
A Toolset for the Reengineering of Complex Computer Systems*

Franz J. Kurfess
Mrinalini Lankala
Ashok Vantipalli

Computer and Information Science
New Jersey Institute of Technology

Newark, NJ 07102
f r a n z Q c i s . n j it. edu

Abstract

This paper describes a set of tools for the reengi-
neering of computer-based systems, in particu-
lar software. The toolset is based on an abstract
intermediate representation (IR) which incorpo-
rates the system software architecture at five lev-
els of granularity: program level, task level, pack-
age/object instance level, subprogram level and
statement level. The toolset provides a graphi-
cal user interface that allows various views of a
software architecture, including call graph, ren-
dezvous graph, call-rendezvous graph, call-data-
rendezvous graph, control flow graph and depen-
dence graphs. The information captured by the
toolset is useful in software structure, flow and
interaction analysis, tasks commonly performed
manually during maintenance and reengineering.
This information is also helpful for underst anding
the software design to guide software transforma-
tion, and for porting software to distributed plat-
forms.

1 Introduction

The development of large software systems does
not end with the installation of the executables on
~~

*Supported in part by The U.S. NSWC (N60921-93-M-
1912 and N60921-94-M-G096), by the U.S. ONR (N00014-
92-5-1367), and by the State of New Jersey (SBR-421290
and SBR-431330).

Lonnie R. Welch

Computer Science and Engineering
University of Texas

Arlington, TX
welch@cse.uta .edu

the target system: Apart from bug fixes, changes
will have to be made to accomodate new func-
tionalities, or to port the system to a new operat-
ing system or hardware platform. A complete re-
development oft en is economically infeasible and
unnecessary. In a situation that requires major
modifications, e.g. the transition from a main-
frame to a client-server environment, a decision
has to be made which parts of the software system
should be kept, which ones should be modified,
and which ones have to be completely rewritten.
The basis for such a decision relies to some de-
gree on strategic factors, (the trustworthiness of
a program, for example) but should also consider
aspects reflecting the quality of the system with
respect to current software engineering practices.
Whereas it is not really clear what exactly de-
termines the quality of a program, a number of
metrics have been developed that express certain
properties of a program in a numerical way based
on quantifiable features of the program. A well-
known example of such a metric is the McCabe
complexity [8]; others are described in other pub-
lications [19].

The set of tools described here is centered
around an intermediate, language-independent
representation of the essential characteristics of
such a system, and uses graphical displays of var-
ious interdependencies between program compo-
nents for easier understanding of legacy software.
In the following, the software reengineering pro-

97
0-8186-7889-5/97 $10.00 0 1997 IEEE

mailto:welch@cse.uta.edu

cess will be discussed briefly, followed by a de-
scription of the intermediate representation. Af-
ter that, the individual components of the toolset
will be presented in the form of a short tutorial.
At the end: we provide an outlook into future
work.

2 Software Reengineering

Some essential aspects of software re-engineering
are the extraction of essential information from
legacy programs; a language-independent for-
mat, the intermediate representation (IR); analy-
sis and modification of the system, and transfor-
mation into the target language.

The reengineering process itself starts with the
legacy system as input, then applies several steps
with intermediate representations, metrics, and
new configurations as intermediate goals, and fi-
nally integrates new requirements and objectives
in order to produce the new system. The legacy
system is the system to be reengineered (consist-
ing of hardware, human and software elements)
and all of its artifacts. Legacy system metrics
are used to achieve a concise characterization of
important aspects of the legacy system. The
reengineering decision must answer to the ques-
tion “Which components from the legacy sys-
tem should be reengineered?” . The first interme-
diate representation (IR1) contains an abstract
representation of the legacy system, in machine-
processable form. New requirements and objec-
tives may have to be considered during the reengi-
neering process. They provide a description of
the constraints and desirable properties that the
reengineered system is to have. The second in-
termediate representation (IR2) is an abstract
representation of the new system, in machine-
processable form. The new system metrics de-
scribe important aspects of the new system. The
new configuration finally is a description of the
interactions of the hardware, operating system,
application software and human elements of the
new system.

2.1 Reverse Engineering

The purpose of reverse engineering is to provide
an understanding of the important aspects of the
legacy system, like hardware: software design,
and operating system.

The first step is a decision on the translation
of the software. It is based on technical factors
like properties of the legacy system, measured by
metrics of some kind, as well as strategic and ad-
ministrative reasons. Only if the decision is pos-
itive, the reengineering effort continues. In this
case; the essential features of the system are ex-
tracted into the intermediate representation for-
mat IR1. Important components of IR1 are the
symbol table (SymTab) and the statement table
(StmtTab [lo, 241. They form the basis of sev-
eral graphs representing dependencies and inter-
actions between components of the system; these
graphs are described in more detail in Section 5 .
Since the information extracted here tends to be
overwhelming for human consumption, essential
aspects are summarized in metrics[l9].

