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INTRODUCTION 

Obesity has become a global epidemic, especially in the United States within 

the last ten years (9). Along with decreased quality of life, obesity leads to serious 

health complications and heightens chronic disease risk in affected individuals. Direct 

links have been confirmed to obesity as a major risk factor for cardiovascular disease 

and type-2 diabetes (26). Lifestyle changes have been recommended for reducing 

these risks; one of the major changes involving physical activity levels. 

Physical activity plays an important role in weight management because it 

uniquely influences both energy intake and energy expenditure. Studies have shown 

that single bouts of exercise influence energy intake (20, 3) by altering concentrations 

of appetite regulating hormones (e.g. increased insulin, decreased ghrelin) during 

and shortly following exercise, thus suppressing hunger. Further studies have 

revealed that a single bout of exercise did not lead to compensatory caloric intake 

(29). Taken together, the data suggests that physical activity may temporarily 

suppress appetite. 

 While many studies have explored the relationships between physical activity, 

hormones, and appetite, none have explored the association between exercise and 

appetite-regulating regions of the brain. The brain plays an integral role in interpreting 

internal (e.g. hormones, etc.) and external stimuli (e.g. smell, taste, etc.), and 

regulating hunger and satiety responses. The question remains how the brain 

regions of appetite regulation are influenced by exercise when exposed to visual food 

cues. Known reward centers of the brain include the hypothalamus, orbitofrontal 

cortex, and left insular cortex (8, 27, 28, 12) while the dorsolateral prefrontal cortex is 

associated with inhibition of hunger (8, 22). These reward and inhibition regions are 

influenced by exercise (2), but no studies have investigated their post-exercise 

response to visual food cues via neuroimaging.  

The purpose of this study was to determine if brain regions of interest were 

activated or suppressed following exercise when presented with visual food cues. We 

hypothesized that a single bout of moderate physical activity would suppress the 

reward regions and activate the inhibitory regions when presented with high-calorie 

food images.  
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METHODS 

APPROACH 

 The purpose of this study was to determine if a single bout of exercise 

influences specific regions of the brain involved in inhibition and reward related to 

high-energy food stimuli and hunger. Using a counterbalanced, cross-over study 

design, in which subjects served as their own controls, each subject completed an 

exercise and no-exercise (rest) condition.  Immediately after each condition a 

functional magnetic resonance imaging (fMRI) scan occurred. Blood oxygen level 

demands (BOLD) in response to food images were measured after each condition 

and compared among brain regions. 

 

SUBJECTS 

30 (17 male and 13 female) subjects were recruited using flyers and 

advertisements throughout the city of San Luis Obispo. All subjects were healthy, 

moderately active, right-handed, and between the ages 18-40 (see Table 1). 

Inclusion criteria was; non-smoking, free of chronic or metabolic diseases, and 

physically able to perform one hour of physical activity on a stationary cycle 

ergometer as determined by a Health and Fitness History and Physical Activity 

Readiness Questionnaire (PAR-Q) and 

preliminary testing.  Exclusion criteria 

included typical MRI contraindications 

(e.g. metal and/or electronic implants, 

claustrophobia, and pregnancy), 

neurologic and psychiatric conditions, 

unsafe dieting practices, health 

problems prohibiting physical activity, 

and a body mass index (BMI) > 30 

kg/m2.  This study was approved by the Human Subjects Committee at California 

Polytechnic State University and written and verbal informed consent was obtained 

by each volunteer.   

 

TABLE 1: Subject Characteristics – Mean values of number of 
subjects, subject age, weight, height, body mass index (BMI), 
percent body fat, and VO2 max with standard deviation and 

entire value range. 

