Hydraulic Hand Press
Final Project Report

Nathaniel Marc Brown
nabrown@calpoly.edu

Matthew Thomas Knorr
mknorr@calpoly.edu

Mechanical Engineering Department
California Polytechnic State University
San Luis Obispo

December 3rd, 2009

Sponsored by the Estrella Warbirds Museum
DISCLAIMER

Statement of Disclaimer

Since this project is a result of a class assignment, it has been graded and accepted as fulfillment of the course requirements. Acceptance does not imply technical accuracy or reliability. Any use of information in this report is done at the risk of the user. These risks may include catastrophic failure of the device or infringement of patent or copyright laws. California Polytechnic State University at San Luis Obispo and its staff cannot be held liable for any use or misuse of this project.
Table of Contents:

Statement of disclaimer...2
List of tables and figures..4
Abstract...5
Introduction..6
Background...7
Objectives and design specifications ...8
Management plan ...10
Design development...11
Product realization...16
Design verification ...19
Conclusions and recommendations...21
APPENDIX A: Project specifications documents22
APPENDIX B: Quality function deployment (QFD) chart24
APPENDIX C: Project schedule (Gantt chart)26
APPENDIX D: Beam sizing analysis..28
APPENDIX E: Hydraulic schematic...31
APPENDIX F: Decision matrices...32
APPENDIX G: Lift concept sketches..34
APPENDIX H: Platform support pin calculations36
APPENDIX I: Trolley sizing calculations..................................40
APPENDIX J: Cost analysis..45
APPENDIX K: Failure mode effects analysis (FMEA)47
APPENDIX L: Layout drawings with bills of materials48
APPENDIX M: Detailed part drawings.......................................52
List of Tables and Figures:

Figure 1: Pascal’s principle and hydraulic force multiplication 7
Figure 2: Sketch of press as specified in the project proposal 8
Figure 3: Telescoping cylinder to lift platform... 14
Figure 4: Horizontal metal band saw.. 16
Figure 5: Drill press ... 17
Figure 6: Welding apparatus.. 18
Figure 7: Sandblasting setup.. 18
Figure 8: Finalized press... 19
Figure 9: Wooden press mock up with winch and pulley system 20
Abstract:

This report provides a thorough description of the design of a hydraulic hand-operated press by mechanical engineering students at California Polytechnic State University, San Luis Obispo, California, for the Estrella Warbirds Museum in Paso Robles, California. It begins with research into hydraulic operations, a brief study of fluid power and incompressible fluids, and a look into existing products. Specified customer requirements stipulate the loading and general size constraints. As part of the project, a schedule is laid out following industry techniques. Brainstorming and decision matrices are utilized as well, conveying our design process. A basic structure is developed using strength of materials, beam bending theory, applied/allowable stress analysis, and material deflection. Additional features are developed based on a more specific investigation of customer requirements. This report not only covers the press design, but also documents its construction and testing of the structure. Cost analysis and material choices are relayed along with a complete set of engineering drawings for the manufacture of the press. Testing and failure modes are analyzed with an overall goal of customer safety in mind.
Introduction:

Bramah Hydraulics, as part of a senior project for the Mechanical Engineering Department at California Polytechnic State University, San Luis Obispo, California, was responsible for the design, construction, and testing of a hand-operated hydraulic press to be used in the fabrication of custom aircraft parts. The sponsor of this project, the Estrella Warbirds Museum, will be using our press in their extensive efforts of restoring historic military aircraft for display. Our press will allow them to easily accomplish many operations, such as molding compound curves out of aluminum, straightening heavy structural members, pressing bearings, and bending brackets. The goals of this project include satisfying the specific requirements provided by our sponsor for the hydraulic press and successfully executing the multiple phases of the project on time, while establishing a positive relationship with the Warbirds Museum. The museum plays a significant role in maintaining our national history and preserving the past. The quality of their work is as impressive as it is important, and we hope that our efforts on this project will pay tribute to theirs.
Background:

The use of fluids as a source of power has been studied since the ancient Greek era. Pumps, turbines, dams, and other devices all use unique fluid properties to gain engineering advantage. Our specific case, the hydraulic press, uses a simple relationship given by Pascal’s principle, which says that the pressure at all points of a closed system will be constant. Therefore, the force applied to one piston in a hydraulic cylinder will be related to the force obtained by another piston in a connected cylinder by the ratio of the piston areas. Joseph Bramah, our company’s namesake, used this relationship when inventing and patenting the hydraulic press in 1795. Today, hydraulic presses are the most commonly used and efficient form of modern press.

The Estrella Warbirds Museum has made it their legacy to restore historic military airplanes for the public to admire. They operate out of a prime location that sits just off a taxi way at the Paso Robles Airport in California. This gives them a unique opportunity to accept a wide variety of airplanes that can be flown in that would otherwise need to be disassembled and trucked in, and then reassembled.
Their commitment to historic aircraft is great. They have flown all over the world to investigate, repair, and return with new military aircraft. Many members often take time from their work on a restoration project to be able to share their excitement with the visitors that are allowed to wander among the aircraft. The combined knowledge of the members is extremely impressive, with many being veteran pilots of conflicts, including the Korean, Vietnam, and Gulf wars.

Objectives and Design Specifications:

Bramah Hydraulics was responsible for the design, fabrication, and testing of a hand-operated hydraulic press and its components. Bramah Hydraulics kept in contact with the Warbirds Museum throughout each step of the project until it concluded on December 3rd, 2009.
Our design began with the project description written by the Estrella Warbirds Museum, including all size, material, and usability requirements stated within the project specifications documentation that can be seen in Appendix A and are summarized as follows: Human power is to be used to operate a hydraulic press. The hand pump should be located at a height of around five (5) feet and positioned on the right side of the press to allow for an average-sized person to easily operate the press. The four-way, three-position hydraulic valve will be mounted to the frame within one (1) foot of the hand pump. The frame will be constructed of U-channel steel of appropriate size to withstand ten tons compression and tension. The overall dimensions will be seven (7) feet tall and four (4) feet wide with an appropriate depth to maintain stable operation. The frame cross pieces will be doubled up to provide a wide, stable platform as well as to hold the hydraulic cylinder in place. The pressure gauge should be mounted in plain view at a height of between five to six (5-6) feet. A one-gallon hydraulic reservoir will be mounted securely to the frame out of the way of the press operation. The entire press frame and hydraulic components will be connected with bolts to allow for disassembly. All hoses and connections will use type AN aircraft connections and the pump will use red aircraft 5606 fluid. All applicable OSHA standards will be followed for safe operation. The final design was presented March 7th, 2009.

Fabrication and assembly of the hydraulic press was done both at the Estrella Warbirds Museum shop facilities on Saturdays as well as at the Cal Poly Aero Hanger, and Bonderson Project Center, multi-purpose machine shops located on the Cal Poly
campus. Fabrication of the press began April 13th, 2009 and was completed for testing November 30th, 2009.

Management Plan:

The Bramah Hydraulic team consists of two members: Nathan Brown and Matt Knorr. They were responsible for all aspects of this hydraulic press project. Work was evenly split between the two, catering specific tasks to individual talents.

Appendix C displays our current Gantt chart, a visual aid used for project scheduling. Tasks, goals, and deliverable due dates are listed on this chart as bars representing their start/end dates and necessary completion time. The museum was informed as updates occurred. The chart encompasses a combined total of 467 work hours. This includes everything from museum visits, time spent writing various reports, weekly meetings with our project advisor, construction/fabrication, assembly, and testing.

