisMetSnmpRema actary i CuUlsNelSnmpRamotaMessageFactiony CUisNatSnmpRemoteMessage
Liva class threads for data impon lasks 1

CVSIEXObPrlorilyOueyetiTs for cmas? | | | CreatsRemataMsgi) B Ecocutol)

All ather guts nesdad for d wirk I

CroateMessaga() IL i

Figure 4: UML diagram for Remote Device EIE class hierarchy

CUisNetSnmpDriverDLLApp

The CUisNetSnmpDriverDLLApp is the top-level application class of the driver. This class is responsible
for launching threads for device instances. In order to comply with guidelines 1 and 2 of the Net-SNMP
multi-threading restrictions (see Figure 2), Net-SNMP initialization, cleanup, and MIB directory
specification is done in this class. Since multiple device threads may try to add a MIB directory
simultaneously, it was necessary to lock this operation with a busy-wait loop.

CUisNetSnmpRemoteDevice

A UisNetSnmpRemoteDevice object is the software encapsulation of a Remote Device instance. This
class stores the device configuration from the DDS in a NetSnmpDeviceProperties object, and takes care
of communication to a specific device via UisNetSnmpRemoteMessage objects. When the configuration
for this device has been loaded (on UIS startup, or when changes are made to the device in the DDS), a
session with the host device is established within this class.

CUisNetSnmpRemoteMessageFactory

The main purpose of this class is to handle all data requests from a Remote Device instance to be sent to
a device. When data is requested, this class will generate a specific type of message based on the
device’s data group attributes (from the device template).

CGenericMsg and CSingleOidMsg

These two message classes, derived from CUisNetSnmpRemoteMessage, are responsible for the real
work that is done to send SNMP requests to and receive data from a host. Ignoring for now the
difference between a “generic” and a “single OID” type of device, these classes build an SNMP packet
with the OID(s) specified in the device configuration, send the packet, wait for a response, parse the
response, and update the point(s) associated with the OID(s).

CxDdsNetSnmpEditors
| developed the NetSNMP Remote Device editor by following the established DDS editor class hierarchy
model, represented below in a UML diagram:

CDdsDevicelnfo

el N Legend
CDdsImpExpDevDatalisSegment [oasutis
CDdsEditorContext 3
DBKey D ‘Xfiles\DdsBlobWrapperBase
Davice Type [[] wfiles\DdsEditorBase
e CDdsDialogsM
[[~ CDdsEdiorGlobais* sQialagaige [[] cxodsNetsnmpEditors
‘ - Keeps track of dialegs associated
with a data group
‘ -~ For main device data group, the
" dialog is CDdsNetSnmpPropSheet CDdsEditorPropertySheetBase CDdsimpExpDigCommon
[COxbdsEdlimByss - Editor methods ‘aunch appropriate o e
—{™ CDdsEditorGlobals Ao PRy ChdsERRodlon {main device data group)
CDdsFacilityHeader
T CDdsDataGroupAttrsMgr % ?
CCxDdsNetSnmpEditor CDdsNetSnmpPropSheet &
CDdsDataGroupHeader 1
(Tx Log data group) |
CEfDeviceProperties
CDdsOrivesietaDataltem
CDdsDataGroupAttrsMgrXmi ‘mein device data group XML} |
CORteGrupMetaDataMa™ — | _ ELF property pages |
- ' |
|
I CDdsEditorPropertyPages. l
CDdsEditorGlobals | | St e A
CDdsEditorf ertySheetBase® __ 1 _|
CDdsClient | it
CTrsCache |
CDdsAcs|
CDdsD: e CDdsUisCmdsMgr
CDdsFaciltyList |
CldsDataGrouplist
CDd:U!BCmdL\sp:J | CDdsDevicePropertyPageBase
cnd=Dlox | Controls related to comm failover
CDdsUisCmdsMar® — | (ol needad)
CDalaGroupMetaDataMgr —
—‘ I T
& e
Loads data group definitions and LDt TieRIOpEay ek
attributes

Figure 5: UML diagram for DDS editor class hierarchy

CCxDdsNetSnmpEditor
This is the top-level class responsible for loading the property sheet and dialogs when managing a
Remote Device instance in the DDS.

CDdsNetSnmpDevPropPage

This class provides an interface between the user and the Remote Device instance in the DDS. Itis
derived from a Windows property page control, and it contains various editable fields relevant to the
NetSNMP device (such as host IP and community name). This will be explored in greater detail in the
next section.