Variable Mean ± SD Range 

N (M,W) 30 (17,13) N/A 

Age (years) 22.0 ± 3.8 18-34 

Weight (kg) 71.4 ± 12.2 50.9-100 

Height (cm) 173.6 ± 10.3 156-198.9 

BMI (kg/m
2
) 23.6 ± 2.4 19.13-28.60 

Body Fat (%) 16.7 ± 7.0 6.5-29.3 

VO2 max 42.3 ± 8.2 29.6-65.7 
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EXPERIMENTAL PROTOCOL 

PRELIMINARY TESTING 

Prior to starting the study, participants completed a Health and Fitness 

Questionnaire as well as a PAR-Q to determine their eligibility for participation. The 

Health and Fitness Questionnaire addressed issues such as current medications, 

mental and physical health conditions, and eating habits. Extreme diets, mental 

health disturbances, and physically limiting health problems excluded subjects from 

participating in the study. Upon qualification, subjects’ height, weight, and percentage 

body fat were measured. Height was measured by stadiometer (Ellard 

Instrumentation LTD., Monroe, WA), weight by balance scale (Continental Scale 

Corporation, Bridgeview, IL), and body fat by bioelectrical impedance (Omron body 

fat analyzer HBF-301, Vernon Hills, IL). From these values, body mass index (BMI, 

kg/m2) and total daily energy expenditure (TDEE) were calculated. TDEE was 

calculated in accordance with the equation derived from Harris et al. (15) particular to 

males and females depicted below. Activity factor was determined based on 

responses from the Health and Fitness questionnaire.  

 

Males: TDEE = 66.47 + 13.75(weight in kg) + 5.0(height in cm) - 6.76(age in years) * (activity factor) 

Females: TDEE = 655.1 + 9.56(weight in kg) + 1.85(height in cm) – 4.68(age in years) * (activity factor) 

 

 Peak oxygen consumption (VO2 peak) was assessed using the Astrand 

Bicycle Ergometer Maximal Test Protocol (16). The protocol consisted of one 3-

minute rest stage followed by continuous 3-minute stages of increasing resistance on 

the stationary cycle ergometer (Lode Corival 400, Groningen, Nederland); with a 

constant cadence of 50 rpm. The initial power output was 50W for women and 100W 

for men. After the initial stage, 30W and 50W were added to each subsequent stage 

for women and men respectively. The test continued until three of the four following 

conditions were met: 1] Pedal cadence <50 rpm; 2] respiratory exchange ratio > 1.15; 

3] the subject’s heart rate was within 10 beats of age-predicted max; and 4] subject 

voluntarily stopped the test. During the VO2 peak test, expired air was collected 

through a two-way breathing valve that was connected to an online metabolic system 

(ParvoMedics Truemax 2400, Salt Lake City, UT) that was calibrated prior to each 
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test. VO2 peak was determined by the highest 30-second value obtained and 

maximum wattage was calculated as the proportion of completed stage time over 

total time of stage achieved (3 minutes per stage) multiplied by the expected wattage 

for the given stage.  For example, a female subject completes only 2 min (120s) of 

the 3 min (180s) stage, the percentage of the stage completed (120s/180s x 100%= 

66%) will be multiplied by the total wattage of the stage (30W) to determine the 

wattage of her final stage (.66*30W=20W). Throughout the VO2 peak test, heart rate 

(HR) was continuously monitored using a heart rate monitor (Polar Electro, Lake 

Success, NY) the subject wore. VO2 peak, peak watts, and HR were used to 

determine the appropriate level of physical work during the exercise condition of the 

trial. 

 

TEMPLETON DATA COLLECTION 

 All subjects reported to Templeton Imaging Medical Corporation (Templeton, 

CA) following an overnight (8-12 hour) fast and 24 hours without exercise, caffeine, 

or alcohol. Upon arrival, subjects completed an appetite questionnaire to assess 

subjective appetite responses using a visual analog scale (5). Subjects then were 

randomly split into two conditions, exercise and non-exercise. Exercise was 

performed for 60 minutes above 75% of their HRmax on a cycle ergometer.  In the 

non-exercise condition, subjects rested for 60 minutes prior to the scan. The order of 

the conditions was counterbalanced and each subject completed both conditions. 

Within the first ten minutes of exercise, wattage was increased to reach 75% of age-

predicted HRmax. Watts were maintained for an additional 50 minutes for a total of 60 

minutes of exercise. HR and power (W) were continuously monitored in five-minute 

intervals and recorded for the duration of the exercise bout. Average HR (bpm), 

average power output (W), and relative oxygen consumption (mL/kg/min) were 

calculated from the last 30 minutes of steady-state cycling. Relative oxygen costs of 

cycle ergometry were predicted from a previously validated equation provided by 

Latin et al. as described below (21).  