Meetings with our faculty advisor, Professor Owen, occurred every week on Thursday at 10:00 am, for two quarters (6 months). We begin with an agenda created in advance and go over what we have accomplished during the previous week and our plans for the upcoming week. Professor Owen guided our efforts with suggestions of design ideas and comments on general progress. After each meeting one member writes up minutes documenting what was discussed. Meeting agendas and minutes will be made available for sponsor review if desired. During the third quarter, we were advised by Professor Lee McFarland. He provided crucial knowledge on fabrication techniques and gave us advice when it came to modification and necessary redesigns.
Design Development:

Our research for this project encompassed not only an extensive look into the theory and operation of hydraulic presses but also a search of similar products on the market. Many commercial, hand-operated hydraulic presses are currently available. However, in deciding on a design we used a quality function deployment chart to evaluate the specific customer needs and give these needs a numerical value with which to compare designs and test their acceptability to the Museum. Seen in Appendix B, our quality function deployment chart, or “House of Quality”, takes vague customer requirements and translates them into engineering design specifications. At the same time, it was used to compare existing options that are already commercially available. Our case in which we were given many specific design details to begin with made the house of quality is somewhat unnecessary. From this chart we concluded that the precise nature of our customer requirements would eliminate the benchmarks as viable options.

Another aspect of our research involved the investigation of standards and code requirements related to the construction of our press. The U.S. Department of Labor’s Occupation Safety and Health Administration (OSHA) website revealed a few considerations. General machine guards (barrier guards, two-hand tripping devices, electronic safety devices, etc.) must be provided to protect the operator and other employees in the machine area from hazards created by the point of operation, nip points, etc. Many other regulations related specifically to electrically powered hydraulic presses exist, which do not apply to our hand powered design. The fact that our press is hand-operated and not driven by a motor makes it inherently much safer. We have obtained
the Material Safety Data Sheet for the aircraft 5606 hydraulic fluid specified in the project description, and have looked over potential hazards that come with its use.

We used our research described above by applying the tried and tested layouts of comparable hydraulic hand press designs as a platform to design our initial concept. We also conducted brainstorming sessions to come up with more efficient, ergonomic, useful, and time-saving ideas for press designs to improve upon the standard commercially available models. The best of these innovations was presented to the Warbirds Museum for approval before proceeding with the final design. The final design incorporated all the project objectives and was also presented for approval. Each of these stages requiring approval was subject to adjustment until the museum was satisfied with the plan. The building process could not begin until this occurred. Following the construction phase, the press was tested to see if it accomplished the project goals. When problems with the design were encountered, it was modified or rebuilt until the objectives were met. Also during the testing phase, improvement of specific parameters sometimes warranted modification of the finalized press. Once the press operation met the project objectives and was presented at the senior design expo, the press was ready for delivery to the Estrella Warbirds Museum to be put into service.

Progress was made in the design phase that included initial stress calculations for the structural members of the press frame. Appendix D shows those calculations in full, including a basic layout of the press frame. It was concluded using the max pressing capacity of 10 tons that the horizontal U-channel steel members must be greater than 4 inches wide. We decided to use a 6-inch-wide dimension for the horizontal cross beams.
and use 7-inch-wide vertical members to allow for more room for attaching components and allow for a significant safety factor.

The hydraulic aspect of this project has been started as well. We have looked into the specifics of hydraulic schematics and the associated symbols. Appendix E shows an initial diagram for our system. Notice the included four-way, three-position valve, and the double-acting cylinder.

Brainstorming plays a pivotal role in our design process. One area where we came up with ideas was the method used to safely raise and lower the press work platform. We used an evaluation tool known as a decision matrix to compare potential designs to one another in order to choose the best one. In the matrix, a series of design categories, such as the design cost, ease of use, and safety, are written next to a list of competing designs. In these tables, each design is compared to an idea that is set as the standard for all the other designs, therefore called the datum. The designs are rated for each category using either a plus, indicating a design better than the datum, a minus indicating an idea worse than the datum, or an ‘S’ indicating the two are equivalent. Appendix F shows three of these tables, using a different datum each time.

With the “By Hand” idea, the platform changes position by lifting it to a new position, removing the pins that it was previously sitting on, placing them at their new location, then setting the platform back on the pins. It is heavy, hard to operate with one person, and unsafe when loaded. However, it is cheap (set as cost reference cost all ideas) and easy to manufacture.

Scissor hydraulics would use a scissor lift underneath the platform and utilize a hand pump. This will need to be built since there is no complete, off-the-shelf scissor lift
available, but the design is basic. All the parts are easily available on sites like McMaster-Carr and Grainger. This lift should be a very safe design due to the rigidity of the triangular frame, but also depends on where the pump handle is placed. The limited range is the current problem since it is the range that is causing the need to build our own scissor lift as opposed to a complete device. The cost of this idea would be in the range of $300 to $600 for the cylinder, unless we could find one for free, and $100 to $250 for the necessary steel.

Telescoping hydraulics would utilize a hydraulic cylinder that would be sandwiched between the platform on top and a rigid cross member underneath. A rigid hydraulic cylinder of 4 ft. stroke is expensive. A telescoping cylinder would be very expensive. However, the benefit would be that all the parts to get it connected are already available, or relatively cheap. Cost for this idea would be about $620 (http://www.grainger.com/Grainger/items/5PP02).

The rack-and-pinion option consists of a series of gears and pinions attached to the platform that would be hand cranked and would follow racks that are vertically attached to the upright beams. This option would cost around $330 including a rack and pinion, a handle, a ratchet, and a pawl (http://www.mcmaster.com/#rack-and-pinion-gears/=k1c9u).
For the hand winch/pulley idea, a hand winch is attached to the outside of one upright beam. A wire rope fixed at the winch is run over a pulley at the top cross beams, back down and attached to the platform. The cost of this option is outlined below:

Cost:
- Hand Winch - $70 (http://www.mcmaster.com/#hand-winches/=kkoek)
- Steel Cable - $25 (http://www.mcmaster.com/#aircraft-wire-rope/=kljl4)
- Pulley - $43.55 (http://www.grainger.com/Grainger/wwg/productIndex.shtml)
Total – $138.55

The figures in Appendix G show concept sketches of our two top concepts. We decided on the pulley/winch and a modification of the scissor hydraulics, substituting a hand crank for the cylinder. These choices were made based on the results of our decision matrices and the preliminary cost analysis. They also prove to be the least complex ideas in terms of construction.

Further analysis was done to decide what size the rods were needed to hold the platform during loading. The calculations can be seen in Appendix H. The pins size came out to be .69” using a yield stress safety factor of 2 and was rounded up to the standard size of 1” for a total safety factor of 4.2. The trolley system that would support the cylinder needed to be sized as well. Appendix I shows the calculations used to design the trolley.

Appendix L shows the layout drawings for the overall press design and the proposed mechanism to move the cylinder from side to side. Appendix M takes the design into greater detail with drawings showing each part that will have to be fabricated. All the features are dimensioned and materials are called out.

Pricing analysis was done on our design to figure out both what this press will cost and what it would have cost without the access to materials and donations that we
have been provided. Bills of materials with approximate pricing can be found on the layout drawings in Appendix L. The total cost for the purchased items for the press was $422.62. Our initial budget estimation was $552.86, with the museum initially providing $300 in funds in addition to the steel they made available. Both our initial cost estimate and the final cost have been tabulated and can be found in Appendix J.

Product Realization:

Construction of the hydraulic press began with acquiring all the necessary steel U-channel beams for the frame structure. These beams were transported from the museum to Cal Poly’s campus shops to be cut to size. A horizontal metal band saw was as seen in Figure 4 was used for this purpose. All bolt connection holes were then machined, primarily using drill presses (Figure 5). The required 32 x 1” diameter support pin holes were drilled by stepping up bit sizes in ¼” increments. All burred and sharp edges were smoothed out using pneumatic rotary tools and files. The beams were then either sandblasted or treated with Naval Jelly to remove all rust deposits and prepare them for paint. The sandblasting setup we used

![Figure 4: Horizontal metal band saw cutting crossbeam to length](image)
can be seen in Figure 6. Coats of rust preventative primer were sprayed on to all frame beams, followed by finish coats.