3 The Reengineering Toolset:
An Overview

Based on the reengineering and reverse engineer-
ing methods outlined above, a collection of soft-
ware tools has been developed in collaboration
between NJIT’s Software Engineering Lab, the
Navy’s NSWC, and the University of Texas at
Arlington. We currently have two versions of the
toolset: one using C/C++ with Motif as front end
and the second in Java; in this paper, the empha-
sis is on the Motif version. The main components
of the toolset are

0 parsers for translating legacy code,

0 an intermediate representation format ,

0 extraction of the intermediate representation
from the translated legacy code,

0 various metrics to measure important system
aspects,

98

0 integration of graphical and textual informa-
tion via hypertext,

0 tools for parallelizing and distributing the
new system on parallel machines or networks
of workstations, and

0 a graphical user interface to view relevant in-
format ion.

3.1 The Main Window

The main window (see Figure 3.1) has nine
buttons: Call Graph, Task Rendezvous Graph, Call
Rendezvous Graph, Call Data Rendezvous Graph,
Distribution Specification, Dynamic Scheduling,
Load Application, Quit Tool, Help. All these
button-options are views of an application that is
to analyzed and therefore will work with respect
to that particular application, and only after the
application has been loaded. When the tool is
first invoked the first six buttons are grayed-out,
only the last three buttons are highlighted and
accessible initially.

Clicking on the Help button will bring up the
overall system on-line help; each screen of the tool
has its own help-button that gives a detailed de-
scription of the view. The Quit button will exit
the application. A click on the Load button will
load an application. In the pop-up window: the
application path to locate the code is entered.
Now the various views can be examined to ana-
lyze the given application. The first, Call Graph is
the application call graph representing the call re-
lations. The second is the Task Rendezvous graph
showing the task rendezvous. The third is the
introduction of tasks in the call graph, which is
the Call Rendezvous Graph. And the fourth is the
summary of the first three graphs and also con-
tains additional data objects and access informa-
tion. The fifth button displays the Distribution
Specification screen. This screen is the graphical
representation of the application processes able
to run on a distributed platform. This repre-
sentation is also in the ASCII file in an internal
format: DADS. The partitions are generated by

parsing the application source code. The graph-
ical interface allows the user to change the par-
titions and examine the resulting communication
and concurrency costs. If the user arrives with a
better partition, the interface provides the facil-
ity to save the changes to the DADS specification
(ASCII) file, and DADS can execute the appli-
cation on a distributed platform with the bet-
ter partition. The sixth button is the Dynamic
Scheduling of the execution process of the applica-
tion. By clicking on this button, a pop-up screen
will appear with the ability to load an applica-
tion or run an already loaded demo application.
This screen has a grid with nodes as the applica-
tion processes. As the application is executing, it
shows the communication between the processes.

4 Intermediate Representation

Comparing the quality of programs written in dif-
ferent languages based on their source codes is un-
practical at the best; this should be done on the
basis of a representation which is as independent
as possible of the particular language used. We
use an intermediate representation that captures
the essential statical and dynamical aspects of a
program or large software system, and represents
them in an appropriate way, independent from a
particular programming language. Its main parts
are

0 a symbol table,

0 an extended statement table,

0 various relations between program compo-
nents, and

0 an analysis and evaluation of the program.

For each statement, the statement table contains
the relevant information [20]. A short overview of
the different graphs is given in the following sec-
tions; detailed information can be found in other
publications [20, 191.

99

WELCOME TO NSWCjNJIT-SEL
Reverse Engineering Metrics b Partitioning Tool Set

I graphical user interface I GUI > ti
.owls.

leveloped by
lepartment of Computer 8 Information
lew Jersey Institute of Technology,
lewark. New Jersey,

2. Type Main-
3. Load the application by cli

the full path name for that
type /users2IreenginInj it-r

ILDAD the Clpplication I
{QUIT the Tool I

IVERVIEW OF THIS MRNUAL: [HELP I

'9

-El M ET RI CS

I

Figure 1: Main Window

5 Dependence Graphs

In general: dependence RraPhs are ~ O ~ t r u c t e d on
the basis of the statement table, which usually is

defined for a unit of the program at a certain
level, e.g. subprograms. Dependence graphs rep-
resent program statements as nodes and use di-

100

rected edges to denote statement ordering implied
by the dependences in a source program.

