
Fast Landmark-Based Registration via Deterministic and Efficient Processing,  
Some Preliminary ResultsΩ 

 
Fred DePiero 

CalPoly State University, San Luis Obispo, CA 93407, fdepiero@calpoly.edu 
 

Abstract 
 
Preliminary results of a new method for range view 
registration are presented. The method incorporates the 
LeRP Algorithm, which is a deterministic means to 
approximate subgraph isomorphisms. Graphs are formed 
that describe salient scene features. Graph matching then 
provides the scene-to-scene correspondence necessary for 
registration. A graphical representation is invariant with 
respect to sensor standoff. Test results from real and 
synthetic images indicate that a reasonable tradeoff 
between speed and accuracy is achievable. A mean 
rotational error of ~1 degree was found for a variety of 
test cases. Mean compute times were found to be better 
than 2 Hz, with image sizes varying from 128x200 to 
240x320. These tests were run on a 900 MHz PC. The 
greatest challenge to this approach is the stable 
localization and invariant characterization of image 
features via fast, deterministic techniques. 
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1. Approach Based on Subgraph Matching 
 

The goal of this research is to pursue a technique that 
can perform view registration at rates approaching 10 Hz, 
without any user input for initial estimates. This 
performance goal is set to match the data rates of range 
cameras. It is also desired to have a method that computes 
the rigid transformation (translation plus rotation) in the 
presence of possible scale changes. Registration at these 
rates could permit sensor motion to be tracked in real-
time. This would permit unconstrained movement of a 
sensor across a large scene. 

To achieve fast and deterministic processing, iterative 
[1] [8] [13] [17] [18], compute intensive [10], or random 
[6] approaches were avoided. Established methods do not 
typically separate the steps of determining corresponding 
points and determining the transform. This limits compute 
speed. In the new approach these steps have been kept 
separate, and are implemented in a non-iterative fashion. 
This is an important difference for the new approach. 
Another difference is that correspondence between the 
data sets is determined only for select feature points. This 
improves processing speed, but it does limit accuracy. 

Correspondence between the data sets is determined 
via graph matching. Graphs are formed using salient 

features in each range image. Graph matching is 
accomplished using the LeRP Algorithm [2][4]. LeRP 
approximates a subgraph isomorphism via a deterministic 
procedure, based on the comparison of length-r paths. 
The LeRP algorithm yields a set of corresponding 
locations in the two input range images, from which the 
absolute orientation may be found via closed-form 
solution [9]. 

A typical graph appears in Figure 1. The white 
segments designate an accurately matched subgraph for 
the scene. 
 

 
 
Figure 1. Graph associated with Mars Odyssey 
data. Nodes are associated with local maxima. 
Edges are determined via a Delaunay triangulation. 
White edges indicate a matched subgraph that 
contains nodes with an accurate mapping into the 
other scene. 
 
1.1. Approach – Salient Features 
 

Graphs describe the salient features in each range 
image. For rapid detection, local, well isolated, peaks in 
the range data were used to form the image features. 
These are desirable because they are likely to remain in 
view with small shifts in scene.  

The significant percentage of black segments shown in 
Figure 1 demonstrates a lack of stability in feature 
detection. Stable and invariant feature detection – via fast, 
efficient, deterministic means – remains the greatest 
challenge in this new approach. While the lack of stability 
shown in the figure is undesirable, it was deemed an 
appropriate tradeoff in terms of processing speed. Other 
techniques employ more robust local features [10] but 
require more processing time. The approach taken here 



was to rely on the LeRP matching algorithm to determine 
appropriate correspondences, despite noisy features. 

Some reported techniques use invariant features that 
involve curvature, moments, or spherical harmonics [18]. 
These types of features react to jump discontinuities that 
may occur at a limb [19]. Such feature points were 
avoided in this new approach. Consider the occurrence of 
a limb where the line-of-sight of a sensor becomes 
tangent to a hillside. Slight movement of the sensor would 
alter the tangential viewing conditions. Hence jump 
discontinuities may be unstable in some situations. Ridge 
curves [20][21] or simply the use of isolated peaks are 
believed to be more stable. 
 