The trolley assembly required to support the cylinder was fabricated from 1” thick steel flanges welded onto a ¼” steel plate. Figure 7 shows our welding equipment. Our purchased I-beam trolley was then attached using bolts. The cylinder is supported by a 1 ¼” shaft running through its clevis hole. 2” angle iron pieces were then welded and bolted to the ¼” plate to prevent the cylinder from swinging out of plane. Our original design called for cylinder support beams to prevent this. The original cylinder provided was perfectly sized to fit inside of these support beams. This cylinder, however, turned out to be unusable due to extreme corrosion of the internal bore and piston. We acquired a smaller used cylinder that would not contact the planned support beams. Therefore altered the design and came up with a new method of stabilizing the cylinder. The change in cylinders also altered our design pressure. Since the press would now need to operate at around 2000 psi, the relief valve we purchased would be ineffectual since it had a range of 500-1500 psi. The following design verification section covers this issue in more detail.
The winch, pulleys, pump handle, pressure gauge, selector valve, and hydraulic reservoir were all bolted and/or strapped to the frame at ideal locations for operation. Lengths of AN aircraft hydraulic hose were acquired from the museum and attached, with the proper fittings and Teflon wrapping, to all the mounted components. These hoses were then bundled and strapped to the frame for better aesthetics and to make sure nothing would get tangled. Figure 8 shows the finalized press as presented at the senior project expo.
Design Verification:

Testing of this hydraulic press included the analysis of the center of gravity of the press and its susceptibility to tipping, as well as the determining the moving platform’s susceptibility to jamming and pinch points. The safety of all personnel either running the press or those working in the vicinity was the top concern when testing. Appendix K contains a detailed failure mode effects analysis which breaks down the individual tests we performed. A wooden mock up of the frame and winch-operated platform-lifting assembly was created to initially test proof-of-concept of our solution. Figure 9 shows this model constructed of 2x4s, with the winch and all the pulleys attached. We also used
this mock up for placement height estimates for the pump handle and other components. Winch speeds were measured on both the model and the final press to ensure the platform could be raised and lowered in a reasonable amount of time. When raised from the ground level to the top holes it took 1 minute and 10 seconds. Adjustment from one pin hole to the subsequent hole took on average 38 seconds, accounting for the time it took to remove and replace the support pins. Due to deadlines and scheduling conflicts, on site testing of the hydraulic system was not finished by the finalization of this report. As of the expo, all fittings were connected and all components were in place. The system simply needs to be charged with hydraulic fluid at the museum site. The load will be tested to ensure the supply of 10 tons of pressing force from the hydraulic press without bending, breaking, or significant movement of the frame. Any leaks in the system will be addressed and taken care of. Since the safety relief valve purchased is not sufficient to prevent the overloading of the frame, we will notify the museum of the needed replacement poppet for the valve and ensure the press is not operated above its limits.

Figure 9: Wooden press mock up with winch and pulley system attached
Conclusions and Recommendations:

The Bramah Hydraulics team has spent much time and effort designing and building this hydraulic press. Careful study of existing products have led us to conclude that specifications like the use of C-channel steel beams and an all bolted construction, although not ideal, are more than satisfactory for the required purpose. Our estimations show that the hydraulic cylinder could be used for a much higher capacity press, but the constraints mentioned limit the strength of the frame. The construction process led to many unforeseen problems. These problems were addressed on the fly during the fabrication of the press using scrap materials and a limited budget. This led to many solutions that may not have been the most elegant or optimized, but it should be noted that this prototype meets and exceeds all specified requirements. Our design may not be optimized for weight or minimization of parts, but we believe it represents a positive and powerful concept for an environmentally conscious consumer. Reusing or repurposing materials can be a significant way to improve the natural condition. A simple recommendation to buy a more refined catalog press would ignore this advantage while denying us as students such a beneficial learning experience.
Appendix A: Project Specifications Documents

At the beginning of this project we were supplied documents by Estrella Warbirds sponsor, Mr. Al Schade, specifying details of the hydraulic press. The two documents are seen below.

HYDRAULIC HAND PRESS DESCRIPTION

The hydraulic hand press frame shall be constructed of industrail steel U channel of sufficient size and strength to withstand 10 tons of compression on the cross beams and 10 tons of tension on the outside vertical beams.

The press shall be seven feet in height, four feet in width and shall free stand on the shop floor. The cross beams shall be double and adjustable in height over a four foot range starting from six inches below the end of the ram shaft. The hydraulic ram shall be suspended from two cross beams positioned across the top of the vertical frame members. The hand pump shall be mounted solidly to the right side of the vertical frame five feet above the base.

The pressure gauge shall be mounted within good view when operating the hand pump. An hydraulic reservoir of one gallon capacity shall be affixed to the press frame in a place that does not interfere with the operation of the press.

All frame connections and attaching parts shall utilize bolts rather than welding. The selector valve shall be placed near the hand pump for ease of operation. All hoses (AN type) shall be flexible and with aircraft connections.

The hydraulic fluid shall be aircraft 5606, red in color. The hydraulic ram shall be stabilized at the rod end to prevent any lateral movement.
HYDRAULIC HAND PRESS

PARTS LIST

1

2000 PSI HYDRAULIC HOSE (Typ.)

2

3 1/4"

3000 PSI HYDRAULIC HAND PUMP DOUBLE ACTION

3

3 WAY 3000 PSI HYDRAULIC SELECTOR VALVE

4

6 3/4" depth

3000 PSI HYDRAULIC RAM

5

INDUSTRIAL STEEL U CHANNEL (Typ.)

6

3000 PSI HYDRAULIC PRESSURE GAUGE
Appendix B: Quality Function Deployment (QFD) Chart

This chart shows the steps in defining the project to meet the customer’s requirements as well as give a numerical value to these requirements. These customer requirements are listed in the first column with the comparably defined engineering requirements listed in the first row. In the second and third columns the customer requirements were rated on importance then normalized to add up to 100 across the entire list. The engineering requirements are compared to the customer requirements through a correlation scheme of using a 1, 3, or 9 with 9 being a strong correlation and 1 being a week correlation. The far right column shows the correlation between currently available hydraulic presses and the customer requirements. The last row shows the final target values derived from the engineering/customer correlations and how the available products compare to it. This shows that what is currently available is unsatisfactory as well as guide the design in creating a hydraulic hand press to satisfy the Museums need.

<table>
<thead>
<tr>
<th>Customer Requirements</th>
<th>Engineering Requirements</th>
<th>Available Products</th>
<th>Final Target</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Hydraulic Hand Press
Estrella Warbirds Museum