SNMP Integration

With the EIE developed, the next task was to complete integration of SNMP into CygNet by creating a
NetSNMP Remote Device instance and collecting data. Part of the requirement here was to support

tabular MIBs, as well as a “Single OID” device model, but | will start by talking about the simplest use
case, and | will address the other features later.

Creating a Device Template

Before creating a device, it was necessary to write a device template to set up the data elements for the
specific type of device to be integrated. For this example, | created a template for a Remote Device
which represents general system info for any managed device:

<devi ceDefinition devi ceType="Net Snnp" ei eType="Net Snnp" cat egory="4098" nf g="CygNet Software,
Inc." nodel ="Net SNWMP" desc="Net SNWP Tenpl ate">

<dat aG oups udcCat ="~UDCALL" canSend="fal se" canRecv="true" uccSend="fal se"
uccRecv="true" udcDefFac="true" devDG="fal se" baseOrd="0" maxCnt="1">

<!-- common datagroup to retrieve device config information -->

<Sysl nfo niceNanme="SNWP System I nfo" dgDesc="SNWP System | nfo">
<dgEl enent s>
<Desc desc="Devi ce Description" type="string" oid="sysDescr.0"/>
<Obj ect| D desc="Device O D' type="string" oid="sysCbjectlD.0"/>
<UpTi me desc="Device Up Tine" type="ui4" oid=".1.3.6.1.2.1.1.3.0"/>
<UpTi mreMs desc="Device Up Tinme (nsecs)" type="r8" ref="UpTi ne" scal eFactor="10"
units="mlliseconds"/>
<UpTi meS desc="Device Up Tine (secs)" type="r8" ref="UpTi neMs" units="seconds"/>
<Contact desc="Device Contact" type="string" oid="sysContact.0"/>
<Nane desc="Devi ce Nanme" type="string" oi d="sysNane.0"/>
<Location desc="Devi ce Location" type="string" oi d="sysLocation.0"/>
<Servi ces desc="Device Services" type="ui4" oid="sysServices.0"/>
</ dgEl enment s>
</ Sysl nf o>

</ dat aGr oups>

<def U sCmds vi si bl e="true" canBeSchedul ed="true" clientCanl nvoke="true" inheritsSecurity="false">
</ def Ui sCrds>

</ devi ceDefinition>

Figure 6: NetSnmp.dtf

This template gives the device model a generic name of “Net SNMP” (which is admittedly not very
creative or informative). The data group SysInfo groups all of the child elements together as a coherent
set of data. Each DEID (Desc, ObjectID, etc.) represents a data element on the host, and is mapped to an
OID (which can be specified in either long form or nice-name form). The “type” attribute tells the EIE
how to interpret the data returned from the host. “String” is a simple string of characters, “ui4” is an
unsigned 4-byte integer, and “r8” is an 8-byte double-precision floating-point value. One difficulty that
came up at this point was “what do | do about the units of returned data?” As noted in a previous
section, sysUpTime is measured in deciseconds, a very awkward unit of time. Furthermore, CygNet
Points allow the user to specify whatever units of data he or she pleases, so it became necessary to
support configurable units. This was accomplished through what is known as “Reference DEIDs.” Notice
that the UpTimeMs and UpTimeS DEIDs do not map directly to their own OIDs. Rather, they have a
special “ref” attribute, which ties them to another DEID. Referencing a DEID creates a pseudo-data
element by taking the value from a data element and doing some work onit. In the UpTimeMs DEID,
the “scaleFactor” attribute specifies the amount by which the UpTime value must be scaled to represent
the desired units, and the “units” attribute lets the system know what that desired unit is. The UpTimeS
data element references the UpTimeMs DEID and uses the units “seconds.” Since “seconds” and
“milliseconds” are known to the CygNet system, it is not necessary to scale the values manually. Now
that there are three separate data elements for UpTime, a Point can be created for each one using
different units.

Configuring the Device

Using CygNet’s proprietary Explorer program, CExplore, | created the Remote Device instance in the DDS
using the template in Figure 6. The following property sheet developed in CxDdsNetSnmpEditors is
what appears as the first step of Remote Device configuration:

Properties for: 'CYGMETO1_SNMP* - Type: 'CygNet Software, Inc. Net SNMP' lﬁ

Device l Facilities] Data Group | WIS Commands

— Manufacturer/Model -
CygMet Software, Inc. - Net SNMP

Device 1D]CYGNETN_SNMP

Description J
MIE Directory JC:"l.Users'\pauI.fake'\Desktop‘-.rnibﬂ J
— Communications
IP or Host Name Community Mame Msg Timeout {ms) Poll Attempts
leygnet 01 |CYGREAD {5000]
- Device Securty -
Appiication. [DDS Evert [ACCESS i