 

VO2 (mL•min) = Kgm•min
-1

 * 2mL•Kgm
-1

 + (3.5 mL•kg
-1

•min
-1

* body weight in kg) + 260 mL•min
-1
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Total energy expenditure (kcal) was also calculated for the entire 60 minute exercise 

bout (1). 

Energy Expenditure (kcal•min) = VO2 (L•min) * 5.0 

 

Immediately following the exercise or non-exercise portion of the trial, subjects 

completed another appetite questionnaire (identical to the first), and proceeded to the 

magnetic resonance (MR) machine within a maximum of two minutes from 

completion of the first stage. Subjects were then instructed to lay supine on the MR 

scanner table and were fitted with headphones and a head coil by the MRI 

technician. Visual stimuli were presented via a laptop computer (Dell Latitude E5410) 

onto a 32” monitor (Vizio, Irvine, CA) outside the imaging room using E-Prime 

software (Psychology Software Tools Inc., Pittsburg, PA) which subjects could see 

via a mirror mounted to the head coil.  

 Changes in BOLD signals to high and low energy food pictures using fMRI 

were assessed. Immediately after the scans were complete, subjects were given a 

final appetite questionnaire and completed a 24 hour dietary recall. The dietary recall 

was conducted following all imaging procedures so as not to disrupt the typical brain 

activation by food images. There was a one-week washout period between all trials. 

 

fMRI DATA ACQUISITION AND ANALYSIS 

OVERVIEW 

fMRI data was acquired throughout two stages. First, a five minute anatomical 

scan was conducted as a reference for BOLD data. Second, BOLD data was 

collected during blocks of visual food cue stimulation paradigm. 

 

 

VISUAL FOOD CUES  

 The food cue paradigm was adapted from Killgore et al. (18) by using the high 

quality photographs obtained from the authors. During the fMRI scan, subjects 

completed two stimulation paradigms over two scanning runs in a counterbalanced 



 
 

- 8 - 
 

order: 1] control images and low-energy food images (see Figure 1) and 2] control 

images and high-energy food images (see Figure 2). Control photographs consisted 

of non-edible food objects with similar visual complexity, texture, and color including 

trees, shrubs, and flowers. Low-energy images depicted fresh fruits, vegetables, 

whole-grain cereal, and garden salads. High-energy photographs included images 

depicting cake, cheeseburgers, milkshakes, chocolate chip cookies, and pasta with 

meat sauce. Each paradigm lasted for 180s and consisted of three 30s control blocks 

which alternated with three 30s stimulation blocks. Each 30s block consisted of 10 

images, either control or stimulation, which were presented for 3s each.  

Condition Time in 30s intervals 

Control       

Low-Energy       

FIGURE 1: Food Cue Paradigm – Low-Energy and Control 

Condition Time in 30s intervals 

Control       

High-Energy       

FIGURE 2: Food Cue Paradigm – High-Energy and Control 

 

DATA COLLECTION 

Functional neuroimaging data was acquired in two runs on a 1.5-T-Siemens 

Magnetom MRI scanner (Siemens, New York, NY) equipped with a standard head 

coil. Functional imaging was collected by using a whole-brain imaging sequence 

(TR= 3000ms, TE = 56 ms, field of view = 200cm, 642 acquisition matrix, 30 axial 

slices, and 3.5mm slice thickness). BOLD data was collected during 12 blocks in one 

12-minute session (see Figures 1 and 2). For anatomical localization, matched T1-

weighted high-resolution images were collected of the entire brain (256•256 matrix, 

field of view = 256cm, 1mm slice thickness) in the sagittal plane as a reference. 

 

DATA ANALYSIS 

 Functional imaging data was processed and analyzed in Spatial Parametric 

Mapping (SPM8; Wellcome Trust Centre for Neuroimaging, UK) (18). To maximize 

the saturation effect the first five scans were eliminated from each ten-scan block 



 
 

- 9 - 
 

within each condition. Images were corrected for motion using an intra run 

realignment algorithm, convolved into the standard Montreal Neurological Institute 

(MNI) space and smoothed using an isotropic Gaussian kernel (full width half-

maximum = 10mm) and re-sliced to 2x2x2 mm. A statistical parametric map was 

generated for each subject using general linear models within SPM8 (10, 11). Group 

SPM contrast maps were created to determine mean suprathreshold for low and 

high-energy food relative to the control conditions plus to compare activation 

changes (i.e. at a whole brain level) associated with high-energy images versus low-

energy images. Given that no previous study has examined the brain’s response of 

normal-weight or over-weight individuals to visual food stimuli after a single bout of 

exercise, a whole brain scan was conducted. 