<table>
<thead>
<tr>
<th>Customer Requirements</th>
<th>Weighting</th>
<th>Normalized Weight (Total 100)</th>
<th>Max. Width</th>
<th>Max. height</th>
<th>Minimum Reservoir Volume</th>
<th>Flexible hoses with aircraft connection</th>
<th>Uses aircraft 5606 hydraulic fluid</th>
<th>U-channel steel beams</th>
<th>Max. range of hand pump above base</th>
<th>Fastener Type</th>
<th>Double-wide crossbeams</th>
<th>Benchmarks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Safe material loading</td>
<td>25</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Westward 12-ton</td>
</tr>
<tr>
<td>Stable hydraulic ram</td>
<td>15</td>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>McMaster-Carr 12-ton</td>
</tr>
<tr>
<td>Free Standing</td>
<td>13</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>McMaster-Carr 25-ton Heavy Duty</td>
</tr>
<tr>
<td>Adjustable platform height</td>
<td>13</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Easy access to hand pump</td>
<td>13</td>
<td>8</td>
<td>3</td>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>No leaks in connections</td>
<td>12</td>
<td>8</td>
<td></td>
</tr>
<tr>
<td>Able to be disassembled</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Visible pressure gauge</td>
<td>10</td>
<td>7</td>
<td></td>
</tr>
<tr>
<td>Stable work piece platform</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Sufficiently sized hydraulic reservoir</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Selector valve close to hand pump</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Uses convenient materials for fluid and hoses</td>
<td>8</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Can't be too tall/short</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Can't be too wide/thin</td>
<td>5</td>
<td>3</td>
<td></td>
</tr>
<tr>
<td>Totals</td>
<td>153</td>
<td>100</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Units</th>
<th>ft.</th>
<th>ft.</th>
<th>gal.</th>
<th>yes</th>
<th>yes</th>
<th>yes</th>
<th>yes</th>
<th>5 bolted</th>
<th>yes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Targets</td>
<td>4</td>
<td>7</td>
<td>1</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>5</td>
<td>bolted</td>
<td>yes</td>
</tr>
<tr>
<td>Benchmark #1 Westward 12-ton</td>
<td>2</td>
<td>5</td>
<td>N/A</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>bad</td>
<td>bolted</td>
<td>yes</td>
</tr>
<tr>
<td>Benchmark #2 McMaster-Carr 12-ton</td>
<td>2</td>
<td>2</td>
<td>N/A</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>bad</td>
<td>bolted</td>
<td>yes</td>
</tr>
<tr>
<td>Benchmark #3 McMaster-Carr 25-ton Heavy Duty</td>
<td>3.5</td>
<td>2.25</td>
<td>N/A</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>bad</td>
<td>bolted</td>
<td>yes</td>
</tr>
</tbody>
</table>

- ● = 9 Strong Correlation
- ○ = 3 Medium Correlation
- △ = 1 Small Correlation
- Blank = No Correlation
Appendix C: Project Schedule (Gantt chart)

The Gantt chart that follows shows the proposed time table for the design, fabrication, and testing of a Hydraulic Hand Press for the Estrella Warbirds Museum by Bramah Hydraulics. The hours listed in the chart were updated as progress was made on the project.
Appendix D: Beam Sizing Analysis

This section shows the analysis used in selecting beam sizes for the Hydraulic Hand Press. The analysis began with sizing the double wide u-channel cross beams in tension at 10 tons.

Vertical Beam Analysis

Material properties of plain carbon steel:

\[\sigma_{sy} = 36 \text{ kpsi} \]
\[\sigma_U = 58 - 80 \text{ kpsi} \]
\[E = 30 \text{ Mpsi} \]

\[\sigma_y = \frac{F}{A} \]

\[\sigma_y = \sigma_{sy} = \frac{F(S.F.)}{A} \]

\[A = \frac{F(S.F.)}{\sigma_{sy}} \]

\[A = \frac{(20,000 \text{ lbs})(2.5)}{(36,000 \text{ lbs/ft}^2)} \]

\[A \geq 1.39 \text{ in}^2 \]

Any channel greater than C4. Chose 7" so the cylinder would fit between the cross beams.

Buckling analysis was done to see if it would show the need of an area greater than 1.39 in².
Top Cross Beams

\[F_{cyl} = PA \]

\[F_{cyl} = 3000 \text{ psi} \left(\frac{\pi(6 \text{ in.})^2}{4} \right) \]

\[F_{cyl} = 84,823 \text{ lb} \]

\[\sigma_{a,b} = \frac{M \cdot y}{I} \]

\[h = 4 \text{ in} \quad L = 4 \text{ ft} \]
\[Q_a = \bar{y}A_k \]

\[Q_a = \left(1.227 + \frac{.273}{2} \right) l \cdot t \]

\[Q_b = \left(k - \frac{t}{2} \right) l \cdot t \]

\[W_{cyl} = 100 \text{ lb} \]

\[I_c = 3.85 \text{ in}^2 \]

\[F = \left(\frac{20,000 - 100}{2} \right) \text{lb} \]

\[F = 9950 \text{ lbs} \]

\[\sigma_a = \frac{(\frac{h}{2} - t)(\bar{F})}{I_c} \]

\[\sigma_a = \frac{(\frac{4\pi}{3} \cdot 3.96 \text{ in})(9950 \text{ lb})}{3.85 \text{ in}^2} \]

\[\sigma_a = 52846 \text{ psi} \]

This calculation shows that a 4 in channel is too small. 6 in was chosen from the following graph of various beam sizes and their stress levels.

<table>
<thead>
<tr>
<th>Channel Size (min weight/length)</th>
<th>Moment of Inertia (I_c(\text{in}^3))</th>
<th>Flange Thickness (t(\text{in}))</th>
<th>Flange Length (l(\text{in}))</th>
<th>Stress at mid section (\sigma = \frac{M}{I_c})</th>
<th>Stress at a point (\sigma = \frac{Q_a t}{I_c})</th>
<th>First Moment of Inertia (Q_a t^2)</th>
<th>Shear Stress (\tau = \frac{FQ}{I_c})</th>
<th>Von Mises Stress (\sigma_m = \sqrt{\frac{1}{2}(\sigma_1 - \sigma_2)^2 + \frac{1}{2}(\sigma_2 - \sigma_3)^2 + \frac{1}{2}(\sigma_3 - \sigma_1)^2)})</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>32.6</td>
<td>0.390</td>
<td>2.260</td>
<td>1221</td>
<td>13222</td>
<td>3.35</td>
<td>453</td>
<td>6619</td>
</tr>
<tr>
<td>7</td>
<td>21.3</td>
<td>0.366</td>
<td>2.090</td>
<td>1635</td>
<td>17568</td>
<td>2.54</td>
<td>567</td>
<td>8793</td>
</tr>
<tr>
<td>6</td>
<td>13.1</td>
<td>0.343</td>
<td>1.920</td>
<td>2279</td>
<td>24217</td>
<td>1.86</td>
<td>737</td>
<td>12120</td>
</tr>
<tr>
<td>5</td>
<td>7.49</td>
<td>0.320</td>
<td>1.750</td>
<td>3321</td>
<td>34752</td>
<td>1.31</td>
<td>995</td>
<td>17390</td>
</tr>
<tr>
<td>4</td>
<td>3.85</td>
<td>0.296</td>
<td>1.584</td>
<td>5169</td>
<td>52846</td>
<td>0.87</td>
<td>1417</td>
<td>26442</td>
</tr>
<tr>
<td>3</td>
<td>1.66</td>
<td>0.273</td>
<td>1.410</td>
<td>8991</td>
<td>88255</td>
<td>0.52</td>
<td>2231</td>
<td>44156</td>
</tr>
</tbody>
</table>
Appendix E: Hydraulic Schematic

This shows the hydraulic system that will be used in the Hydraulic Hand Press project. The reservoir is a 1 gallon drum that holds excess hydraulic fluid. Everything but the reservoir has already been provided by the museum. The selector switch allows the fluid to push the cylinder bore in or out. The gauge was placed right after the hand pump to ensure the largest pressure reading in the system at all times. A fixed 700 psi release valve will be utilized to ensure the frame is not loaded to failure and remains inside its designed 10-ton range.
Appendix F: Decision Matrices for Platform Lifting Ideas

These decision matrices were used to compare potential designs to one another in order to choose the best one. In the matrix, a series of design categories, such as the design cost, ease of operation, and safety, were written next to a list of competing designs. In these tables, each design is compared to an idea that is set as the standard for all the other designs, this is known as the datum. The designs are rated for each category using either a plus indicating whether a design is better than the datum design, a minus indicating the idea is worse, or an ‘S’ indicating the two are the same. The pluses, minuses, and “sames” were added up and the designs with the highest numbers became the most likely methods to choose.

