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By a decision process is meant a pair (X, r), where X is an arbitrary set 

(the state space), and r associates to each point x in X an arbitrary nonempty 
collection of discrete probability measures (actions) on X. In a decision process 
with nonnegative costs depending on the current state, the action taken, and 
the following state, there is always available a Markov strategy which uni- 
formly (nearly) minimizes the expected total cost. If the costs are strictly 
positive and depend only on the current state, there is even a stationary 
strategy with the same property. 

In a decision process with a fixed goal g in X, there is always a stationary 
strategy which uniformly (nearly) minimizes the expected time to the goal, 
and, if X is countable, such a stationary strategy exists which also (nearly) 
maximizes the probability of reaching the goal. 

1. Introduction. Suppose to each element x of a set X is associated a nonempty 
collection F(x) of discrete probability measures (transition probabilities) on X. During the 
course of the process, when one is at state x he chooses (as a function only of the past) an 
element y in F(x), and the next state is determined according to the distribution of y. 
Various objective functions associated with such processes have been studied extensively, 
among them: maximizing average reward (e.g., [3, 7, 13]); maximizing total discounted 
reward [1, 3, 7, 13]; minimizing finite-horizon costs [3, 8, 13]; maximizing stop rule 
expectations [4, 5, 15, 16]; minimizing total cost [2, 7, 13, 14]; and maximizing the probability 
of reaching (or minimizing the time to) a goal [4, 6, 15, 16]. This paper is concerned with 
the last two objectives; decision processes with total-cost criteria, and goal problems. 

In a total-cost decision process a nonnegative cost is associated with each "move," and 
the objective is to find strategies which nearly minimize, over all possible strategies, the 
expected total cost. 

Decision processes have been studied extensively under various assumptions: that the 
decision set is finite [3, 8, 13]; that optimal strategies exist [3, 7]; that the spaces involved 
(state, strategy, decision) are suitably well structured (e.g., Borel, compact, measurable, 
convex, etc.) [14, 16]; or that precisely one ergodic class exists [3, 7, 13]. 

In general, however, the total-cost decision process with discrete transition probabilities 
satisfies none of the above assumptions, and does not admit optimal, or even E-optimal, 
stationary strategies. 

In Section 3, however, it is shown (Theorem 3.2) that in every such process with 
nonnegative costs, there is available a Markov strategy which uniformly (nearly) minimizes 
the expected total cost. If the costs are strictly positive and depend only on the current 
state (Theorem 3.1), there is even a stationary strategy with the same property. In Section 
4, this theorem is used to establish several results concerning goal problems. 

In a goal problem one has a fixed goal state g E X, and the objective is to find strategies 
which "best" enable one to reach this goal. 

Dubins and Savage proved ([4], Theorem 3.9.2) that in every finite state goal problem 
there is available a stationary family of strategies which will uniformly (nearly) maximize 
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Bya decision process is meant a pair (X, r), where X is an arbitrary set
(the state space), and r associates to each point x in X an arbitrary nonempty
collection of discrete probability measures (actions) on X. In a decision process
with nonnegative costs depending on the current state, the action taken, and
the following state, there is always available a Markov strategy which uni­
formly (nearly) minimizes the expected total cost. If the costs are strictly
positive and depend only on the current state, there is even a stationary
strategy with the same property.

In a decision process with a fixed goal g in X, there is always a stationary
strategy which uniformly (nearly) minimizes the expected time to the goal,
and, if X is countable, such a stationary strategy exists which also (nearly)
maximizes the probability of reaching the goal.

1. Introduction. Suppose to each element x of a set X is associated a nonempty
collection r(x) of discrete probability measures (transition probabilities) on X. During the
course of the process, when one is at state x he chooses (as a function only of the past) an
element y in r(x), and the next state is determined according to the distribution of y.
Various objective functions associated with such processes have been studied extensively,
among them: maximizing average reward (e.g., [3, 7, 13]); maximizing total discounted
reward [1, 3, 7, 13]; minimizing fmite-horizon costs [3, 8, 13]; maximizing stop rule
expectations [4,5, 15, 16]; minimizing total cost [2, 7, 13, 14]; and maximizing the probability
of reaching (or minimizing the time to) a goal [4, 6, 15, 16]. This paper is concerned with
the last two objectives; decision processes with total-cost criteria, and goal problems.

In a total-cost decision process a nonnegative cost is associated with each "move," and
the objective is to fmd strategies which nearly minimize, over all possible strategies, the
expected total cost.

Decision processes have been studied extensively under various assumptions: that the
decision set is finite [3, 8, 13]; that optimal strategies exist [3, 7]; that the spaces involved
(state, strategy, decision) are suitably well structured (e.g., Borel, compact, measurable,
convex, etc.) [14, 16]; or that precisely one ergodic class exists [3, 7, 13].

In general, however, the total-cost decision process with discrete transition probabilities
satisfies none of the above assumptions, and does not admit optimal, or even E-optimal,
stationary strategies.

In Section 3, however, it is shown (Theorem 3.2) that in every such process with
nonnegative costs, there is available a Markov strategy which unifonnly (nearly) minimizes
the expected total cost. If the costs are strictly positive and depend only on the current
state (Theorem 3.1), there is even a stationary strategy with the same property. In Section
4, this theorem is used to establish several results concerning goal problems.

In a goal problem one has a fixed goal state g E X, and the objective is to find strategies
which "best" enable one to reach this goal.

Dubins and Savage proved ([4], Theorem 3.9.2) that in every finite state goal problem
there is available a stationary family of strategies which will unifonnly (nearly) maximize
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the probability, under all possible strategies, of reaching the goal. Ornstein gave an 
alternate proof of this result ([10], Li) and extended it ([10], Theorem B) to all problems 
where X is countable. Sudderth [15] further extended the conclusion to a much larger 
class of problems, including many with uncountable state space and finitely additive 
probability measures. Hill [6] showed that if the state space is finite, there is available a 
stationary family which not only (nearly) maximizes the probability of reaching the goal, 
but also (nearly), minimizes the expected time to the goal. 

The first main result of Section 4, (Theorem 4.1), states that in every goal problem with 
discrete transition probabilities there is always available a stationary strategy which 
uniformly (nearly) minimizes the expected time to the goal. The second, (Theorem 4.2), 
states that if the state space is countable, there is available a stationary strategy which 
uniformly both (nearly) maximizes the probability of reaching the goal, and (nearly) 
minimizes the expected time to the goal. 

2. Decision processes. 

DEFINITION. A decision process is a pair (X, r), where X is a set and r associates to 
each point x in X a nonempty collection r(x) of discrete probability measures on X. (As 
usual, y is a discrete probability measure on X if there is a countable sequence xi, X2, ... 
of elements in X with E.=, y{xn} = 1.) 

In the terminology of Dubins and Savage [4], a decision process is simply a gambling 
house with discrete gambles. In dynamic programming terminology, X represents the state 
space, and r(x) the actions available at x. No assumption is made either on the size or 
structure of X, nor on the size or structure of r(x), other than the fact that each set r(x) 
consists only of discrete probability measures, which automatically includes all problems 
with countable X and countably additive probabilities. 

(Allowing r(x) to contain nondiscrete measures would in general seem to necessitate 
either additional structural or measurability assumptions (e.g., [15, 16]), or else relaxation 
of the countable additivity of the strategic measures involved (e.g., [4, 12, 15]).) 

Much of the notation will follow that of Dubins and Savage [4]. For a set X, S(X) will 
denote the discrete probability measures on X. The Dirac delta-measure at x will be 
denoted by 8(x). A strategy is a function from X*, the free monoid generated by X, to 
9(X), that is, from the finite sequences in X (including the empty sequence "0"), to the 
discrete probability measures on X. 