 

STATISTICS 

The resulting masks were used to spatially define regions of task-related 

activity within which a whole brain analysis was completed. Therefore, in the second 

level (between subject) analysis, the newly constructed contrast images were entered 

into an analysis of variance (ANOVA) to compare responses of exercise versus no 

exercise including both men and women after controlling for BMI, age, and percent 

body fat. Statistical Analysis Software Inc. (SAS Institute, Cary, North Carolina) was 

used for statistically analyzing the data. The data was compared for significance with 

a p-value < 0.005, uncorrected. 

 

RESULTS 

The exercise trial characteristics for all 30 

subjects are presented in Table 2. Because 

duration of exercise was set at 60 minutes for all 

subjects, there was a significant difference in 

power and exercise energy expenditure between 

male and female participants. Total energy 

expenditure (EE) was estimated using the calculation previously described. 

Variable Mean ± SD 

Duration (min) 60 ± 0 
Heart Rate (bpm) 157 ± 12.4 
Power (W) 138 ± 37.7 
EE (kcals) 640 ± 141.5 

TABLE 2: Exercise Characteristics – Mean 
exercise bout duration, subject heart rate, 

power, and energy expenditure values with 
standard deviation. 
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 Clusters of significant activation in two major groups during high-energy stimuli 

are presented in Figure 3. The mass center coordinates, cluster sizes, and levels of 

significance of all significant groups are listed in Table 3. Exercise showed significantly 

greater activation (P  0.005, uncorrected) in the precuneus, medial orbitofrontal cortex, 

sub temporal gyrus, fusiform gyrus, middle temporal gyrus, and superior medial frontal 

lobe. The only significant activation in the no-exercise condition was in the midbrain and 

fusiform gyrus. The largest clusters of cue-related effects across all conditions were 

observed in the precuneus and sub-temporal gyrus regions. There were no significant 

regions of activation for the no-exercise high-energy versus control or low-energy 

versus control conditions.   

 

 

 

 

 

 

 

 

 

 

 

 

TABLE 3: Whole Brain Analysis – Clusters of significant activation in response to the high-calorie and low-calorie 
images (p<0.005) in various conditions as compared with control scans and between exercise and no-exercise 

treatments. 

Condition Region of Activation x y z Cluster size t-statistic 

Exercise 
High vs. Control Precuneus 6 -58 37 1938 6.37 
 Medial OFC 12 47 -2 476 3.98 
Low vs. Control Sub Temporal Gyrus 45 -58 22 1065 4.29 

 
Fusiform Gyrus 
(Parahipoocampus Gyrus) 

-21 -43 -11 371 4.02 

High vs. Low Precuneus (limbic) -12 -52 28 1272 6.05 
 Middle Temporal Gyrus -48 2 -32 427 4.45 
 Superior Medial Frontal 0 62 28 919 4.11 
No Exercise 
High vs. Low Midbrain 12 -13 -11 363 4.65 
 Fusiform Gyrus -21 -79 -5 992 4.59 

FIGURE 3: Brain Region Activation – Top Left: Sagittal Plane, Top Right: Coronal Plane, Bottom Left: Transverse 
Plane; Yellow and orange regions represent clusters of activation in brain regions in response to High-Calorie food 

images. The precuneus is a visuo-spatial attention region. The Superior Medial Frontal Gyrus is an inhibitory region. 
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DISCUSSION 

 The main goal of this study was to determine if a single bout of exercise 

influenced brain regions associated with reward and inhibitory control when 

presented with high and low calorie food images. We showed that with exercise 1] 

Inhibiting regions were highly activated 2] activation of visual attention regions 

increased and 3] one food reward region was activated. These results suggest that 

single bouts of physical activity suppress appetite through the activation of inhibition 

regions and increased visual attention toward food cues.  