<table>
<thead>
<tr>
<th>Concepts</th>
<th>By Hand (Datum)</th>
<th>Scissor Hydraulics</th>
<th>Telescoping Hydraulics</th>
<th>Hand Winch and Pulleys</th>
<th>Rack and Pinion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria</td>
<td>Wgt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>5</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ease of Operation</td>
<td>3</td>
<td>S</td>
<td>+</td>
<td>+</td>
<td>-</td>
</tr>
<tr>
<td># of Parts</td>
<td>1</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Manufacturability</td>
<td>3</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Safe Operation</td>
<td>5</td>
<td>S</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Part Availability</td>
<td>3</td>
<td>S</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Range</td>
<td>5</td>
<td>S</td>
<td>-</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Load Capacity</td>
<td>3</td>
<td>S</td>
<td>+</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>Interference</td>
<td>4</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>#+</td>
<td>0</td>
<td>4</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td></td>
<td>#-</td>
<td>0</td>
<td>5</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td></td>
<td>#S</td>
<td>8</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Weighted total</td>
<td></td>
<td>0</td>
<td>-4</td>
<td>-4</td>
<td>-8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Concepts</th>
<th>By Hand (Datum)</th>
<th>Scissor Hydraulics</th>
<th>Telescoping Hydraulics</th>
<th>Hand Winch and Pulleys (Datum)</th>
<th>Rack and Pinion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria</td>
<td>Wgt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>5</td>
<td>+</td>
<td>-</td>
<td>S</td>
<td>-</td>
</tr>
<tr>
<td>Ease of Operation</td>
<td>3</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>S S</td>
</tr>
<tr>
<td># of Parts</td>
<td>1</td>
<td>+</td>
<td>S</td>
<td>S</td>
<td>S -</td>
</tr>
<tr>
<td>Manufacturability</td>
<td>3</td>
<td>+</td>
<td>-</td>
<td>+</td>
<td>S -</td>
</tr>
<tr>
<td>Safe Operation</td>
<td>5</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>S S</td>
</tr>
<tr>
<td>Part Availability</td>
<td>3</td>
<td>+</td>
<td>-</td>
<td>S</td>
<td>S S</td>
</tr>
<tr>
<td>Range</td>
<td>5</td>
<td>S</td>
<td>-</td>
<td>S</td>
<td>S S</td>
</tr>
<tr>
<td>Load Capacity</td>
<td>3</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>S S</td>
</tr>
<tr>
<td>Interference</td>
<td>4</td>
<td>+</td>
<td>+</td>
<td>S</td>
<td>+</td>
</tr>
<tr>
<td></td>
<td>#+</td>
<td>5</td>
<td>1</td>
<td>2</td>
<td>0 1</td>
</tr>
<tr>
<td></td>
<td>#-</td>
<td>3</td>
<td>4</td>
<td>1</td>
<td>0 3</td>
</tr>
<tr>
<td></td>
<td>#S</td>
<td>0</td>
<td>4</td>
<td>5</td>
<td>8 4</td>
</tr>
<tr>
<td>Weighted total</td>
<td></td>
<td>8</td>
<td>-10</td>
<td>5</td>
<td>0 -8</td>
</tr>
</tbody>
</table>
The first matrix shows nothing being close to the by hand method due to everything being more expensive or requiring more parts.

The second matrix using the hand winch as the datum showed that the hand winch and the telescoping methods were the most promising.

The third matrix used the scissor hydraulics as the datum and came up with the hand winch as the best choice. We selected the hand winch design because of its consecutive high ratings in the matrices.

<table>
<thead>
<tr>
<th>Concepts</th>
<th>By Hand</th>
<th>Scissor Hydraulics (Datum)</th>
<th>Telescoping Hydraulics</th>
<th>Hand Winch and Pulleys</th>
<th>Rack and Pinion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Criteria</td>
<td>Wgt</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cost</td>
<td>5</td>
<td>+</td>
<td>S</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Ease of Operation</td>
<td>3</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td># of Parts</td>
<td>1</td>
<td>+</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Manufacturability</td>
<td>3</td>
<td>+</td>
<td>S</td>
<td>+</td>
<td>S</td>
</tr>
<tr>
<td>Safe Operation</td>
<td>5</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Part Availability</td>
<td>3</td>
<td>+</td>
<td>S</td>
<td>-</td>
<td>+</td>
</tr>
<tr>
<td>Range</td>
<td>5</td>
<td>+</td>
<td>S</td>
<td>S</td>
<td>+</td>
</tr>
<tr>
<td>Load Capacity</td>
<td>3</td>
<td>-</td>
<td>S</td>
<td>S</td>
<td>S</td>
</tr>
<tr>
<td>Interference</td>
<td>4</td>
<td>S</td>
<td>S</td>
<td>S</td>
<td>-</td>
</tr>
</tbody>
</table>

#+ 4 0 1 2 2
#- 3 0 3 1 3
#S 1 8 5 5 3

Weighted total 4 0 -2 4 -3
Appendix G: Lift Concept Sketches

Winch/Pulley:
Scissor Crank:
APPENDIX H: Platform Support Pin Calculation

Calculations for sizing the adjustable platform support pins can be seen below. The maximum pressing force was combined with a load estimation of 200 lbs. and an approximation of the weight of the platform. This combined force was then distributed to the two support pins. By relating a shear stress equation to the material yield stress, a pin diameter was found, with a total safety factor of 4.2. Two 1’’ nominal diameter ASTM-A36 steel rods will be used to support the press platform. Deflection of the loaded pins was also calculated to rule out such a failure mode. The analysis showed less than 0.075 in. deflections in a worst-case over-hanging beam bending situation. A simple force over area calculation was done on the support pinhole projected area in the vertical members. The applied contact stress allowed for an adequate safety factor of 2.6.
Bramah Hydraulics

Support Pin Analysis:

\[L = 2(10,000 \text{ lb}) = 20,000 \text{ lb} \]

\[W = 25 \text{ lb/ft} \times (4 \times 2) + 200 \text{ lb} = 400 \text{ lb} \]

\[F = W + L = 20,400 \text{ lb} \]

\[\text{A-36 steel 4' x 10'' channel} \]

\[\text{oversized (using 6' crossbeams)} \]

Support Pin Shearing

\[R = \frac{F}{4} = 5100 \text{ lb} \]

Assume pin material A-36 steel

\[E = 29 \text{ Msi}, \sigma_s = 36 \text{ ksi}, \sigma_{ut} = 58 \text{ ksi} \]

reactions from vertical member flanges at center of pin holes.

\[V = \text{max shear} = R = 5100 \text{ lb} \]

\[Q = \text{Axial} \cdot \frac{V}{t} = \frac{t^2D^2}{8} \left(\frac{2D}{2t} \right) = \frac{D^3}{12} \]

\[\text{Ice ree} = \frac{tD^2}{64} \]

shear stress \[\sigma_s = \frac{VQ}{It} = \frac{5100 \times 4}{(5100 \times 4)(\frac{D^3}{12})} = 27,200 \]

\[\frac{PD^2}{It} = \frac{27,200}{\frac{PD^2}{It}} \]

\[\text{w/ min. SF = 2} \Rightarrow \frac{27,200}{PD^2} = \frac{PD^2}{I} = 18 \text{ ksi} \]

\[D = 0.694 \text{ in} \Rightarrow \text{use 1 in. nominal for SF = 4.2 total} \]
Support Pin Deflection Analysis

For deflection analysis, modeled as a simply supported beam.

Assumed \(\frac{1}{2} \) loads act through midpoint of the platform flange width, with \(R \) acting through the midpoint of the vertical flange thickness, symmetrically.