The same symbol, a, will be used to denote both a strategy and the (countably additive) 
probability measure generated by a on the product sigma-algebra on XN (X endowed with 
the discrete sigma algebra.) 

A strategy a in r at x is a strategy such that a(0) E r(x), and a(x1, . .. , x,) E r(xn) for 
all Xi, X2, ..., E- X and all n E N. A strategy a is Markov [5] if a(xi, . . ., x,,) = a(xi, 

x') whenever xn = xn, and is stationary if a(x1, . .. , xn) = a(x', . .. , x' ) whenever x, 
- xm. The conditional strategy given xi, . .. , x,, a[xi, . .. , x4], is defined by a[xi, . .. , x.] 
(X) = a(X1, X2, * *, Xn, X). 

(All the results in this paper would also hold if the definition of strategy were changed 
so that a was a function a(xi, y1, X2, Y2, ..., x.) of past actions as well as states.) 

3. Decision processes with total-cost criteria. The purpose of this section is to 
define total-cost decision processes; to prove (Theorem 3.1) that in every such process 
with strictly positive costs depending only on the current state, there always is available 
a stationary strategy which uniformly (nearly) minimizes, under all possible strategies, the 
expected total cost; and to prove (Theorem 3.2) that in every such process with nonnegative 
costs depending on the current state, the action taken, and the following state, there 
always is available a Markov strategy which uniformly (nearly) minimizes the expected 
total cost. 
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the probability, under all possible strategies, of reaching the goal. Ornstein gave an
alternate proof of this result ([10], Ll) and extended it ([10], Theorem B) to all problems
where X is countable. Sudderth [15] further extended the conclusion to a much larger
class of problems, including many with uncountable state space and finitely additive
probability measures. Hill [6] showed that if the state space is finite, there is available a
stationary family which not only (nearly) maximizes the probability of reaching the goal,
but also (nearly), minimizes the expected time to the goal.

The first main result of Section 4, (Theorem 4.1), states that in every goal problem with
discrete transition probabilities there is always available a stationary strategy which
uniformly (nearly) minimizes the expected time to the goal. The second, (Theorem 4.2),
states that if the state space is countable, there is available a stationary strategy which
uniformly both (nearly) maximizes the probability of reaching the goal, and (nearly)
minimizes the expected time to the goal.

2. Decision processes.

DEFINITION. A decision process is a pair (X, r), where X is a set and r associates to
each point x in X a nonempty collection r(x) of discrete probability measures on X. (As
usual, y is a discrete probability measure on X if there is a countable sequence Xl, X2, •••

of elements in X with L~=l y{xn ) = 1.)
In the terminology of Dubins and Savage [4], a decision process is simply a gambling

house with discrete gambles. In dynamic programming terminology, X represents the state
space, and r(x) the actions available at x. No assumption is made either on the size or
structure of X, nor on the size or structure of r(x), other than the fact that each set r(x)
consists only of discrete probability measures, which automatically includes all problems
with countable X and countably additive probabilities.

(Allowing r(x) to contain nondiscrete measures would in general seem to necessitate
either additional structural or measurability assumptions (e.g., [15, 16]), or else relaxation
of the countable additivity of the strategic measures involved (e.g., [4, 12, 15]).)

Much of the notation will follow that of Dubins and Savage [4]. For a set X, &'(X) will
denote the discrete probability measures on X. The Dirac delta-measure at X will be
denoted by c5(x). A strategy is a function from X*, the free monoid generated by X, to
&,(X), that is, from the finite sequences in X (including the empty sequence "0"), to the
discrete probability measures on X.

The same symbol, (1, will be used to denote both a strategy and the (countably additive)
probability measure generated by (1 on the product sigma-algebra on X N (X endowed with
the discrete sigma algebra.)

A strategy (1 in r at x is a strategy such that (1(0) E r(x), and (1(Xl, ... ,xn ) E r(xn ) for
all Xl, X2, ••• , X n E X and all n E N. A strategy (1 is Markov [5] if (1(Xl, ... , xn ) = (1(x{,
... , x~) whenever Xn = x~, and is stationary if (1(Xl, , xn ) = (1(xf, ... , x:".) whenever Xn

= x:".. The conditional strategy given Xl, ... ,Xn , a[Xl, ,xn ], is defined by (1[Xl, ... ,xn ]

(x) = (1(Xl, X2, ••• , X n , x).
(All the results in this paper would also hold if the defInition of strategy were changed

so that (1 was a function (1(Xl, Yl, X2, Y2, ... , xn ) of past actions as well as states.)

3. Decision processes with total-cost criteria. The purpose of this section is to
define total-cost decision processes; to prove (Theorem 3.1) that in every such process
with strictly positive costs depending only on the current state, there always is available
a stationary strategy which uniformly (nearly) minimizes, under all possible strategies, the
expected total cost; and to prove (Theorem 3.2) that in every such process with nonnegative
costs depending on the current state, the action taken, and the following state, there
always is available a Markov strategy which uniformly (nearly) minimizes the expected
total cost.
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DEFINITION. A total-cost decision process is a triple (X, c, C), where (X, r) is a 
decision process, and c:X [0, oO). 

DEFINITION. Let c:X [0, o.). Then &:XN _ [0, o.] is the function c(x1, X2,...) = 
n=l C(x, ). 

LEMMA 3.1. J is measurable with respect to the product sigma algebra on XN (X is 
endowed with the discrete sigma algebra), and is thus integrable (in the wide sense) with 
respect to each strategy. 

PROOF. Routine. 

DEFINITION. For a strategy a available at x, K(a), the expected total cost using a, is 
given by K(a) = c(x) + f J da. The minimal expected total cost starting at x, K(x), is given 
by K(x) = inf{K(a): a is in r at x}. 

DEFINITION. For a subset A of X, let N(A) :XN -- N U foo} be the function N(A) (xi, 
X2, ...) = I{n:xn E A) I. 

LEMMA 3.2. Let a, b > 0, and let A be any subset of {x: (1/a) c c(x) and K(x) < b). 
If a is any strategy at x satisfying K(a) < K(x) + E, then E,(N(A)) (= f N(A) da) < a(b 
+ 3E). 

PROOF. 
Case 1. x E A. Then 

(1) K(x) + E> K(a) = c(x) + if da f da - (1/a)E0(N(A)), 

where the first inequality in (1) follows by hypothesis; the equality by the definition of 
K(a); the second inequality since c(x) > 0; and the last since c(x) - (1/a) for all x in A. 
Thus 

(2) E,(N(A)) < a(K(x) + E) < a(b + 3E), 

where the first inequality in (2) follows from (1); and the second since x E A. 

Case 2. x ? A. Let a be any strategy at x satisfying E,(N(A)) - a(b + 3E). It will be 
shown that a can not be E-optimal, that is, for any such strategy a at x, K(a) > K(x) + E. 

Let t:XN -- N U {oo} be the hitting time of A (i.e., t(x1, X2....) = mint j:xj E A) if such 
a ] exists, and = oX otherwise). 

Let it be the cost incurred from time t on, that is, Jt(x1, X2, ...) = E {c(x,,):n - t(x1, 
X2, .. . )}. Clearly it is measurable relative to the product sigma algebra, and thus also 
integrable (in the wide sense) with respect to each strategy. 

For each x' E A, let ao be a strategy at x' satisfying K(ax ) s K(x') + E, and define the 
new strategy a' at x as follows. a' = a up to time t, and a[xi, ... ., X] =qx, It will be shown 
that the expected total cost using a' is at least 2E less than that using a, thereby proving 
that a can not be E-optimal. 