 
 
Figure 2. The connecting line segments indicate 
correspondences found via graph matching. White 
lines indicate acceptable matches and gray lines 
show correspondences that failed a test of the 
residual fit error. 
 

To improve speed and to reduce sensor noise, the 
range images were subsampled by a factor of 8, making 
images 1/64 the original area. A 3x3-averaging kernel 
was used repeatedly, to subsample. During the 
subsampling process, occurrences of pixels with missing 
range data (due to occlusions, for example) were reduced 
in number.  

When finding local peaks in the range data, a 3x3 
window was used in the smallest subsampled image. This 
corresponded to a 24x24 window in the original image. A 
peak was defined as being a pixel with at most 1 other 
higher (3x3) neighbor. 

To help recover the accuracy lost by peak detection in 
the subsampled images, feature locations were adjusted 
along the local gradient. A fixed number of steps, S-2, 
were used for an S-factor of subsampling (S=8, here). 
 
1.2. Approach – Graphical Representation 
 

Nodes were associated with each feature (local peak) 
in an image and were colored by the sharpness of the 

peak. Sharpness was computed by finding the volume 
enclosed under a fitted 3x3 surface patch, centered at the 
peak. 

The existence of an edge was established via a 
Delaunay triangulation [5] [16]. Distances between nodes  
were used to color edges. (Distances were computed in 
world coordinates, not just a pixel distance, making the 
edge coloring tolerant to standoff changes.) This formed 
an object-centered representation that could be compared 
without first aligning the range images. 

A Delaunay triangulation was chosen because it is 
efficient, requiring on the order O(F2) effort, for F 
features [5]. This is the case for a 2-D mesh, associated 
with the 2 ½-D range image. A Delaunay triangulation is 
also invariant with respect to translation and rotation, and 
with respect to node ordering. Also, the triangulation 
yields a graph (as opposed to a tree) and this works better 
with the LeRP algorithm. 
 
1.3. Approach – Finding Subgraph Isomorphisms 
 

Noisy sensor data introduces some fundamental 
limitations to the repeatability and stability of extracted 
features. This limits the similarity of scene graphs. 
Varying occlusion with different sensor viewpoints also 
limits the similarity of scene graphs. For these reasons, 
graphs made from real sensor data tend to be imperfect 
representations. Since the graphs are imperfect, an exact 
method of graph matching has limited use – and 
consumes inappropriate compute time. Hence using an 
approximate method of graph matching is a reasonable 
approach.  

The LeRP algorithm [4] [11] approximates subgraph 
isomorphisms by comparing the number of length-r paths 
in each graph. These are found via AR, where A is the 
adjacency matrix [7]. LeRP identifies the node-to-node 
mapping between the graphs by finding matching path 
counts, favoring assignments with higher values of R. As 
nodes are added to the mapping, the structural 
consistency with previously mapped nodes is enforced. 

Node and edge colors are also compared during the 
matching process. As these colors are continuous 
quantities, some threshold on color differences was 
needed to verify similarity. A threshold of 2% was used 
for node colors and ½% for edge colors, in all the tests 
reported herein.  

Processing effort for the graph matching is on the 
order of O(F3D2R), where F is the number of nodes, D is 
the average degree. The parameter R is actually a weak 
function of F (see [4]) but was set to a constant in all tests 
reported herein. If the number of features increased 
significantly, then additional subsampling would be 
appropriate to maintain reasonable processing times. This 
would permit R to remain constant. In the reported trials, 



F ranged from 25-80, approximately. Of these nodes, 
20%-40% were typically matched. 
 
1.4. Algorithm – Absolute Orientation 

 
Horn’s method [9] was used to determine absolute 

orientation. This reveals the rigid transformation as well 
as any scale changes. It operated on the corresponding 
features identified by the graph matching routine.   