Distance \(a \) is estimated as follows:

\[
A = \frac{1}{2} W_{pf} + \frac{1}{2} t_f + \frac{1}{2} t_{mf}
\]

A. Deflection at F application: \(y = \frac{R_a^2}{6EI} (2a + 3b) \)
B. Deflection at center of beam: \(y = -\frac{R_a^2}{8EI} \)
Support Pin Analysis CONT.

\[a = \frac{1}{2} (1.920\text{"}) + 0.313\text{"} + \frac{1}{2} (0.366\text{") } = 2.169\text{"} \]

\[E = 29 \text{ MSi}; \quad I_x = \frac{7\text{(1/4)}}{64} = 0.04909 \text{ in}^4, \quad l = 7\text{in}; \quad R = 5100\% \]

deflection at A = 0.071 in. (downward)
deflection at B = 0.048 in. (upward)

Support Pin Hole Contact Stress

Projected area of support pin hole

\[A_v = (1/4)(0.366\text{ in}^2) = 0.366 \text{ in}^2 \]

\[\sigma_x = \frac{E}{A} = \frac{F}{A_v} = \frac{5100\%}{0.366 \text{ in}^2} = 13,900 \text{ ps} \]

gives S.F. of 2.6 for A-36 yield strength
APPENDIX I: Trolley Sizing Calculation

Here, the trolley base plate and flanges are sized based on stress. Applied stresses are compared to allowable stresses to give nominal dimensions such as length, width, and material thickness. To keep it simple, we designed the trolley out of plain carbon steel A-36. Better material may be available which will allow for less bulk.
Cylinder Trolley Design Analysis

Plate Design

Top View

Flange Design

Estimate flange as a rectangular cross section beam.
Assumptions:

- Small shear stress

\[z = M_z = 0 \]
\[-8.83bR + P_{fy} \left(\frac{6.85}{b} + 1b \right) = 0 \]
\[R = 4.1 \text{ tons} \]

\[(4 \text{ tons}) \]
\[z = M_z = 0 \]
\[-8.83bR + P_{fy} \left(\frac{6.85}{b} + 1b \right) = 0 \]
\[R = 5 \text{ tons} \]

Shear Diagram:

- 5 tons (4 tons)
- 2 tons (4 tons)

Moment Diagram:

- 9.9 tons in (4 tons)
- 22.13 tons in (10 tons)

Unit Stress at Point b

\[\sigma_x - \sigma_y \]

\[\sigma_x = \frac{M c}{I} = \frac{M c}{b h^3} \]
\[\sigma_y = \frac{P_{fy}}{b h} \]

Von Mises Failure Criteria

\[\sigma' = \left(\sigma_x^2 + \sigma_y^2 + \sigma_x \sigma_y + 3 \sigma_z^2 \right)^{\frac{1}{2}} \]
\[\text{Mises Stress} = \left(\frac{b h^4}{12} - \frac{1}{b h} \frac{M c}{b h^3} + \frac{P_{fy}}{b h} \right)^{\frac{1}{2}} \]
Von Mises stress continued.

\[\sigma' = \left(\frac{36 \mu \Delta \tau}{b^4 h^2} - \frac{6 M E \Delta \theta}{b^4 h^2} + \frac{F_{yl} \Delta z}{b h^2} \right)^{\frac{1}{2}} = \sigma_y \]

Flange thickness, \(b\) using force over area of direct shear.

\[\sigma_x = \frac{F_{yl}}{A} \]

\[b = \frac{F_{yl} / \sigma_x}{d \sigma_y} \]

\[\frac{1.8 \times 10^6 \text{lb}}{(1.5 \text{in})(36,000 \text{psi})} \Rightarrow b = 0.001 \text{lb} \]

\[b = 0.15 \text{in} \]

\[\sigma_y = \left(\frac{1.3809 \times 10^5 \text{ tons}}{h^2} - \frac{10405 \times 10^5 \text{ tons}}{h^3} + \frac{784 \text{ tons}}{h^4} \right)^{\frac{1}{2}} \]

Von Mises stress using 10 tons not 41 tons press load.

\[\sigma_y = \left(\frac{36 (4.13 \text{ tons/in})^2}{(5 \text{ in})^4} - \frac{6 (4.13 \text{ tons/in})(10 \text{ tons})}{(6 \text{ in})^3} + \frac{400 \text{ tons/in}}{h^4} \right)^{\frac{1}{2}} \]

\[F_{yl} = 18,000 \text{ lb} \]

\[A = 3.5 \text{ in}^2 \]

\[b = 1, h = 3.75 \text{ in} \] using iterations on excel spreadsheet "Trolley Flange Stress.xlsm"
Trolley Flange deflection

Free-body diagram of Trolley flange as analysed on pg. 45-47 with added plate thickness of 1" on top

Deflection equation from Sigley's 8th ed. Table A-9-5:

\[y_{max} = \frac{F_{y}wL^{3}}{24EI} \]

\[I = \frac{bh^{3}}{12} \]

\[= \frac{F_{y}wL^{3}}{24EI} \]

\[= \frac{-60000 lb \times (10.75 in)}{3 \times (30 \times 14.5 in) \times (6.75 in)^{3}} \]

\[Y_{max} = -3.37 \times 10^{-5} \text{ in} \]

Seeing deflection of height based on flange only:

\[Y_{max} = -6.86 \times 10^{-5} \text{ in} \]

Side view of Trolley Flange and plate beam

Plate thickness (viewed as part of h above) chosen as conservative thickness since the Trolley flange is capable of carrying all the load. The thickness was then chosen to be made from same material as the trolley flange, size metal
APPENDIX J: Cost Analysis

The table below shows a pricing breakdown for required materials and parts. Many of these items we have priced for a projected total cost, aware that many materials will be donated. Our final pricing outline is seen on the next page. All receipts, packing orders, and invoices referred to here were kept and are available.

Initial Cost Analysis

<table>
<thead>
<tr>
<th>Fasteners</th>
<th>Manufacturer Name</th>
<th>Product Number</th>
<th>Qty</th>
<th>Price Ea.</th>
<th>Price Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Eye Bolts</td>
<td>McMaster-Carr</td>
<td>3014T45</td>
<td>2</td>
<td>$2.92</td>
<td>$5.84</td>
</tr>
<tr>
<td>Bolts (Beam connections)</td>
<td>McMaster-Carr</td>
<td>92865A835</td>
<td>25</td>
<td>$0.90</td>
<td>$22.50</td>
</tr>
<tr>
<td>Nuts</td>
<td>McMaster-Carr</td>
<td>90490A436</td>
<td>25</td>
<td>$0.20</td>
<td>$5.00</td>
</tr>
<tr>
<td>Single Mounted Pulley</td>
<td>McMaster-Carr</td>
<td>3099T34</td>
<td>2</td>
<td>$6.39</td>
<td>$12.78</td>
</tr>
<tr>
<td>Double Mounted Pulley</td>
<td>McMaster-Carr</td>
<td>3099T44</td>
<td>1</td>
<td>$10.74</td>
<td>$10.74</td>
</tr>
<tr>
<td>Block Pulley</td>
<td>McMaster-Carr</td>
<td>3099T13</td>
<td>1</td>
<td>$10.83</td>
<td>$10.83</td>
</tr>
<tr>
<td>Wire (3/16")</td>
<td>McMaster-Carr</td>
<td>3450T31</td>
<td>25</td>
<td>$0.46</td>
<td>$11.50</td>
</tr>
<tr>
<td>4" steel Channel</td>
<td>Metals Depot</td>
<td>C2454</td>
<td>6</td>
<td>$28.08</td>
<td>$168.48</td>
</tr>
<tr>
<td>7" Steel Channel</td>
<td>Metals Depot</td>
<td>C2798</td>
<td>2</td>
<td>$117.60</td>
<td>$235.20</td>
</tr>
<tr>
<td>2" Angle Steel</td>
<td>Metals Depot</td>
<td>A1211218</td>
<td>2</td>
<td>$10.00</td>
<td>$20.00</td>
</tr>
<tr>
<td>700 PSI Safety Valve</td>
<td>Northern Tool</td>
<td>RD-1850-H</td>
<td>1</td>
<td>49.99</td>
<td>$49.99</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>$552.86</td>
</tr>
</tbody>
</table>
Cost Analysis cont.