¥ Enable Device

OK Cancel Fitals] 1]
] | |

Figure 7: Screenshot of NetSNMP Remote Device property sheet

This first tab allows the user to specify all information required to communicate with a managed device.
The “IP or Host Name” in this example is configured to be the host name of a Windows server on the
network. The rest of the options in the “Communications” group are self-explanatory. The MIB
Directory option specifies the directory in which the local machine will search for a nice-name OID
translation. If no MIB directory is specified, the Net-SNMP API will not be able to resolve nice-name
OIDs. The options in the “Device Security” group are CygNet-specific and are outside the scope of this
paper. After the “IP or Host Name” and “Community Name” options are filled in, the user can press
“Apply” and finally create the device.

Retrieving Data
The way to manually retrieve data from this device is to first navigate to the “Data Group” tab:

Properties for: 'CYGNETOL SNMP’ - Type: 'CygNet Software, Inc, Net SNMP* 5

Devjcel Faciities Data Group I s Commandsl

Data Groups Show Al Data Groups [

I Diata Group Type | Ordinal | Data Group Description | Facilty Id |
SHNMF System Info. D SNMP System Info CYGMNETDT SHNMP

Properties View Data Map LDCs | add | Delete |

ok | Cancel | ooty |

Figure 8: Screenshot of the “Data Group” tab of the NetSNMP Remote Device property sheet

The only data group featured is the one we configured in the device template. Selecting this data group
and clicking on “View Data” brings us to the following dialog:

SNMP System Info for ‘CYGNETD1_SNMP' - =
! i B _ ;
Transaction Status
] 3 7 - Get Succeeded Succeeded - WSlhpaul fake
Item EountiS

Itemn#® | Data Element | Data Element Desc Current Value

1] Diesc Device Pescription Hardware; 86 Family 15 Model 3 Stepping

1 ObjectlD Device OID 136141311113.13

I UpTime Device Up Time 2097504213

3 UpTimeMs Device Up Time (msecs) 20975842130

4 UpTimes Device Up Time (secs) 2097504213

5 Contact Device Contact T

6 Mame Device Name CYGNETOL

7 Location Device Location San Luis Obispo

) Services Device Services 76

R) | r
Options - w | Refrezh Get from RTU | Cloze |

Figure 9: Screenshot of the “View Data” window

Clicking on the “Get from RTU” button sends a new SNMP request, and updates the listed values. All of
the items in the list are the data elements we configured in the device template.

Another (and more useful) way to retrieve data is to map these data elements to Points (via UDCs),
using the “Map UDCs” button shown in Figure 8. Once the data elements are mapped, one can use
CygNet’s scheduling service to retrieve data at a given interval. The following is a screenshot of a graph
of historical UpTime data for this device, scheduled to retrieve every two seconds:

B History Values . A ——— = = ﬁ
F’o\ntTagiPFAKE U15.00001 720 3/24/2010 15:57:31.794 - 3/24/2010 15:58:24.818
Descriptior [SINGLEDIDD Value Units | B ' ! o
E arliest Tlmein’ZMZEﬂ 01543:40.393 Entry Emunt;ZED [
Latest Timei3.-"24.-’2m 0155824 816 Onling Hetention130 days [
: . - . =
| Time Stamp (descending) | Value | Base Status | User Status | =t
5 79984 U
24/ 15:58:22.413 2998
3/24/201015:58:20010 2998454861 2003 00000000 =
3/24/201015:58:17.779 2098454639 2003 00000000
3/24/201015:58:15.343 2998454335 2003 00000000
3/24/201015:58:12.972 2998454158 2003 00000000 1.58 -
32472010 15:58:10.662 2998453927 2003 00000000
3/24/2010 15:58:08.213 2998453683 2003 00000000
3/24/2010 15:58:05.357 2998453483 2003 00000000
3/24/201015:58:02.439 2998453342 2003 00000000 e
3/24/2010 15:57:50.053 2098453197 2003 00000000
3/24/201015:57:56.151 2098453033 2003 00000000
3/24/201015:57:52083 2098452853 2003 00000000 058 -
3/24/2010 15:57:49.566 2998452689 2003 00000000
3/24/2010 15:57:46.009 2998452550 2003 00000000
3/24/2010 15:57:42.654 2998452395 2003 00000000
3/24/2010 15:57:39.205 2998452214 2003 00000000 i !
3/24/2010 15:57:35.507 2998452042 2003 00000000 155?_33' '15_5?_45' 15-5'5-00. 15-53-15I i
s e an oven BRGS0
I Show Deleted Values << Hide Graph
coon_|

Figure 9: Screenshot of “History Values” view in the UIS

This isn’t the most interesting graph of data, but you can imagine what a historical graph of CPU usage
might look like.