Clearly 

(3) K(a) - K(a') = f t da - f t da'. 

DECISION PROCESSES 295

DEFINITION. A total-cost decision process is a triple (X, r, c), where (X, r) is a
decision process, and c:X~ [0, 00).

DEFINITION. Let c:X~ [0, 00). Then c:XN ~ [0,00] is the function C(XI, X2, ... ) =

L:=l c(xn ).

LEMMA 3.1. C is measurable with respect to the product sigma algebra on X N (X is
endowed with the discrete sigma algebra), and is thus integrable (in the wide sense) with
respect to each strategy.

PROOF. Routine.

DEFINITION. For a strategy a available at x, K(a), the expected total cost using a, is
given by K(a) = c(x) + f Cda. The minimal expected total cost starting at x, K(x) , is given
by K(x) = inf{K(a):a is in r at x}.

DEFINITION. For a subset A of X, letN(A) :XN ~ N U {oo} be the functiop N(A) (Xl,
X2, ... ) = I{n:xn EA} I· --

LEMMA 3.2. Let a, b > 0, and let A be any subset of {x: (lja) :s c(x) and K(x) < b}.
If a is any strategy at x satisfying K(a) < K(x) + e, then E(J(N(A» (= f N(A) da) < a(b
+ 3e).

(1)

PROOF.

Case 1. x E A. Then

K(x) + E > K(u) = c(x) +fCdu ~ fCdu ~ (lfa)Ea(N(A»,

where the first inequality in (1) follows by hypothesis; the equality by the definition of
K(a); the second inequality since c(x) > 0; and the last since c(x) ~ (lja) for all x in A.
Thus

(2) E(J(N(A» < a(K(x) + e) < a(b + 3e),

where the fIrst inequality in (2) follows from (1); and the second since x EA.

Case 2. x ft A. Let a be any strategy at x satisfying E(J(N(A» ~ a(b + 3e). It will be
shown that a can not be e-optimal, that is, for any such strategy a at x, K(a) > K(x) + e.

Let t:XN ~ N U {oo} be the hitting time of A (i.e., t(XI, X2, ... ) = min{j:Xj E A} if such
a j exists, and = 00 otherwise).

Let Ct be the cost incurred from time t on, that is, Ct(XI, X2, ... ) = L {c(xn ): n ~ t(XI,
X2, ... )}. Clearly Ct is measurable relative to the product sigma algebra, and thus also
integrable (in the wide sense) with respect to each strategy.

For each x' E A, let ax' be a strategy at x' satisfying K(ax') :s K(x') + e, and define the
new strategy a' at x as follows. a' = a up to time t, and a[xI' ... , Xt] =aXt • It will be shown
that the expected total cost using a' is at least 2e less than that using a, thereby proving
that a can not be e-optimal.

Clearly

(3) K(u) - K(u') =fCt du - fCt du'.



296 STEPHEN DEMKO AND THEODORE P. HILL 

By the definitions of A and a, it follows that 

it doa 2 (1/a)E,(N(A)) 2 (1/a)a(b + &) 
(4) 

2 sup{K(x'):x' E A) + &. 

On the other hand, 

i Jt da' sup{K(a):x' A) 
(5) 

s sup{K(x'):x' E A) + E. 

Combining (3), (4) and (5) yields K(a) - K(a') 2 2E, proving that a is not E-optimal. [ 
The following proposition is a stability or perturbation result for strictly positive total- 

cost decision processes. It states that in any such process one may change the costs slightly 
(but not uniformly) thereby obtaining a new problem whose expected total costs are 
uniformly close to that of the original problem. 

PROPOSITION 3.1. Let (X, F, c) be a total-cost decision process with c > 0. Given 
positive E there exists d:X -+ (0, o.) such that if I c'(x) - c(x) I - d(x) for alU x, then K(x) 
- E - K'(x) s K(x) + E for all x, (where K' is the expected total cost for (X, F, c').) 

PROOF. Without loss of generality, assume that K(x) < 0 for all x E X. For m, n = 1, 
29 39 ... ., let A.,n = { x E- X: c(x) E- [ (m + 1) -', m -1) U [m, m + 1) , and n -1 -- K(x) < n). 
The sets {Am,n} are disjoint, and X = Umn2iAmn. 

Fix E > 0, and define d:X-- (0, o.) by d(x) = E * 2-m'-/(m + 1)(n + 1) if x E= Am,n. To 
establish the proposition it suffices to show that for each x E= X there is a strategy a at x 
satisfying f (d) da< E. 

Fix x E X, and a any strategy at x satisfying K(a) < K(x) + 1/3. Then 

6) f (d) da 
=Mn1 EE(N(Am,n)) d(Am,n) 

Em2 E(m + 1)(n + 1) . 2-m-n(m + 1)-1(n + 1)- = E, 

where the inequality in (6) follows from Lemma 3.2. [ 
Without strict positivity, the preceding result may fail even in very simple cases. 

Consider 

EXAMPLE 3.1. X= {a, b), r(a) = {8(b)), r(b) = {8(a)), c(a) = c(b) = 0. Then K(a) 
-K(b) = 0, but for any c' > 0, K'(a) =K'(b) = +oo 

The following lemma is a close analog of [13], Theorem 6.10, or [3], Theorem 1, page 23. 

LEMMA 3.3. Let (X, r, c) be a total-cost decision process. Then K(x) satisfies 

(7) K(x) = c(x) + inf{x {y(x')K(x'):x' eX):y E r(x)). 

PROOF. If K(x) = 00, then E {y(x')K(x'):x' E X) = m for all y E r(x), and both sides 
of (7) are infinite. Suppose K(x) < m. 

("2"). Fix E > 0 and find a in r at x such that K(a) c K(x) + E. Then 

K(x) 2 K(a) - E= c(x) + I {K(a[x'])a(0)(x'):x' E X) -,E 

(8) 2 c(x) +E {K(x')a(0)(x'):x' E X) -E 

2 c(x) + inf{x {K(x')y(x'):x' E X): y E r(x)) -E 
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By the definitions of A and (1, it follows that

(4)

On the other hand,

f Ct d(J ~ (lja)Ea(N(A» ~ (lja)a(b + 3£)

~ sup{K(x'):x' E A} + 3E.

(5)
f Ct d(J'::5 sup{K«(Jx'):x' E A}

:s sup{K(x'):x' E A} + E.

Combining (3), (4) and (5) yields K«(1) - K«(1') ~ 2E, proving that (1 is not E-optimal. 0
The following proposition is a stability or perturbation result for strictly positive total­

cost decision processes. It states that in any such process one may change the costs slightly
(but not uniformly) thereby obtaining a new problem whose expected total costs are
uniformly close to that of the original problem.

PROPOSITION 3.1. Let (X, r, c) be a total-cost decision process with c > 0. Given
positive E there exists d:X~ (0, (0) such that if Ic'(x) - c(x) I :s d(x) for all x, then K(x)
- E :s K'(x) :s K(x) + E for all x, (where K' is the expected total cost for (X, r, c').)

PROOF. Without loss of generality, assume that K(x) < 00 for all x EX. For m, n = 1,
2,3, ... , let Am,n = {x E X:c(x) E [(m + 1)-1, m-1

) U [m, m + 1), and n - 1 :s K(x) < n}.
The sets {Am,n} are disjoint, and X = Um,n~IAm,n.