The residual fitting error of each corresponding 
feature was checked. The process of finding the transform 
and checking consistency was repeated (fewer than) F 
times, for F local peaks. Hence the effort in this stage of 
the processing is bounded by O(F2). 
 
2. Summary of New Algorithm for Registration 
 
 
1) Find salient features in range images. 
2) Refine feature locations. 
3) Form graph. Use Delaunay triangulation to establish edges 

and compute feature descriptions. 
4) Match graphs with LeRP algorithm to find corresponding 

features. 
5) Find absolute orientation and check residual error.  
 
 

Summary of Processing Effort 
Step Sub-Step Effort 

Find Range Features Subsample O(N M) 
 Find peaks O(N M) 

Refine Features Refine peak locations O(F) 
Form Graph Delaunay triangulation O(F2) 

 Find feature descriptions O(F) 
Match Graphs LeRP algorithm O(F3D2) 

Find Absolute Orientation Horn’s technique O(F2) 
 
Table 1. Summary of processing effort required for 
each step in the algorithm. Each step has a 
polynomial bound on worst-case effort. Images 
were NxM, containing F features. D is the mean 
degree of feature graphs. 

 
Each of the above steps requires worst-case effort that 

has polynomial bound. The effort indicated assumes: 
NxM range images and F range features. Note that there 
are additional parameters that effect the processing time, 
such as the degree of subsampling for the original range 
image, and the window size used when looking for range 
features. These were omitted from the Table 1, for clarity.  
 
3. Testing 
 

Referring to Table 2, three types of range data were 
used. The ‘NASA’ data was from the Odyssey probe, 

acquired Nov. 13, 2001. This is actually an intensity 
image in the visible - thermal spectrum, not a range 
image. The ‘Sensor’ data was acquired by scanning a 
relief map of the Great Smoky Mountains National Park. 
The ‘Synthetic’ data was generated randomly. The size of 
the various images is given in the table. 

The ‘Sensor’ images appearing herein were acquired 
using a structured light range sensor, similar to [3]. The 
sensor used a laser line generator that casts a plane of 
light from a diode source. An inexpensive web camera 
then observed the intersection of the laser illumination 
with an object in the scene. One profile of an object was 
revealed in each camera image. A linear positioner 
advanced the laser and camera across the scene. Sensor 
calibration is also described in [3]. 

This sensor is relatively slow, relative to available 3-D 
range cameras. Furthermore, it is these range cameras that 
are driving the goals for the new registration technique. 
Hence range images from the sensor were acquired and 
then stored for use in test trials. Also note the time 
necessary to load the range images was not included in 
the measures of execution time that are presented below. 
 
3.1. Testing - Results 

 
Image data was resampled at a random rotation in 

each test trial. The measured and true rotation angles were 
compared to estimate the accuracy of the registration 
measurement. Accuracy is described in terms of the mean 
absolute error of the rotation angles.  

The ICP algorithm was used for comparison purposes 
[1][18]. The simplex optimization routine [15] was used 
to implement ICP. To reduce effort for ICP, only lateral 
displacements and a rotation in the image plane were 
optimized (3 DOF, not 6). This was done for simplicity. 
Also, test cases were constructed that made it easy for the 
ICP algorithm to converge in each case. In this way an 
apples-to-apples comparison with the new algorithm 
could be more easily made. 

The nominal rotational difference was 5 degrees. This 
small rotational difference helped ensure the convergence 
of the ICP algorithm. Exactly 20 iterations of ICP were 
run, i.e. the termination was deterministic - resulting in a 
varying accuracy, rather than a varying processing time. 

See Table 2. Twenty-five trials were run for each data 
set. Tests were run on a 900 MHz PC.  

Results show that the new algorithm can achieve 
processing rates of 2 Hz or better. This is considered 
good. However, the new algorithm did not always yield 
100% successful results (as in the 75 trials reported 
below). This was more common in test cases with higher 
rotational offsets.  Improved feature stability should help 
improve reliability and overall accuracy. 