Different kinds of ordering requirements are
represented in different dependence graphs. In
the data dependence graph (DDG) a directed
edge denotes a data dependence (which means
that destination and source nodes need the same
variable). The instance dependence graph (IDG)
uses undirected edges to denote instance depen-
dences (which occur when two nodes use opera-
tions exported by the same instance). The sub-
program dependence graph (SDG) uses an undi-
rected edge to denote when two statements use
the same subprogram. A directed edge in the con-
trol dependence graph (CDG) denotes that exe-
cution of the destination statement depends on a
decision made by the source statement. In addi-
tion to the dependence graphs, the control flow
graph (CFG) is extracted at the statement level,
indicating the sequential flow of control dictated
by the order of the statements in the source code.
The analysis of dependences between system com-
ponents is also used as the basis for distributing
the components of a system among different pro-
cessing element s.

5.1 Statement Dependence Graphs

Relationships between program units are visual-
ized by statement dependence graphs. Various
types of dependences on the statement level can
be of interest, and a graphical representation fre-
quently is easier to inspect than the table-based
one.

5.2 Control Dependence Graphs

The flow of control, and the corresponding re-
lationships between program components, are
shown in control dependence graphs. A very im-
portant control aspect is the call relationship be-
tween procedures or other program units.

5.3 Data Dependence Graphs

Relationships between data structures are visual-
ized in the data dependence graphs. Changes in

the value of one data itern can have consequences
for other items, e.g. if their values are computed
on the basis of the former.

5.4 General Dependence Graph

In many cases, it is necessary or more convenient
to inspect various kinds of dependences simulta-
neously. The integration of control, data and in-
stance dependences in one graph is also referred
to as a general dependence graph. The obvious
potential drawback is the complexity of the re-
sulting graph: it can easily become confusing to
be faced with a large number of different lines
connecting the nodes of the graph.

5.5 Call Graph

The call graph of an application is built by pars-
ing the application source code. It represents
the call relationships among the modules of the
application. The toolset parses the source code
and builds an ASCII file, which represents the
call graph. The ASCII file is represented in X-
Windows using sophisticated graph layout algo-
rithms. Packages are represented by blue circles
and subprograms are represented by purple tri-
angles. It is a directed graph, the nodes repre-
sent the modules of the application and the edges
represent the call relationships among the mod-
ules. The initial parser was built for the Ada
language, hence the modules/nodes in this case
are packages and sub-programs. When a node is
double-clicked, a window will pop up listing all
the methods of that node/package (if that pack-
age has methods in it). Clicking on the method
another window will show three labels - Source
code, Metrics and Dependence Graphs. Clicking on
the source code label will show the source code of
the method selected. Clicking on the Metrics la-
bel a window will result in the list of method-level
metrics (McCabe and Halstead). The Dependence
Graph button will produce a window displaying
all the method-level graphs. All graphs are built
similar to the call-graph by parsing the source
code and generating an ASCII file, which is read
and displayed in the window.

101

5.6 Task Rendezvous Graph

The Task Rendezvous Graph represents the ren-
dezvous among tasks of an application. The tool
parses the source code and generates an ASCII
file which represents the task relations in the ap-
plication. This ASCII file is then used to display
the graph. This graph is a directed graph, and
the nodes represent the tasks of the application.
The edges indicate task rendezvous, and the di-
rection of the graph determines the caller and the
callee. Tasks are represented by red squares; and
the task rendezvous are pink-colored edges. The
downward arrows are solid-lines and the upward
edges are two-colored (dashed) lines.

5.7 Call Rendezvous Graph

The Call Rendezvous Graph represents the call
and rendezvous relations of the application; it is
a combination of the application call-graph and
tasks rendezvous graph. The nodes of the graph
are packages and tasks. This is a directed graph
where edges represent the call and rendezvous re-
lationships of the application, and the direction
of the edge determines the caller and the callee.
The upward edges are two-colored (dashed) lines
and the downward edges are solid blue lines. If a
node is double-clicked a window will pop up dis-
playing all the methods of that node (a package
or task).

5.8 Call Data Rendezvous Graph

The call data rendezvous graph represents the call
relations, the rendezvous relations and the data-
object access in the application. The source code
of the application is parsed to generate the ASCII
file representing the graph. This is a directed
graph, the nodes represent packages, tasks and
data-objects. The edges represent the calls, the
rendezvous and the data accesses of the applica-
tion. The package nodes are blue circles, the task
nodes are red squares and the data-object nodes
are shown as green rectangles. The downward
edges are drawn as solid blue lines and the up-
ward edges are drawn using two-colored dashed

lines. The names of the nodes (packages/tasks/
data-objects) are written on the nodes and with a
single click on the node can also be displayed on
a button on the menu bar. There is help button
on the top right hand side of the screen, which
describes the graph generation method. When a
node is double-clicked, a window will pop-up dis-
playing the methods of that node.