Bramah Hydraulics Final Cost Breakdown for Estrella Warbirds Hydraulic Hand Press
December 2nd, 2009

<table>
<thead>
<tr>
<th>Retailer/Order No.</th>
<th>Item</th>
<th>Price</th>
<th>Tax+S/H</th>
<th>Subtotal</th>
</tr>
</thead>
<tbody>
<tr>
<td>McMaster-Carr 0508NBROWN</td>
<td>1500 lb. worm gear winch (3/16'')</td>
<td>$63.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McMaster-Carr 0508NBROWN</td>
<td>zinc-plated double pulley (3/16'')</td>
<td>$10.74</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McMaster-Carr 0508NBROWN</td>
<td>zinc-plated double pulley swivel eye</td>
<td>$13.97</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McMaster-Carr 0508NBROWN</td>
<td>2 x zinc-plated single pulley (3/16'')</td>
<td>$12.78</td>
<td>$15.60</td>
<td>$116.84</td>
</tr>
<tr>
<td>Grizzly on Amazon 104-8373649-1065006</td>
<td>1-ton Heavy Duty I beam trolley</td>
<td>$59.95</td>
<td>$11.76</td>
<td>$71.65</td>
</tr>
<tr>
<td>McMaster-Carr 1003NBROWN</td>
<td>Grade 5 zinc-plated 3/4''-10 hex cap</td>
<td>$9.99</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McMaster-Carr 1003NBROWN</td>
<td>Grade 5 zinc-plated 3/4'' nyloc nuts</td>
<td>$6.19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McMaster-Carr 1003NBROWN</td>
<td>3/4'' yellow zinc steel flat washers</td>
<td>$7.81</td>
<td>$7.22</td>
<td>$31.21</td>
</tr>
<tr>
<td>Dynamtic, Inc. 86P58766FU171564U</td>
<td>Cross Hydraulic Relief Valve</td>
<td>$65.00</td>
<td>$10.00</td>
<td>$75.00</td>
</tr>
<tr>
<td>Fastenal WQ9Y8PK43119</td>
<td>4 x 1/2''-13 gr. 5 hex nuts</td>
<td>$0.91</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fastenal WQ9Y8PK43119</td>
<td>4 x 1/2'' flat washers</td>
<td>$0.37</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fastenal WQ9Y8PK43119</td>
<td>2 x 3/4''-10 gr. 5 hex cap screws</td>
<td>$2.52</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fastenal WQ9Y8PK43119</td>
<td>4 x 1/2''-13 gr. 5 hex cap screws</td>
<td>$2.07</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fastenal WQ9Y8PK43119</td>
<td>2 x 3/4''-10 gr. 8 nyloc nuts</td>
<td>$1.68</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fastenal WQ9Y8PK43119</td>
<td>2 x 3/4 SAE flat washers</td>
<td>$0.54</td>
<td></td>
<td></td>
</tr>
<tr>
<td>McMaster-Carr 1019NBROWN</td>
<td>2 x 1'' Nitride coated steel shaft (12'')</td>
<td>$28.60</td>
<td>$7.61</td>
<td>$36.21</td>
</tr>
<tr>
<td>McMaster-Carr 1125NBROWN</td>
<td>1-1/4'' Nitride coated steel shaft (12'')</td>
<td>$21.70</td>
<td>$8.77</td>
<td>$45.33</td>
</tr>
<tr>
<td>McMaster-Carr 1125NBROWN</td>
<td>2 pk. Gr. 5 3/4''-10 zinc hex screws</td>
<td>$14.86</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Home Depot (In store)</td>
<td>Rustoleum Paint and Primer</td>
<td>$29.97</td>
<td></td>
<td>$29.97</td>
</tr>
</tbody>
</table>

TOTAL $422.62
APPENDIX K: Failure mode effects analysis (FMEA)

The table here displays our plan for identifying and testing the various failure modes and effects associated with the operation of this press.

<table>
<thead>
<tr>
<th>Item No</th>
<th>Specification or Clause Reference</th>
<th>Test Description</th>
<th>Acceptance Criteria</th>
<th>Test Responsibility</th>
<th>Test Stage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Stable Frame</td>
<td>Analysis using a horizontal force will be required to just lift one side of a leg using statics and the center of gravity, from a force applied at shoulder height by two average males.</td>
<td>The frame remains static on the ground for a force of 200 lbs</td>
<td>MK + NB</td>
<td>CV</td>
</tr>
<tr>
<td>2</td>
<td>Aircraft cable breaking</td>
<td>The aircraft cable and hand winch to hold the platform with a weight for a specified amount of time.</td>
<td>Pass - Hold the platform and 100 lbs for 10 min without breaking.</td>
<td>MK + NB</td>
<td>PV</td>
</tr>
<tr>
<td>3</td>
<td>The aircraft cable and hand winch to hold the platform with a weight and move to a specified height.</td>
<td>Pass - Hold the platform and 100 lbs and move to the max height from 4ft below.</td>
<td>MK + NB</td>
<td>PV</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>Hydraulic Leak</td>
<td>Test the Hydraulic system for leaks during operation.</td>
<td>Pass - Seals and connections remain dry for 20 cycles of the piston from max to min extension.</td>
<td>MK + NB</td>
<td>PV</td>
</tr>
<tr>
<td>5</td>
<td>Pump Handle Breaks</td>
<td>Analyze the amount of force required to bend the handle when it is fully extended and at a static position.</td>
<td>Pass - Max deflection of .01 in.</td>
<td>MK + NB</td>
<td>CV</td>
</tr>
<tr>
<td>6</td>
<td>Insufficient Pressure Requirements</td>
<td>Measure the pressure at various points in the line</td>
<td>Pass - Test both inlet and outlet ports on cylinder while at bore extremes to be able to reach 3000 psi.</td>
<td>MK + NB</td>
<td>PV</td>
</tr>
<tr>
<td>7</td>
<td>Obstructions presenting possible impact</td>
<td>Avoidance of frame making contact with the operator or bystanders</td>
<td>Simulate operation of the system while standing in various positions around the press.</td>
<td>MK + NB</td>
<td>DV</td>
</tr>
<tr>
<td>8</td>
<td>Test Ergonomics (Single man operation of platform lifting)</td>
<td>Study fatigue of operator turning the Hand Winch and cycling the Hand Pump</td>
<td>Can Raise/Lower the Platform 2 feet without resting or switching hands and can achieve full cylinder bore extension of 18 inches.</td>
<td>MK + NB</td>
<td>PV</td>
</tr>
<tr>
<td>9</td>
<td>Max Pressure</td>
<td>Make sure safety release valve engages as rated and all hydraulic components hold max pressure.</td>
<td>Fully extend cylinder bore and increase pressure slowly until max pressure is reached or safety valve is engaged.</td>
<td>MK + NB</td>
<td>PV</td>
</tr>
<tr>
<td>10</td>
<td>Platform pins won't jam</td>
<td>Ensure the platform pins slide smoothly into and out of each position along the vertical beams</td>
<td>Insert the platform pins and load at 50% for each position. Repeat process once all positions have been tested.</td>
<td>MK + NB</td>
<td>DV+PV</td>
</tr>
</tbody>
</table>
Appendix L: Layout Drawings with Bills of Materials

Layout DWG. NO. 1 shows the exploded view of the proposed hydraulic hand press for the Estrella Warbirds Museum. The Bill of Materials (BOM) has a minimal cost analysis of necessary purchases. The availability of the rest of the items was checked with the museum so as to save as much as possible on materials. DWG. NO. 2 shows the exploded view of the cylinder’s proposed horizontal motion trolley. Based on a I-beam trolley, the assembly was fabricated to hold the cylinder rigid during operation.
Hydraulic Hand Press Assembly

Bramah Hydraulics
Cal Poly San Luis Obispo
in conjunction with the Estrella Warbirds Museum