Tabular MIB Support
Support for tabular MIBs is accomplished through the device template:

<devi ceDefinition devi ceType="Net SnnpSysOR' ei eType="Net Snnp" cat egory="4098" nf g="CygNet
Software, Inc." nodel ="Net SNMP" desc="Net SNWP SysORTabl e">

<dat aG oups udcCat =" ~UDCALL" canSend="fal se" canRecv="true" uccSend="fal se"
uccRecv="true" udcDefFac="true" devDG="fal se" baseOrd="1" maxCnt="5">

<I-- comon datagroup to retrieve device config information -->

<SysORI nfo ni ceNane="SNWMP System OR I nfo" dgDesc="SNWMP System OR | nfo">
<dgEl enent s>
<Desc desc="Entry Description" type="string" oi d="sysORDescr.{CORD}"/>
<(bj ect|I D desc="Entry O D' type="string" oi d="sysORI D.{CORD}"/ >
<UpTi me desc="Entry Up Tine" type="ui 4" oid="sysORUpTi ne.{ORD}"/>
<UpTi mreMs desc="Entry Up Tine (nsecs)" type="r8" ref="UpTi me" scal eFactor="10"
units="mlliseconds"/>
<UpTi meS desc="Entry Up Tine (secs)" type="r8" ref="UpTi neMs" units="seconds"/>
<l ndex desc="Entry |ndex" type="string" oid="sysORl ndex.{ORD}"/>
</ dgEl enment s>
</ SysORI nf 0>

</ dat aG oups>

<def U sCnds vi si bl e="true" canBeSchedul ed="true" clientCanl nvoke="true" inheritsSecurity="false">
</ def U sCrds>

</ devi ceDefinition>

Figure 10: NetSnmp_SysORTable.dtf

In this template, the “oid” attributes do not explicitly specify the entry ordinal in the sysORTable.
Instead, it uses the “{ORD}” substitution string to be replaced by the EIE with an ordinal that can be
configured in the DDS after the Remote Device instance has been created.

Single OID Support

It may be useful to create a device that is not configured with a specific set of data elements, but rather
the ability to retrieve data from any element on the fly. To accomplish this, | have created the “Single
OID” category of devices. To create a Single OID type of device, a different style of device template
must be used:

<devi ceDefinition devi ceType="Net SnnpSi ngl eO D' ei eType="Net Snmp" cat egory="4098" nf g="CygNet
Software, Inc." nodel ="Net SNMP" desc="Net SNWP Single O D'>

<dat aG oups udcCat ="~UDCALL" canSend="fal se" canRecv="true" uccSend="fal se"
uccRecv="true" udcDefFac="true" devDG="fal se" baseOrd="0" maxCnt="1">

<!-- common datagroup to retrieve device config information -->

<Syslnfo niceName="SNWP Single O D' dgDesc="SNWP Single O D' dgCat="singleQ d">
<dgEl enent s>
<O d desc="Object ldentifier" type="string"/>
<Dat aType desc="Data Type" type="string"/>
<Val ue desc="Data Val ue" type="vrnt"/>
</ dgEl enent s>
<uccRecvPar nms>
<O d desc="Object ldentifier" required="true" type="string"/>
<Dat aType desc="Data Type" required="true" type="string"/>
</ uccRecvPar nms>
</ Sysl nf o>

</ dat aGr oups>

<def Ui sCrds vi si bl e="true" canBeSchedul ed="true" clientCanl nvoke="true" inheritsSecurity="fal se">
</ def U sCrds>

</ devi ceDefinition>

Figure 11: NetSnmp_SingleOID.dtf

Instead of explicit data elements, the DEIDs in this template refer to the generic parameters of OID,
returned value type, and value. “Oid” and “DataType” are filled in by the user prior to sending a request
(which we will see shortly), and “Value” is filled in by the response with a variant type, meaning it will be
interpreted as either a string or an integer depending on the value of “DataType.” The “uccRecvParms”
elements define the parameters that must be supplied to the request. Retrieving data in Single OID
mode is a little different from the previous methods. First of all, clicking on “View Data” in the “Data
Groups” tab (see Figure 8) will now bring up a different dialog:

SHMP Single OID for "SINGLECID' - w

Index Transaction Status

iU v! 3242010 13:48:36: 740 - Get Succesdad Succeeded - VSlipaul. fake

oI1D I sysDescr.0

Data Type i siring

Value I Hardware; x86 Family 15 Model 3 Stepping 4 AT/AT |

Refresh Get from RTU Close

Figure 12: Screenshot of the “View Data” window for Single OID mode

Clicking on “Get from RTU” brings up a dialog that allows the user to enter the required request
parameters:

¥ l Eg |'\
SNMP Single OID for 'SINGLEOID' - b

Index Transact

[o | [3124/204 >ingle OI0 Data ~VSTipaul. fake

OID | sysDescr.0
Data Type |strirk_:| vl

Data Tyg
vl

 Refresh | GetfromRTU Close

Figure 13: Screen of the “Get from RTU” window for Single OID mode

Scheduling of data is possible as it was previously, as scheduled commands to the UIS can be configured
with the same request parameters.

Testing
In order to verify the thread-safety of Remote Device instances, | created 100 Single OID Remote Device

instances, and wrote a VB Script file that requests 1000 data points from each simultaneously. All data
was retrieved and stored in the UIS successfully.

Chapter 4: Conclusions and Future Work

The project described by this paper is in satisfaction of the criteria for a CPE Senior Project.
Development of the SNMP Remote Device required substantial research into the SNMP protocol and the
Net-SNMP library, as well as creativity in order to integrate the protocol into CygNet in a seamless and
intuitive way. Lastly, the project integrates software (the Remote Device) and hardware (the actual
managed network devices) with communications over a network protocol, drawing upon knowledge
from CPE 464: Introduction to Computer Networks.

Overall, the project was a success. | met all of the requirements proposed by the client, integrating
managed network device information into the CygNet system. One element missing from the project,
however, is explicit support for non-ordinalized tabular MIBS, such as the ipRouteTable. The entries in
these tables are accessed not by simple integers, but rather by complex strings of numbers such as an IP
address. It is still possible to retrieve data from these tables by using the Single OID model or, worse,
explicitly naming the entry in the template file, but | could not figure out a good model for creating this
sort of device generically. Fortunately, the client did not require this to be done for the project, but it is
a potential item to be included in a future release. | am satisfied with the work | have done, and | have
learned a lot about SNMP and the CygNet system.

Project Status

Currently, there are no plans for CygNet to either release the SNMP Remote Device to customers or use
it internally. CygNet has expressed interest in the further development of the device for future use, but
no requirements have yet been made.

References

[1] SUNY Institute of Technology. "SNMP for Dummies." The CompuTech Group.
WordPress, 25 May 1998. Web. 5 May 2010. <http://www.computechgroup.com/?p=31>.
This document provides an introduction to the various aspects of SNMP. It functions as a

starting point to learning about MIBs and OIDs.

[2] Case,)., etal. "RFC 1157." A Simple Network Management Protocol (SNMP).
Internet Engineering Task Force, May 1990. Web. 7 Jun. 2010.<http://www.ietf.org/rfc/rfc1157.txt>.
This RFC defines the SNMP protocol.

[3] Case, J., et al. "RFC 1902." Structure of Management Information for Version 2 of the Simple Network
Management Protocol (SNMPv2). Internet Engineering Task Force, Jan. 1996. Web. 7 Jun. 2010.
<http://tools.ietf.org/html/rfc1902>.

This RFC defines the structure of MIBs, as well as the different types of variables contained in

these structures.

[4] Case,)., et al. "RFC 2570." Introduction to Version 3 of the Internet-standard Network Management
Framework. Internet Engineering Task Force, Apr. 1999. Web. 7 Jun. 2010.
<http://tools.ietf.org/html/rfc2570>.

This RFC provides an overview of the third version of SNMP. It outlines the major differences

between the three version.

[5] "README.thread." Net-SNMP. 2 Mar. 2007. Web. 25 Feb. 2010.
<http://net-snmp.sourceforge.net/docs/README.thread.html>.
This README contains information on the thread-safety of the Net-SNMP API. It details why the
APl is not natively thread-safe, but it gives information about how to use it in a thread-safe

manner.

[6] "Net-SNMP." Net-SNMP. 2 Mar. 2007. Web. 25 Feb. 2010. <http://www.net-snmp.org/>.
| downloaded the Net-SNMP APl and agent here. | also used the tutorial section to develop a

test application using the API.

[7] "WinSNMP APl (Windows)." MSDN: Microsoft Development, MSDN Subscriptions, Resources, and
More. Microsoft, 19 Nov. 2009. Web. 25 Feb. 2010.
<http://msdn.microsoft.com/en-us/library/aa379207%28VS.85%29.aspx>.

This MSDN article is the official documentation for the WinSnmp API. It contains (very) brief

descriptions of functions.