Fix E> 0, and define d:X~ (0, (0) by d(x) = E · 2-m- n/(m + I)(n + 1) if x E Am,n. To
establish the proposition it suffices to show that for each x E X there is a strategy (1 at x
satisfying f (d) d(1 < E.

Fix x E X, and (1 any strategy at x satisfying K«(1) < K(x) + !h. Then

(6)
f (d) d(J = Lm,,,,,,l Ea(N(Am,n» d(Am,n)

:s L E(m + I)(n + 1) · 2-m - n (m + I)-I(n + 1)-1 = E,
m,n~1

where the inequality in (6) follows from Lemma 3.2. 0
Without strict positivity, the preceding result may fail even in very simple cases.

Consider

EXAMPLE 3.1. X = {a, b}, r(a) = {c5(b)}, r(b) = {c5(a)}, c(a) = c(b) = 0. Then K(a)
= K(b) = 0, but for any c' > 0, K'(a) = K'(b) = +00

The following lemma is a close analog of [13], Theorem 6.10, or [3], Theorem 1, page 23.

LEMMA 3.3. Let (X, r, c) be a total-cost decision process. Then K(x) satisfies

(7) K(x) = c(x) + inf{L {y(x')K(x') :x' EX}:y E r(x)}.

PROOF. If K(x) = 00, then L {y(x')K(x') :x' EX} = 00 for all y E r(x), and both sides
of (7) are infinite. Suppose K(x) < 00.

("~"). Fix E> °and find (1 in r at x such that K«(1) :s K(x) + E. Then

K(x) ~ K«(1) - E = c(x) + L {K«(1[x'])(1(0) (x') :x' E X} - E

(8) ~ c(x) + L {K(x')(1(0) (x') :x' E X} - E

~ c(x) + inf{L {K(x')y(x') :x' E X}: y E r(x)} - E
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where the first inequality in (8) follows by choice of a; the equality by definition of K(a) 
and by conditioning on xi; the second inequality by definition of K; and the last since 
(X0) E I(x). Since E was arbitrary, this completes this portion of the proof. 

("c'"). Fix E > 0, and for each x' E X let ax, be a strategy in F at x' with K(ax ) c K(x') 
+ E. Choose - E F(x) so that E {i(x')K(x'):x' E X} c inf{E {y(x')K(x'):x' E X}:y E 
F(x)} + E. Define a in F at x by a(0) = Y, and a[x'] = ax, for each x' E X. Then 

K(x) c K(a) = c(x) + E (K(a[x']) -(x') :x' E X} 

(9) c5 c(x) + E (K(x') -(x'):x' E X) +,e 

c c(x) + inf{E (y(x')K(x') :x' E X) :y E r(x)} + 2E, 

where the first inequality in (9) follows by definition of K; the equality as in (8); the second 
inequality by definition of a and ax; and the last inequality by choice of -. Since E was 
arbitrary, this completes the proof. [I 

LEMMA 3.4. Suppose F'(x) = {yx} for all x (i.e., (X, F') is simply a Markov chain with 
stationary transition probabilities), and let K' be the minimal expected total cost for (X, 
rF, c). Then (K'(x)} is the minimal nonnegative solution of the system of equations 

(10) k(x) = c(x) + E {yx(x')k(x'):x' E X}. 

(That is, (K'(x)} satisfies (10), and if {K"(x)} is any other nonnegative solution of (10), 
then K'(x) c K"(x) for all x in X.) 

PROOF. That {K'(x)} is a solution of (10) follows immediately from Lemma 3.3. 
Let M = (maxi,) be the transition matrix for the Markov chain (X, F'), (i.e., m~x = 

-yx(X')).- 
It is easy to see that (K'(x)} satisfies, in matrix notation, K' = En'=o Mac. By an obvious 

extension of results in [9], Chapter 1.2 (to include uncountably infinite matrices M which 
have only countably infinite nonzero entries in each row), E=o Mn c is the minimal 
nonnegative solution of (10). 0 

Contrary to Parzen's claim ([11], page 239), even if the times to absorption in the 
recurrent states are almost everywhere finite, the solution of (10) need not be unique. 

EXAMPLE 3.2. Let X = {0, 1, 2, . .. }, F(0) = {6(0)}, F(n) = {6(0)/2 + 6(n + 1)/2), and 
c(O) = 0, c(n) = 1 for n - 1. One solution (the "principal solution") of (10) is K(O) = 0, K(n) 
e 2 for n - 1, but another solution is K(O) = 0, K(n) = 2 + 2". 

THEOREM 3.1. If (X, F, c) is a total-cost decision process with c(x) > 0 for all x, then 
for each positive E there is available in F a stationary strategy a such that K(a[x]) c K(x) 
+ E for all x E X. 

PROOF. FiX E > 0, find d:X- (O mo) as in Proposition 3.1, and let K' be the minimal 
expected total cost for (X, F, c + d). By Proposition 3.1, {K'(x)) satisfies 

(11) K'(x) c e + K(x) for all x E X. 

By Lemma 3.3, {K'(x)) is a solution of 

(12) k(x) = c(x) + d(x) + inf{f, ({y(x')K(x'): x' E X}: y E F(x)). 

For each x E X, choose yx e F(x) so that {K'(x)) also satisfies 

(13) k(x) = c(x) + d(x) - e(x) + A {yx(x')k(x'): x' E X), 

where 0 c e(x) < d(x) for all x E X (possible by (12)). 
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where the fIrst inequality in (8) follows by choice of a; the equality by definition of K(a)
and by conditioning on Xl; the second inequality by definition of K; and the last since
a(0) E r(x). Since E was arbitrary, this completes this portion of the proof.

("~"). Fix E > 0, and for each x' E X let ax' be a strategy in r at x' with K(ax') ~ K(x')
+ E. Choose y E r(x) so that L {y(x')K(x'):x' E X} ~ inf{L {y(x')K(x'):x' E X}:y E
r(x)} + E. Define a in r at x by a(0) = y, and a[x'] = ax' for each x' EX. Then

K(x) ~ K(a) = c(x) + L {K(a[x'])y(x') :x' E X}

(9) ~ c(x) + L {K(x')y(x') :x' E X} + E

~ c(x) + inf{L {y(x')K(x'):x' EX}:y E r(x)} + 2E,

where the fIrst inequality in (9) follows by defInition of K; the equality as in (8); the second
inequality by defmition of a and ax,; and the last inequality by choice of y. Since E was
arbitrary, this completes the proof. 0

LEMMA 3.4. Suppose r'(x) = {Yx} for all x (i.e., (X, r') is simply a Markov chain with
stationary transition probabilities), and let K' be the minimal expected total cost for (X,
r', c). Then {K'(x)} is the minimal nonnegative solution of the system of equations

(10) k(x) = c(x) + L {yx(x')k(x') :x' EX}.

(That is, {K'(x)} satisfies (10), and if {K" (x)} is any other nonnegative solution of (10),
then K'(x) ~ K,,(x) for all x in X.)

PROOF. That {K'(x)} is a solution of (10) follows immediately from Lemma 3.3.
Let M = (mx,x') be the transition matrix for the Markov chain (X, r'), (i.e., mx,x' =

Yx(x'».
It is easy to see that {K' (x)} satisfies, in matrix notation, K' = L~=o Mnc. By an obvious

extension of results in [9], Chapter 1.2 (to include uncountably infInite matrices M which
have only countably infinite nonzero entries in each row), L~=o Mnc is the minimal
nonnegative solution of (10). 0

Contrary to Parzen's claim ([11], page 239), even if the times to absorption in the
recurrent states are almost everywhere finite, the solution of (10) need not be unique.