Note: Hardware not pictured
<table>
<thead>
<tr>
<th>ITEM NO.</th>
<th>PART</th>
<th>DESCRIPTION</th>
<th>QTY.</th>
<th>PRICE</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Vertical Member</td>
<td>C7x14.75 A-36 Steel from Estrella/Donations/PRW</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>Platform Cross Member</td>
<td>C6x8.2 A-36 Steel from Estrella/Donations/PRW</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>Top Cross Member</td>
<td>C6x8.2 A-36 Steel from Estrella/Donations/PRW</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>Leg Member</td>
<td>C3x4.1 A-36 Steel from Estrella/Donations/PRW</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>Base Support Angle Iron</td>
<td>2" Angle Iron from Estrella/Donations/PRW</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>6</td>
<td>Selector Valve</td>
<td>Supplied by the Estrella Warbirds Museum</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>Platform Support Pin</td>
<td>Part 4437T121 from McMaster Carr</td>
<td>2</td>
<td>$21.66</td>
</tr>
<tr>
<td>8</td>
<td>Platform Center I-Bracket</td>
<td>Part 9517K215 from McMaster Carr</td>
<td>2</td>
<td>$32.43</td>
</tr>
<tr>
<td>9</td>
<td>Hand Winch</td>
<td>3205T15 w/ cable from McMaster Carr</td>
<td>1</td>
<td>$86.81</td>
</tr>
<tr>
<td>10</td>
<td>Hand Pump</td>
<td>Supplied by the Estrella Warbirds Museum</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>11</td>
<td>Hydraulic Cylinder</td>
<td>Supplied by the Estrella Warbirds Museum</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>12</td>
<td>Trolley Assembly</td>
<td>See DWG. NO. 2 for Trolley BOM</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>13</td>
<td>Lift Pulley</td>
<td>Part 3099T13 from McMaster Carr</td>
<td>4</td>
<td>$10.83</td>
</tr>
<tr>
<td>14</td>
<td>Hydraulic Reservoir</td>
<td>1 Gallon Tank as specified (dimension unknown)</td>
<td>1</td>
<td>-</td>
</tr>
<tr>
<td>15</td>
<td>Reservoir Platform</td>
<td>Salvaged stainless steel from Cal Poly scrap</td>
<td>1</td>
<td>-</td>
</tr>
</tbody>
</table>

Vendor Data:

Estrella Warbirds Museum - Sponsors of hydraulic press project. Supply yard and shop with available steel, tools, hardware, and cables.

www.ewarbirds.org
4251 Dry Creek Road
Paso Robles, CA 93446

PRW Steel - Paso Robles Welding Steel Supply. Founded by Keith Kirkland, with extensive experience in the manufacturing process, welding & retail steel sales, focusing on complete customer satisfaction.

www.prwsteel.com
2905 Union Road
Paso Robles, CA 93446

McMaster Carr - General online construction supplier. Fast delivery times and good support.

www.mcmaster.com
600 N County Line Rd.
Elmhurst, IL 60126-2081

Bill of Materials for DWG. 1

Bramah Hydraulics
Cal Poly San Luis Obispo
in conjunction with the
Estrella Warbirds Museum

PROPRIETARY AND CONFIDENTIAL
THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF
<INSERT COMPANY NAME HERE> ANY
REPRODUCTION IN PART OR AS A WHOLE
WITHOUT THE WRITTEN PERMISSION OF
<INSERT COMPANY NAME HERE> IS
PROHIBITED.

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL ±
ANGULAR: MACH ±
TWO PLACE DECIMAL ±
THREE PLACE DECIMAL ±
MATERIAL
FINISH
APPLICATION
DO NOT SCALE DRAWING

Bill of Materials2

A

REV.

SCALE: 3/32

WEIGHT

SHEET 2 OF 3
APPENDIX M: Detailed Part Drawings

The following drawings show the exact positioning of all desired features to be machined for the required custom parts. Overall sizing, cuts, and holes are all specified for fabrication, along with materials and detail notes.
NOTE: All holes are through-holes unless otherwise noted

Right Side Vertical Member

Bramah Hydraulics
Cal Poly San Luis Obispo
in conjunction with the
Estrella Warbirds Museum

SCALE: 1:12

INTERPRET GEOMETRIC TOLERANCING PER:

MATERIAL
Plain Carbon Steel
C7x14.75

DRAWN
Nathan Brown
3/13/09

CHECKED
Matt Knorr
3/13/09

ENG APPR.
MFG APPR.
Q.A.
COMMENTS:

NOTE: All holes are through-holes unless otherwise noted.

Right Side Vertical Member
Note: For all un-dimensioned features, refer to Right Side Vertical Member DWG. NO. 3

Left Side Vertical Member

Bramah Hydraulics
Cal Poly San Luis Obispo
in conjunction with the
Estrella Warbirds Museum

NAME DATE
Nathan Brown 3/13/09
Matt Knorr 3/13/09

MATERIAL
Plain Carbon Steel
C7x14.75

SCALE: 1:12
Note: Similar across centerlines

Plain Carbon Steel
C6x8.2

UNLESS OTHERWISE SPECIFIED:
DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL:
ANGULAR: MACH:
BEND:
TWO PLACE DECIMAL:
THREE PLACE DECIMAL:
INTERPRET GEOMETRIC
TOLERANCING PER:
MATERIAL

PLATFORM CROSS MEMBER

Bramah Hydraulics
Cal Poly San Luis Obispo
in conjunction with the
Estrella Warbirds Museum

SIZE
A

DWG. NO.
5

REV

SCALE: 1:8
WEIGHT: 32.5 lb
SHEET 3 OF 11
Plain Carbon Steel
C6x8.2

UNLESS OTHERWISE SPECIFIED:

<table>
<thead>
<tr>
<th>NAME</th>
<th>DATE</th>
</tr>
</thead>
<tbody>
<tr>
<td>DRAWN</td>
<td>Nathan Brown 3/13/09</td>
</tr>
<tr>
<td>CHECKED</td>
<td>Matt Knorr 3/13/09</td>
</tr>
<tr>
<td>ENG APPR.</td>
<td></td>
</tr>
<tr>
<td>MFG APPR.</td>
<td></td>
</tr>
<tr>
<td>Q.A.</td>
<td></td>
</tr>
</tbody>
</table>

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL
ANGULAR: MACH
BEND
TWO PLACE DECIMAL
THREE PLACE DECIMAL

INTERPRET GEOMETRIC TOLERANCING PER:

MATERIAL

SCALE: 1:8
WEIGHT: 32.4 lb
SHEET 4 OF 11
THE INFORMATION CONTAINED IN THIS DRAWING IS THE SOLE PROPERTY OF BRAMAH HYDRAULICS. ANY REPRODUCTION IN PART OR AS A WHOLE WITHOUT THE WRITTEN PERMISSION OF BRAMAH HYDRAULICS IS PROHIBITED.

Leg Support Member

Plain Carbon Steel
C3x4.1

DIMENSIONS ARE IN INCHES
TOLERANCES:
FRACTIONAL: 1
ANGULAR: MACH: 1
BEND: 1
TWO PLACE DECIMAL: 1
THREE PLACE DECIMAL: 1

INTERPRET GEOMETRIC TOLERANCING PER:
MATERIAL

UNLESS OTHERWISE SPECIFIED:

draN Nathan Brown 3/13/09
CHECKED Matt Knorr 3/13/09
ENG APPR.
MFG APPR.
G.A.
COMMENTS:

LEGEND

Bramah Hydraulics
Cal Poly San Luis Obispo
in conjunction with the
Estrella Warbirds Museum

SIZE
A

DWG. NO.
7

weight: 14.2 lb

scale: 1:8

Sheet 5 of 11
Trolley Clevis/Flange

Bramah Hydraulics

Cal Poly San Luis Obispo

in conjuction with the

Estrella Warbirds Museum

Plain Carbon Steel

DIMENSIONS ARE IN INCHES

MATERIAL:

UNLESS OTHERWISE SPECIFIED:

SCALE: 1:2 **WEIGHT:** 8.9 lb **SHEET 10 OF 11**