 
Data Set Size of  

Data Set 
Abs. Rotational Error 

[New]  
Abs. Rotational Error 

[ICP-3DOF] 
Duration [New] Duration [ICP-3DOF] 

(20 Iterations, Fixed) 
NASA 128x320 0.78 Deg 0.46 Deg 0.26 Sec 1.6 Sec 
Sensor 128x200 1.1 Deg 0.56 Deg 0.28 Sec 1.6 Sec 

Synthetic 240x320 0.59 Deg 0.45 Deg 0.45 Sec 1.6 Sec 
Table 2. Accuracy and execution speed for image registration test trials. Results indicate that a reasonable 
tradeoff between speed and accuracy is achievable. Twenty-five trials were run for each data set. For 
simplicity, only 3 DOF were optimized in the ICP routine and iterations were limited to 20. 
 
4. Conclusion and Future Studies 

The graph-based approach appears to provide a 
desirable tradeoff between speed and accuracy. It is 
possible that this type of approach could eventually be 
used to determine sensor motion on-line.  

This new approach has its share of challenges. Most 
significant is the stable computation of invariant 
features, when computed via deterministic techniques 
that permit high-speed registration. The method 
employed herein is simplistic and further study and 
refinement is appropriate.  

Future extensions include marrying the new 
technique with ICP in a post-processing step. ICP could 
be run with a fixed number of iterations to help improve 
accuracy (as all the image data would then be 
employed). Processing video streams could be enhanced 
by using results from previous images to predict 
subsequent scene conditions. Also, some experiments 
have been performed using features that are based on 
ridge curves [20]. These appear to be more stable than 
the simple method using isolated peaks described 
herein. 
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Appendix – LeRP Algorithm for Approximating Subgraph Isomorphism 
Main Routine 
Input: Graph G with nodes gi, 0<=i<NG and Graph H with nodes hk, 0<=k<NH 
Output:  Mapping m(), that gives hk = m(gi). 
Steps: 
1. Compute powers of adjacency matrices AR and BR for graphs G and H 
1. betapeak[][] = find_best_beta(G,H,Ar,Br) 
2. Clear node-to-node mappings 
3. For each L, 0<=L<minimum(NG,NH) 

a. Let peak = 0 
b. For each unmapped node gi 
c.   For each unmapped node hk 

i. Verify consistency of mapping gi to hk given current m() 
ii. rho = 0 

iii. For each mapped edge eij 
1. lookup associated edge ekl where l=m(j) 
2. beta = compare(i,j,k,l) 
3. gamma = compare(j,j,l,l) 
4. rho = 1 – (1-rho)(1-beta)(1-gamma) 

iv. Next j 
v. alpha = compare(i,i,k,k) 

vi. rho = 1 – (1-rho)(1- alpha)(1- betapeak[i][k]) 
vii. If rho>peak Then 

1. gpeak=i 
2. hpeak =k 
3. peak=rho 

viii. End If 
d.   Next k 
e. Next i 
f. If peak=0 Then GoTo END 
g. Let m(gpeak)=hpeak 

4. Next L 
5. If (L=NG) and (L=NH) Then G is ISOMORPHIC to H, refer to mapping m(). 
6. Else a subgraph isomorphism exists between G and H, refer to mapping m(). 
7. END 
 

Function: find_best_beta(G,H,Ar,Br) 
a. For each node gi 
b.   For each node hk 

i. For each edge eij 
ii.   For each edge ekl 

1. beta = compare (i,j,k,l) 
2. Save betapeak[i][k]=beta if maximal for nodes i,k 

iii.   Next l 
iv. Next j 

c.   Next k 
d. Next i 
e. Return betapeak[][] 

 
Function: compare(i,j,k,l) 
1. For 1<=r<=R 

a. If aij
(r) != bkl

(r) Then Break 
2. Next r 
3. Return (r/N)2 
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