6 Dependence Graph Displays

The primary purpose of the various graphs is the
visual display of relationships between different
program units. Displaying this information visu-
ally, however, is only useful if the arrangement of
the items displayed is easy to understand by the
user of the tool. The initial version of the tool set
used an ad hoc graph display algorithm which did
not try to optimize the appearance of a displayed
graph. In a second version, a more sophisticated
version of a graph display algorithm is used, aim-
ing at a systematic arrangement of the nodes and
links, with relatively few crossings of links.

The usage of large graphs is supported by addi-
tional features like zooming into areas of particu-
lar interest, automatic adaptation to the current
window size, and focusing on a particular node or
region of the graph.

7 Related Work

The authors have been involved in efforts [15] to
reengineer portions of the AEGIS Weapon Sys-
tem from CMS-2 to Ada, and to migrate from
militarized AN/UYK-43s to commercial worksta-
tions. These projects were performed for two
primary reasons: to aid in the refinement of a
process for reengineering control systems, and to
provide proven algorithms for an experimental
open system hardware and software environment
(HiPer-D) directed at defining the future archi-
tecture and functionality of Navy ship computer
systems.

Related work has also been performed within
other projects. In [2], an approach is presented
for capturing abstractions inherent in software

102

systems and for transforming those abstractions
into an object-oriented paradigm; the focus was
not on concurrency, but large-scale systems were
considered. The consideration of concurrency
is proposed in [SI, by considering the transla-
tion of operating system calls into Ada con-
structs. Techniques and tools have been devel-
oped for source-to-source translation of program
code [14, 11; these tools are pragmatic, allow-
ing a reengineered system to become operational
quickly, but they do not attempt significant trans-
formation. Additionally, several techniques and
tools have been developed to perform basic de-
pendence analysis, including the Xinotech pro-
gram composer [22], a tool and language inde-
pendent IR developed by MITRE [13], and Re-
fine [ll], which performs reverse engineering of
code written in Fortran, Cobol, C and Ada. How-
ever, none of these tools attempts to perform
the analysis required for enhancement of concur-
rency and object-orientedness, or for partitioning
and mapping. Other techniques and tools for de-
pendence analysis are presented in [4, 12, 31. A
hierarchical approach to reverse engineering was
taken in [5] , but the levels of the hierarchy were
not based on granularity, as in our model, but
consisted of implementation, structure, function
and domain levels.

8 Future Work

Work in progress and planned for the near future
includes other front ends (C++, Java, Pascal,
Fortran, COBOL), and the realization of a full
Web version implemented in Java. Metria are
refined, and new ones investigated based on the
integration of Artificial Intelligence techniques, in
particular neural networks 171. Distribution and
parallelization tools are extended towards a lim-
ited consideration of dynamical aspects of pro-
gram execution. Finally, the toolset is tested for
its real usefulness through its application to real-
world reengineering problems.

9 Conclusions

This article describes a tool set for reverse engi-
neering and reengineering of complex computer-
based systems. The tool set is based on interme-
diate information extracted from the legacy sys-
tem, and is used to make important features of
the system explicit to the system engineer. The
graphical display portion visualizes some of these
aspects, e.g. the dependence relations between
various program units, and provides additional
help with the understanding of the system to be
reengineered. The methods described as well as
initial versions of the tool set have been success-
fully applied to components of the Navy’s AEGIS
Weapon System [20]. In order to increase usabil-
ity of the system, a Web version is currently under
development, allowing remote access to the tools
without the need to install them locally.

References
[l] G. Arango et al., “Maintenance and Porting of

Software by Design R.ecovery,” Proceedings of
The Conference on Software Maintenance, pages
42-49, IEEE CS Press, 1985.

[2] T. J . Biggerstaff, “Design Recovery for Mainte-
nance and R.euse,” IEEE Computer, volume 22,
number 7, .July, 1989.

[3] C. Castells-Schofield, “Engineering a Language-
Independent Approach to Parsing for Analysis
and Testing,” Vitro Tech. Journal, volume 8 ,
number 1, 1990.

[4] S. Dietrich and F. Calliss, “A Conceptual Design
for a Code Analysis Knowledge Base,” Software
Maintenance: Research and Practice, volume 4,
1992.