 In this study, exercise increased activation of inhibition regions of the brain, 

the superior medial frontal lobe and superior temporal gyrus. Even though this study 

is the first to evaluate brain activation in response to exercise, these findings are 

consistent with previous non-exercising studies including showing significant clusters 

of activation in the medial and dorsolateral prefrontal cortex when presented with 

high-calorie food stimuli suggesting a function of the prefrontal cortex as anticipating 

reward and monitoring behavioral responses (18). Del Parigi et al. found similar 

results while mapping brain responses following administration of a meal with hungry 

individuals demonstrating increased neuronal activity in the prefrontal cortex and 

decreased neuronal activity in regions including the orbitofrontal cortex (7). These 

results further associate the prefrontal cortex to inhibition of hunger and termination 

of energy intake and the orbitofrontal cortex with assessing reward values from food 

intake. A third study examined neuronal responses to smoking addiction and 

presented subjects following exercise or no-exercise conditions with images of 

individuals smoking (17). Similar to our study, they found that following a session of 

exercise, subjects’ brain activity suggested a decline in cravings, theirs to cigarette 

smoking, and ours to high-calorie food intake. 

 Exercise also increased visual-attention processing regions of the brain. 

Specifically, we found significant activation of the precuneus, superior temporal 

gyrus, fusiform gyrus, and middle temporal gyrus. All of these areas have been linked 

to visual attention functions (4, 6, 13, 30). The precuneus is responsible for a number 

of complex processes, including both visuo-spatial processing and visual attention 

shift: this region is activated when tracking moving objects and when shifting 
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attention based on changing visual stimuli (4). McCaffery et al. found that successful 

weight-loss maintainers exhibited greater visual attention to food images than obese 

or unsuccessful weight-loss maintainers (25). Our data suggest that exercise 

increased attention to visual stimuli to high-calorie and low-calorie images. External 

visual cues have been shown to be important in the regulation of energy intake (6) 

and our results demonstrate that exercise increases attention to these cues. 

 Surprisingly, exercise increased food reward regions. We expected to see that 

the orbitofrontal cortex would be less activated following exercise; however these 

results may be due to the reward-processing function of the region, not the desire for 

reward as originally hypothesized. The orbitofrontal cortex is responsible for 

establishing connections between visual cues and reward or punishment stimuli 

related to those cues (27). The orbitofrontal cortex receives detailed information from 

visual processing and attention regions in order to evaluate reward related to various 

visual stimuli. One study found that higher BMI individuals experienced less 

orbitofrontal activity in response to high-calorie food images than lower BMI 

individuals (19); these results suggest not only that higher-BMI individuals have less 

evaluation of stimulus-reward contingencies, but that they also receive less 

assistance from this brain region on modifying goal-directed behavior.  

 The no-exercise condition yielded significant activation in only 2 brain regions, 

the midbrain and fusiform gyrus, which is in disagreement with previous studies. 

Differences may hinge on subject characteristics. For example, in the current study 

we chose habitually active individuals because we wanted to ensure that they could 

complete the high-intensity exercise, where as previous studies have not reported 

cardiorespiratory fitness levels (6, 8, 19).  Previous research has shown that 

habitually active individuals have greater suppression of appetite due to regular bouts 

of physical activity as well as hormone changes as expected to lower appetite (3, 14). 

Because we did not have a “true” control group (sedentary), it remains unclear the full 

impact of cardiorespiratory fitness on brain activation and warrants future 

investigation. 

 A few limitations of this study need to be mentioned. First, a 1.5 T magnet 

used to obtain BOLD data was not as powerful as other magnets used in similar 
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studies (6, 12). Second, the study was not powered to detect sex differences, a 

variable we would like to explore in the future. Finally, we did not directly measure 

VO2 during the exercise bout, and we had to estimate the VO2 and energy 

expenditure. However, the estimated energy expenditure based on wattage has a 

high correlation with indirect calorimetry (23, 24). 

 In conclusion, we found our data to be partially consistent with previous 

studies. Our results extend the notion that exercise increases the awareness of visual 

cues related to food as well as heightens the inhibitory and reward feedback loop that 

aids in suppressing compensation for energy deficits following exercise. Single bouts 

of exercise are effective in preventing compensatory eating following physical activity. 
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