EXAMPLE 3.2. Let X = {O, 1,2, ... }, r(O) = {~(O)}, r(n) = {~(0)/2 + ~(n + 1)/2}, and
c(O) = 0, c(n) = 1 for n ~ 1. One solution (the "principal solution") of (10) is K(O) = 0, K(n)
== 2 for n ~ 1, but another solution is K(O) = 0, K(n) = 2 + 2n

•

THEOREM 3.1. If (X, r, c) is a total-cost decision process with c(x) > 0 for all x, then
for each positive E there is available in r a stationary strategy a such that K(a[x]) ~ K(x)
+ E for all x E x.

PROOF. Fix E > 0, fmd d:X~ (0, (0) as in Proposition 3.1, and let K' be the minimal
expected total cost for (X, r, c + d). By Proposition 3.1, {K'(x)} satisfies

(11) K'(x) ~ E + K(x) for all x E X.

By Lemma 3.3, {K'(x)} is a solution of

(12) k(x) = c(x) + d(x) + inf{L {y(x')K(x'): x' EX}: y E r(x)}.

For each x E X, choose Yx E r(x) so that {K'(x)} also satisfies

(13) k(x) = c(x) + d(x) - e(x) + L {yx(x')k(x'): x' EX},

where 0 ~ e(x) < d(x) for all x E X (possible by (12».
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Define I' by r'(x) = {yx}, let K" be the minimal expected total cost for (X, F', c + d 
- e), and let K"' be that for (X, F', c). Then 

(14) K(x) c K"'(x) c K"(x) ' K'(x) c K(x) + E for all x E X, 

where the first inequality in (14) follows since IF D F; the second since c < c + d - e; the 
third by Lemmas 3.3 and 3.4 (since (K'(x)) satisfies (13)); and the last inequality by (11). 

Define a by a(x) = yx for all x E X. Clearly K(a[x]) = K"'(x), and the conclusion follows 
by (14). [ 

In general, optimal strategies do not exist. 

EXAMPLE 3.3. X = N, F(n) = (6(m): m E N), c(n) = 1/n. Then K(1) = 1, but for any 
strategy a at 1, K(a) > 1. 

Although nonnegativity of c is sufficient for good Markov strategies (Theorem 3.2 
below), it is not sufficient for good stationary strategies. 

EXAMPLE 3.4. X = (a, b), r(a) = (((n - 1)/n)6(a) + (1/n)6(b): n E N), r(b) = (8(a)}, 
c(a) = 0, c(b) = 1. Then K(a) = 0, but for every stationary strategy a, K(U[a]) = +00. 

If the costs depend on the order of succession of states visited, (e.g., cost c(x, x') is 
incurred when going from x to x'), then even strict positivity is not sufficient for the 
existence of good stationary strategies. 

EXAMPLE 3.5. X = N, r(1) = (6(n): n E N), r(n) = (6(1)) for n 2 2, c(i, j) = 1/j if i 
- 1, = 1/i if j= 1, and = 1 otherwise. Then K(1) = 0, but for any stationary strategy a, 
K(a[l]) = +00. 

In many dynamic programming formulations of cost problems (e.g., [1, 3, 13]), the costs 
are allowed to depend upon the present state, the action taken, and the following state. 
Although good stationary strategies may not exist in general (Example 3.5), if the costs are 
nonnegative good Markov strategies always exist. 

DEFINITIONS. A generalized total-cost decision process is a triple (X, F, c), where (X, 
r) is a decision process, and c: X x 9'(X) x X -3 [0, 00). The (conditional) expected total 
cost using strategy a is k(a[xi]) = Z {C(Xn,, a(xl, *.., Xn), Xn+i) * 9(Xl)(X2). a(Xl, X2)(X3) 

... a(x1, *.*,*Xn), (Xn+l): Xi E X, j = 1 * , n + 1), and the minimal expected total cost 
starting at x is K(x) = inf{K(a): a is in r at x} = inf{K(o[x]): a is in F). 

THEOREM 3.2. If (X, F, c) is a generalized total-cost decision process, then for each 
positive E there is available a Markov strategy a such that K(a[x]) c K(x) + E for all x 
in X. 

PROOF. Fix E > O and define the (nongeneralized) total-cost decision process (X', rF, 
c') as follows. Let X' = (X x N) u (X x Y(X) x X x N) and define r' by r'(x, n) = {,XXeX 
y(x')6(x, y, x', n): y E r(x)) and r'(x, y, x', n) = {6(x', n + 1)). 

Define c' by c'(x, n) = E.2-2n and c'(x, y, x', n) = c(x, y, x') + E2 -2n 

There is a natural one-to-one correspondence between strategies a in r at x and 
strategies a' in r' at (x, 1) given by a(xi, *.*, xn)(x) = a'((x, a(0), xi, 1), (xi, 2), (x1, a(xi), 
X2, 2), (X2, 3), . . , (Xn, n + 1)) (Xn, a(x1, * *, x,) x, n + 1). 

The definitions of k and c' give that 

(15) 1 k(ajx]) - K(a'[x, 1]) | '-E for all x E X, 
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Defme r' by r' (x) = {yx}, let K" be the minimal expected total cost for (X, r', c + d
- e), and let K'" be that for (X, r', c). Then

(14) K(x) ~ K"'(x) ~ K"(x) ~ K'(x) ~ K(x) + E for all x E X,

where the first inequality in (14) follows since r :J r'; the second since c < c + d - e; the
third by Lemmas 3.3 and 3.4 (since {K'(x)} satisfies (13»; and the last inequality by (11).

Define (J by (J(x) = Yx for all x EX. Clearly K(o{x]) = K'" (x), and the conclusion follows
by (14). 0

In general, optimal strategies do not exist.

EXAMPLE 3.3. X = N, r(n) = {~(m): mEN}, c(n) = lin. Then K(I) = 1, but for any
strategy (J at 1, K «(J) > 1.

Although nonnegativity of c is sufficient for good Markov strategies (Theorem 3.2
below), it is not sufficient for good stationary strategies.

EXAMPLE 3.4. X = {a, b}, r(a) = {«n - 1)/n)~(a) + (1/n)~(b): n EN}, r(b) = {~(a)},

c(a) = 0, c(b) = 1. Then K(a) = 0, but for every stationary strategy (J, K(o{a]) = +00.

If the costs depend on the order of succession of states visited, (e.g., cost c(x, x') is
incurred when going from x to x'), then even strict positivity is not sufficient for the
existence of good stationary strategies.

EXAMPLE 3.5. X = N, r(l) = {~(n): n EN}, r(n) = {~(1)} for n ~ 2, c(i,}) = II} if i
= 1, = Iii if} = 1, and = 1 otherwise. Then K(I) = 0, but for any stationary strategy (J,

K(o{l]) = +00.

In many dynamic programming formulations of cost problems (e.g., [1,3, 13]), the costs
are allowed to depend upon the present state, the action taken, and the following state.
Although good stationary strategies may not exist in general (Example 3.5), if the costs are
nonnegative good Markov strategies always exist.

DEFINITIONS. A generalized total-cost decision process is a triple (X, r, c), where (X,
r) is a decision process, and c: X X g>(X) X X ~ [0, (0). The (conditional) expected total
cost using strategy (J is K«(J[xd) = L~=I L {c(x n, (J(XI, • •• , xn), Xn+I) •(J(XI)(X2). (J(XI, X2)(X3)
• •• (J(XI, ••• , xn), (xn+1): x j E X, } = 1, · · · , n + I}, and the minimal expected total cost
starting at x is K(x) = inf{K«(J): (J is in r at x} = inf{K(o{x]): (J is in r}.