[5] M. Harandi and J . Ning, “Knowledge-Based Pro-
gram Analysis,” IEEE Software, volume 7 , num-
ber 1, 1990.

[6] F.J. KurfeD, X. Pandolfi, Z. Belmesk, W. Er-
tel, R.. Letz, and 3 . Schumann. PARTHEO and
FP2: Design of a parallel inference machine.
In P.C. Treleaven, editor, Parallel Computers:
Object- Oriented, Functional and Logical, chap-
ter 9, pages 259-297. Wiley, 1989.

103

[7J F.J. Kurfess and L.R.. Welch. Categorization of
programs using neural networks. In International
IEEE Symposium and Workshop on Engineering
of Computer Based Systems (ECBS ’96), pages
420-426,1996.

[8] T. McCabe, “A Complexity Measure”, IEEE
Bansactions on Software Engineering, Vol. SE-
2, December, 1976.

[9] N. Prywes, G. Ingargiola, I. Lee and M. Lee,
“Rsengineering Concurrent Software into Ada,”
Proceedings of The Fourth Systems Reengineer-
ing Technology Workshop, pages 157-177, Naval
Surface Warfare Center, February 1994.

[lo] B. R.avindran,“Extracting parallelism at
compile-time through dependence analysis and
cloning techniques in an object-based paradigm,”
M.S. Thesis, New Jersey Institute of Technology,
May 1994.

[11] R.ea.soning Systems, Palo Alto, CA, Wefine Lan-
guage Tools,” 1993.

[12] C. Rich and R.. Wills, “R.ecognizing a Program’s
Design: A Graph-Parsing Approach,” IEEE
Software, volume 7, number 1, 1990.

[I31 H. Rubenstein, R.. Piazza, and S. R.oberts, “Sep-
arating Parsing and Analysis in R.everse Engi-
neering TOOIS,” Proceedings of the Working Con-
ference on Reverse Engineering, May, 1993.

[14] C. H. Sampson, “Translating CMS-2 to Ada,”
Proceedings of The Fourth Systems Reengineer-
ing Technology Workshop, pages 143-156, Naval
Surface Warfare Center, February 1994.

[15] A. L. Samuel, E. Sam, J . A. Haney, L. R.. Welch,
J . Lynch, T. Moffit, and W. Wright, “Appli-
cation of a R,eengineering Methodology to Two
AEGIS Weapon System Modules: A Case Study

,in Progress,” Proceedings of The Fifth Systems
Reengineering Technology Workshop, Naval Sur-
face Warfare Center, February 1995.

[16] R.. A. Steigerwald and L. R.. Welch, “R.eusable
Component R.etrieva1 for Real-Time Applica-
tions,” Proceedings of the First IEEE Workshop
on Real- Time Applications, May 1993.

[17] J . P. C . Verhoosel, L. R.. Welch, D. K. Ham-
mer, and A. D. Stoyenko, “Assignment and Pre-
Runtime Scheduling of Object-Oriented, Hard

Real-Time Parallel Processes Using Bead Par-
titioning,” New Jersey Institute of Technology
Technical Report CIS-93-16, December, 1993.

[18] L. R . Welch, A. D. Stoyenko and S. Chen, “As-
signment of ADT Modules with Random Neural
Networks,” The Hawaii International Conference
on System Sciences, IEEE, .Jan. 1993.

[19] L. R . Welch, M. Lankala, W. Farr and D. Ham-
mer, “Metrics for Quality and Concurrency in
O b j ect-Based Systems .”

[20] L.R. Welch, G. Yu, B. Ravindran, F.J. Kur-
fess, J . Henriques, and M. Wilson. Reverse engi-
neering of complex Navy systems. International
,Journal of Software Engineerang and Knowledge
Engineering, 6(4), December 1996.

[21] L. R. Welch, G. Yu, J . Verhoosel, J . A. Haney,
A. L. Samuel, and P. Ng, “Metrics for Evaluat-
ing Concurrency in Reengineered Complex Sys-
tems,” Annals of Software Engineering, 1 (I) ,
Spring 1995.

[22] Xinotech Research Inc., Minneapolis, MN, “The
Xinotech Program Composer 2.0,” 1992.

[23] G. Yu and L. R. Welch. Program Dependence
Analysis for Concurrency Exploitation in Pro-
grams Composed of Abstract Data Type Mod-
ules. In Sixth IEEE Symposium on Parallel
and Distributed Processing, pages 66-73, October
1994.

[24] G. Yu, “Identifying and Exploiting Concurrency
in Abstract Data Type-based Systems,” PhD
Thesis, New Jersey Institute of Technology, Sept.
1995.

104