THEOREM 3.2. If (X, r, c) is a generalized total-cost decision process, then for each
positive E there is available a Markov strategy (J such that K«(J[x]) ~ K(x) + E for all x
inX.

PROOF. Fix E > °and define the (nongeneralized) total-cost decision process (X', r',
c') as follows. Let X' = (X X N) u (X X .?P(X) X X X N) and defme r' by r'(x, n) = {Lx'EX
y(x')~(x, y, x', n): y E r(x)} and r'(x, y, x', n) = {~(x', n + I)}.

Defme c' by c'(x, n) = E.2-2n and c'(x, y, x', n) = c(x, y, x') + E.2-2n

There is a natural one-to-one correspondence between strategies (J in r at x and
strategies (J' in r' at (x, 1) given by (J(XI, ••• , xn)(x) = (J'«x, (J(0), Xl, 1), (Xl, 2), (Xl, (J(XI),
X2, 2), (X2, 3), .. · , (xn, n + 1» (xn, (J(XI, • • • , xn), x, n + 1).

The definitions of K and c' give that

(15) IJ(o{x]) - K«(J'[x, 1]) I~ E for all x EX,
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(where K is the minimal expected total cost for (X', rF, c')) and hence that 

(16) l K(x)-K(x, 1) I c E for all x E X. 

By construction, (X', rF, c') is a (nongeneralized) decision process with strictly positive 
costs, so by Theorem 3.1 there is available a stationary strategy a' in rF such that 
K(a'[x']) ' K(x') + E for all x' E X'. 

In particular, it follows that 

(17) K(a'[x, 1]) c K(x, 1) + E for all x E X. 

Let a be the strategy in r corresponding to a' (i.e., a(xi, * * *, x,,) = y if and only if a'(x., 
n + 1) = Ex'Ex y(x')6(xn, y, x', n + 1)). Clearly a is Markov, and by (15), (16) and (17), 
satisfies k(a[x]) c k(x) + 2E. [ 

4. Goal problems. The purpose of this section is to prove (Theorem 4.1) that in any 
decision process with a goal, there always exist stationary strategies which uniformly 
(nearly) minimize the expected time to the goal, and (Theorem 4.2) that if the state space 
is countable, there even exist stationary strategies which simultaneously (nearly) minimize 
the expected time to the goal and (nearly) maximize the probability of reaching the goal. 

DEFINITIONS. As in [6], a goal problem is a triple (X, r, g) where (X, r) is a decision 
process and g E X is a "goal" state. The time to the goal, T, is the function T: XN -* N U 
f{o) defined by T(x1, x2, * * * ) = min j: xj = g) if such a j exists, and = oo otherwise. The 
expected time to the goal using strategy a, W(a), is f T da, and the minimal expected time 
to the goal from x E X, W(x), is W(x) = inf{W(a): a is in r at x} if x # g, and W(g) = 0. 

THEOREM 4.1. If(X, r, g) is a goal problem then for each positive E there is available 
a stationary strategy a such that W(a[x]) c W(x) + E for all x E X. 

PROOF. Define the total-cost decision process (X', rF, c) as follows: X' = X U N (N 
disjoint from X); F'(x) = r(x) if x # g, r (g) = {8(1)) and r(n) = {8(n + 1)) for n 2 1; c(x) 
-1 if x # g, c(g) = 1, and c(n) = 1/2 nfor n 2 1. 

Fix E > 0. Since the costs are strictly positive and depend only on the current state, 
Theorem 3.1 guarantees the existence of a stationary strategy a' in rF satisfying K(a'[x]) 
_K(x) + E for all x E X', where K is the minimal expected total cost for (X', rF, c). 

Let a be any stationary strategy in r satisfying a(x) = a'(x) if x E X. Since K(x) = 

W(x) + 2, and K(a) = W(a) + 2, a satisfies W(a[x]) ' W(x) + E for all x E X. [] 
Theorem 4.1 generalizes [6], Theorem 5.1, which proved the same result for finite X. 

Clearly g can be replaced by any non-empty subset G of X and the same conclusion will 
follow. 

Precisely the same proof shows that if (X, r, g, c) is a goal problem with nongoal costs 
bounded away from zero (i.e., c(x) - a > 0 for all x # g), then for each positive E there is 
available a stationary strategy which uniformly (nearly) minimizes the expected cost to 
the goal. If the costs are not bounded away from zero, some strategies which will yield 
small expected total cost may never reach the goal, and it is not known if there always 
exist uniformly E-optimal stationary strategies. 

It is important to note that in Theorem 4.1 the state space X is completely arbitrary, in 
contrast to Ornstein's example ([10], Theorem A) of a decision process in which stationary 
strategies are not uniformly adequate if one's objective is to maximize the probability of 
reaching the goal. 

If X is countable, however, there are always available stationary strategies which are 
nearly optimal in both senses, that is, which simultaneously (nearly) minimize the expected 
time to the goal and (nearly) maximize the probability of reaching the goal. 
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(16) IK(x) - K(x, 1) I~ E for all x E X.

By construction, (X', r', c') is a (nongeneralized) decision process with strictly positive
costs, so by Theorem 3.1 there is available a stationary strategy a' in r' such that
K(a'[x']) :s K(x') + Efor all x' EX'.

In particular, it follows that

(17) K(a'[x, 1]) :s K(x, 1) + E for all x EX.

Let a be the strategy in r corresponding to a' (i.e., a(xh ... , xn ) = y if and only if a'(xn ,

n + 1) = Lx'EX y(X')~(Xn, y, x', n + 1». Clearly a is Markov, and by (15), (16) and (17),
satisfies K(a[x]) ~ K(x) + 2E. 0

4. Goal problems. The purpose of this section is to prove (Theorem 4.1) that in any
decision process with a goal, there always exist stationary strategies which uniformly
(nearly) minimize the expected time to the goal, and (Theorem 4.2) that if the state space
is countable, there even exist stationary strategies which simultaneously (nearly) minimize
the expected time to the goal and (nearly) maximize the probability of reaching the goal.

DEFINITIONS. As in [6], a goal problem is a triple (X, r, g) where (X, r) is a decision
process and g E X is a "goal" state. The time to the goal, T, is the function T: X N ~ N u
{oo} defined by T (xh X2, • • .) = minU: x j = g} if such a j exists, and = 00 otherwise. The
expected time to the goal using strategy a, W(a), is f T da, and the minimal expected time
to the goal from x EX, W(x), is W(x) = inf{W(a): a is in r at x} if x ~ g, and W(g) = o.

THEOREM 4.1. If (X, r, g) is a goal problem then for each positive Ethere is available
a stationary strategy a such that W(a[x]) ~ W(x) + E for all x EX.

PROOF. Defme the total-cost decision process (X', r', c) as follows: X' = X u N (N
disjoint from X); r'(x) = r(x) if x ~ g, r(g) = {~(1)} and r(n) = {~(n + I)} for n ~ 1; c(x)
= 1 if x ~ g, c(g) = 1, and c(n) = 1/2n for n ~ 1.

Fix E > o. Since the costs are strictly positive and depend only on the current state,
Theorem 3.1 guarantees the existence of a stationary strategy a' in r' satisfying K(a'[x])
~ K(x) + Efor all x E X', where K is the minimal expeeted total cost for (X', r', c).

Let a be any stationary strategy in r satisfying a(x) = a'(x) if x E X. Since K(x) =
W(x) + 2, and K(a) = W(a) + 2, a satisfies W(a[x]) ~ W(x) + Efor all x EX. 0

Theorem 4.1 generalizes [6], Theorem 5.1, which proved the same result for finite X.
Clearly g can be replaced by any non-empty subset G of X and the same conclusion will
follow.

Precisely the same proof shows that if (X, r, g, c) is a goal problem with nongoal costs
bounded away from zero (i.e., c(x) ~ a > 0 for all x ~ g), then for each positive Ethere is
available a stationary strategy which uniformly (nearly) minimizes the expected cost to
the goal. If the costs are not bounded away from zero, some strategies which will yield
small expected total cost may never reach the goal, and it is not known if there always
exist uniformly E-Optimal stationary strategies.

It is important to note that in Theorem 4.1 the state space X is completely arbitrary, in
contrast to Ornstein's example ([10], Theorem A) of a decision process L~ which stationary
strategies are not uniformly adequate if one's objective is to maximize the probability of
reaching the goal.

If X is countable, however, there are always available stationary strategies which are
nearly optimal in both senses, that is, which simultaneously (nearly) minimize the expected
time to the goal and (nearly) maximize the probability of reaching the goal.
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DEFINITION. Let V(a) be the probability of reaching the goal using a, and let V(x) = 
sup fV(a): a is inrat x} for x # g, and V(g) = 1. 

THEOREM 4.2. If (X, F, g) is a goal problem with X countable, then for each positive 
E there is available a stationary strategy a satisfying both 

(18) V(a[x]) - V(x) - E for all x E X 

and 

(19) W(a[x]) ' W(x) + E for all x E X. 

PROOF. Fix E > 0, and find a stationary strategy a' satisfying (18) (possible by [10], 
Theorem B), and a stationary strategy a" satisfying (19) (possible by Theorem 4.1). Let S 
= {x E X: W(x) < 00), and define the stationary strategy a by a(x) = a'(x) if x 0 S, and 
= a"(x) if x E S. It is easy to check that a satisfies both (18) and (19). [ 

Theorem 4.2 strengthens [6], Theorem 5.1, which proves (16) and (17) for finite X, and 
also strengthens Ornstein's result ([10], Theorem B), which proves only (16). For uncount- 
able X, Ornstein's example ([10], Theorem A) shows that it is not possible in general to 
find a stationary strategy satisfying even (18). 

The following proposition, typical of the considerable simplifications that occur when 
X is finite, is a generalization of the well-known fact that null recurrent states do not exist 
in finite Markov chains with stationary transition probabilities. 

PROPOSITION 4.1. If (X, r, g) is a goal problem with finite X and with V(x) = 1 for all 
x, then W(x) < X for all x. 

PROOF. It is even true that there is a stationary strategy a in r with W(a[x]) < 0 for 
all x. Suppose XI n. Let S1 = {x E X: 3 yE r(x) with y(g) >0), and Sk = {x E X: 3 
y E r(x) with y(Sk-l) > 0) \ Sk-1. Since V(x) = 1 for all x E Xuk=1 Sk = X. For each x 
E X, choose yx E r(x) such that yx satisfies yx(g) > 0 if x E S,, and yx(Sk-l) > 0 if x E Sk. 
Define the stationary strategy a in r by a(x) = yx for all x. Under a, X is a finite Markov 
chain with (stationary transition probabilities and) a single ergodic class containing g. The 
finiteness of X guarantees that the expected first passage time to g is everywhere finite, 
that is, W(a[x]) < 0 for all x. [0 

The following easy example shows that the conclusion of Proposition 4.1 may fail if X 
is infinite. 

EXAMPLE 4.1. X = {0, 1, 2, 3, * ), g = 1, r(1) = {6(1)), r(j) = {6(j - 1)) forj > 1, 
and F(0) = (E' 1 2- k(2k)). Clearly V(x) = 1 for all x, but W(O) = 00. 

5. Applications to infinite systems of equations. The purpose of this section is to 
mention the relationship of the results of Section 3 to the classical study of infinite systems 
of linear equations of the form 

(20) wi = bi + ,=mijwj i = 1, 2,.... 

The following perturbation result for such systems seems to be new. It states that if the 
matrix (mij) is stochastic, then one may change the bi slightly (but not uniformly), thereby 
obtaining a new system with solutions uniformly close to that of the original. 

PROPOSITION 5.1. If bi > 0 for all i, and the matrix (mij) is stochastic, then for each 
positive E there is a function d: N -3 (0, m0) with the following property: if b' satisfies I b, 
- bi I < di for all i, then for every solution {w }) of (20) there is a solution {w) of 

(21) wi = 6 + X7=i mijw, 

satisfying wr - E w' ' wi + E for all i. 
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DEFINITION. Let V(u) be the probability of reaching the goal using u, and let V(x) =

sup {V(u): u is in r at x} for x ~ g, and V(g) = 1.

THEOREM 4.2. If (X, r, g) is a goal problem with X countable, then for each positive
E there is available a stationary strategy u satisfying both

(18)

and

(19)

V(u[x]) ~ V(x) - E

W(u[x]) ~ W(x) + E

for all x EX

for all x EX.

PROOF. Fix E > 0, and find a stationary strategy u' satisfying (18) (possible by [10],
Theorem B), and a stationary strategy u" satisfying (19) (possible by Theorem 4.1). Let S
= {x EX: W(x) < oo}, and defme the stationary strategy u by u(x) = u'(x) if xes, and
= u"(x) if xES. It is easy to check that u satisfies both (18) and (19). 0

Theorem 4.2 strengthens [6], Theorem 5.1, which proves (16) and (17) for fmite X, and
also strengthens Ornstein's result ([10], Theorem B), which proves only (16). For uncount­
able X, Ornstein's example ([10], Theorem A) shows that it is not possible in general to
fmd a stationary strategy satisfying even (18).

The following proposition, typical of the considerable simplifications that occur when
X is finite, is a generalization of the well-known fact that null recurrent states do not exist
in fmite Markov chains with stationary transition probabilities.

PROPOSITION 4.1. If (X, r, g) is a goal problem with finite X and with V(x) = 1 for all
x, then W(x) < 00 for all x.

PROOF. It is even true that there is a stationary strategy u in r with W(u[x]) < 00 for
all x. Suppose IXI = n. Let Sl = {x EX: 3 y E r(x) with y(g) > OJ, and Sk = {x EX: 3
y E r(x) with y(Sk-1) > O} "" Sk-1. Since V(x) = 1 for all x E X, U k=l Sk = X. For each x
E X, choose Yx E r(x) such that Yx satisfies yx(g) > 0 if xES!, and Yx(Sk-1) > 0 if x E Sk.
Define the stationary strategy u in r by u(x) = Yx for all x. Under u, X is a finite Markov
chain with (stationary transition probabilities and) a single ergodic class containing g. The
finiteness of X guarantees that the expected fIrst passage time to g is everywhere fmite,
that is, W(u[x]) < 00 for all x. 0

The following easy example shows that the conclusion of Proposition 4.1 may fail if X
is infinite.

EXAMPLE 4.1. X = {O, 1,2,3, ... }, g = 1, r(l) = {~(1)}, r(j) = {~(j - I)} for j > 1,
and r(O) = {Lk=l 2-k~(2k)}. Clearly V(x) = 1 for all x, but W(O) = 00.

5. Applications to infinite systems of equations. The purpose of this section is to
mention the relationship of the results of Section 3 to the classical study of infmite systems
of linear equations of the form

(20) i = 1,2, ....

The following perturbation result for such systems seems to be new. It states that if the
matrix (mij) is stochastic, then one may change the bi slightly (but not uniformly), thereby
obtaining a new system with solutions uniformly close to that of the original.

PROPOSITION 5.1. If bi > 0 for all i, and the matrix (mij) is stochastic, then for each
positive E there is a function d: N ~ (0, 00) with the following property: if b' satisfies Ibi
- bi I< di for all i, then for every solution {wt} of (20) there is a solution {wi} of

(21)

satisfying wi - E ~ wi ~ wi + E for all i.
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PROOF. If {w,*) is the minimal nonnegative (i.e., principal) solution of (20), then the 
result follows exactly as in the proof of Theorem 3.1 for the special case F r(x) I = 1 for all 
x. If {w*} is any other solution of (20), the result is easily seen to follow since the 
homogeneous systems associated with (20) and (21) are identical. a 

Theorem 3.1 may be used to generalize the notion of the principal solution [9] of a 
system of linear equations to include systems of the form 

(22) k(x) = c(x) + inf(E {y(x')k(x'): x' E X}: y E r(x)}, 

where (X, r) is a decision process and c(x) > 0 for all x. 

DEFINITION. The principal solution of (22) is the minimal nonnegative solution; that 
is, a nonnegative solution {s(x)) of (22) is the principal solution if every other nonnegative 
solution [?(x)} is such that s(x) ' s'(x) for all x E X. 

Clearly the principal solution, if it exists, is unique. The question of existence is 
answered by the following proposition. 

PROPOSITION 5.2. If (X, r, c) is a total-cost decision process with c(x) > 0 for all x, 
then the following are equivalent: 

(i) K(x) = inf{K(a): a is in r at x}; 
(ii) {K(x)} is the principal solution of (20); 
(iii) K = inf{XZo Mnc: M is the transition probability matrix associated with some 

stationary strategy in r). 

PROOF. Equivalence of (i) and (iii) follows from Theorem 3.1. Equivalence of (ii) and 
(iii) follows as in the proof of Lemma 3.4. 0 

Acknowledgment. The authors are grateful to Robert Kertz for several useful 
conversations. 
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PROOF. If {wt} is the minimal nonnegative (i.e., principal) solution of (20), then the
result follows exactly as in the proof of Theorem 3.1 for the special case Ir(x) I = 1 for all
x. If {wt} is any other solution of (20), the result is easily seen to follow since the
homogeneous systems associated with (20) and (21) are identical. 0

Theorem 3.1 may be used to generalize the notion of the principal solution [9] of a
system of linear equations to include systems of the fonn

(22) k(x) = c(x) + inf{I (y(x')k(x'): x' EX}: y E r(x)},

where (X, r) is a decision process and c(x) > 0 for all x.

DEFINITION. The principal solution of (22) is the minimal nonnegative solution; that
is, a nonnegative solution {s(x)} of (22) is the principal solution if every other nonnegative
solution {s(x)} is such that s(x) ~ s(x) for all x EX.

Clearly the principal solution, if it exists, is unique. The question of existence is
answered by the following proposition.

PROPOSITION 5.2. If (X, r, c) is a total-cost decision process with c(x) > 0 for all x,
then the following are equivalent:

(i) K(x) = inf{K(a): a is in r at x};
(ii) (K(x)} is the principal solution of (20);
(iii) K = inf{L~=o Mnc: M is the transition probability matrix associated with some

stationary strategy in r}.

PROOF. Equivalence of (i) and (iii) follows from Theorem 3.1. Equivalence of (ii) and
(iii) follows as in the proof of Lemma 3.4. 0

Acknowledgment. The authors are grateful to Robert Kertz for several useful
conversations.

REFERENCES

[1] BLACKWELL, D. (1965). Discounted dynamic programming. Ann. Math. Statist. 36226-235.
[2] DERMAN, C. (1962). On sequential decisions and Markov chains. Management Sci. 9 16-24.
[3] DERMAN, C. (1970). Finite State Markovian Decision Processes. Academic Press, New York.
[4] DUBINS, L. AND SAVAGE, L. (1976). Inequalities for Stochastic Processes. Dover, New York.
[5] HILL, T. (1979a). On the existence of good Markov strategies. Trans. Amer. Math. Soc. 247 157-

176.
[6] HILL, T. (1979b). On reaching a goal quickly. AFOSR Technical Report, Georgia Inst. Technol­

ogy.
[7] HORDIJK, A. (1974). Dynamic Programming and Markov Potential Theory. Math. Centre

Tracts, Amsterdam.
[8] HOWARD, R. (1960). Dynamic Programming and Markov Process. Technology Press, Cam­

bridge, Mass.
[9] KANTOROVITCH, L. AND KRYLOV, V. (1964). Approximate Methods of Higher Analysis.

Noordhoff, Groningen.
[10] ORNSTEIN, D. (1969). On the existence of stationary optimal strategies. Proc. Amer. Math. Soc.

20563-569.
[11] PARZEN, E. (1965). Stochastic Processes. Holden-Day, San Francisco.
[12] PURVES, R. AND SUDDERTH, W. (1976). Some finitely additive probability. Ann. Probability 4

259-276.
[13] Ross, S. (1970). Applied Probability Models with Optimization Applications. Holden-Day, San

Francisco.
[14] SCHAL, M. (1975). On dynamic programming. Compactness of the space of policies. Stochastic

Processes Appl. 3 345-364.
[15] SUDDERTH, W. (1969a). On the existence of good stationary strategies. Trans. Amer. Math. Soc.

135 399-414.
[16] SUDDERTH, W. (1969b). On measurable gambling problems. Ann. Math. Statist. 42 260-269.

SCHOOL OF MATHEMATICS
GEORGIA INSTITUTE OF TECHNOLOGY
ATLANTA, GEORGIA 30332


	Article Contents
	p. 293
	p. 294
	p. 295
	p. 296
	p. 297
	p. 298
	p. 299
	p. 300
	p. 301

	Issue Table of Contents
	The Annals of Probability, Vol. 9, No. 2 (Apr., 1981), pp. 173-348
	Front Matter [pp. ]
	On the Williams-Bjerknes Tumour Growth Model I [pp. 173-185]
	The Shape of the Limit Set in Richardson's Growth Model [pp. 186-193]
	Weak Convergence of the Empirical Characteristic Function [pp. 194-201]
	On the Accompanying Laws Theorem in Banach Spaces [pp. 202-210]
	Asymptotic Properties of Semigroups of Measures on Vector Spaces [pp. 211-220]
	Tauberian Theorems and the Central Limit Theorem [pp. 221-231]
	Brownian Motions on the Homeomorphisms of the Plane [pp. 232-254]
	Some Classes of Two-Parameter Martingales [pp. 255-265]
	Order Convergence of Martingales in Terms of Countably Additive and Purely Finitely Additive Martingales [pp. 266-275]
	Ordering of Distributions and Rearrangement of Functions [pp. 276-283]
	Arm-Acquiring Bandits [pp. 284-292]
	Decision Processes with Total-Cost Criteria [pp. 293-301]
	Reflected Brownian Motion on an Orthant [pp. 302-308]
	Short Communications
	On Skew Brownian Motion [pp. 309-313]
	Construction of a Martingale with Given Absolute Value [pp. 314-320]
	Borel Sets Via Games [pp. 321-322]
	The Empirical Discrepancy Over Lower Layers and a Related Law of Large Numbers [pp. 323-329]
	Comparison Theorems for Sample Function Growth [pp. 330-334]
	Approximation of Product Measures with an Application to Order Statistics [pp. 335-341]
	A Berry-Esseen Theorem for Linear Combinations of Order Statistics [pp. 342-347]

	Correction Note: Correction to "The Existence and Uniqueness of Stationary Measures for Markov-Renewal Processes" [pp. 348]
	Back Matter [pp. ]





