

CONTENT-BASED FRAMEWORK FOR COMPONENT
LIBRARIES

Franz Kurfess
Ching Kang Cheng
Department of Computer Science, California Polytechnic State University, San Luis Obispo, CA
93407, U.S.A.

Z.Y. Wang
Tumbleweed Communication Corp., Redwood City, CA 94063, U.S.A.

L. Jololian
New Jersey City University, NJ 07305, U.S.A.

The construction of large software systems from existing components requires efficient access to
possibly large collections of such components. In this paper, we present a content-based
framework to organize this large collection of components in a semi-automatic fashion, according
to an extensible user-defined ontology. Neural associative memories are used for fast, similarity-
based access. Relevant characteristics of components are extracted and stored as a ``signature'' in
such an associative memory, and during retrieval the closest matches to the query are indicated in
very short time. In addition to content-based characteristics such as keywords, function and
variable names, comments, and the location of the component in the class hierarchy, this method
can be easily expanded to include usage characteristics, resource requirements, or other task- or
customer-specific criteria.

Keywords: components, neural associative memories, ontology.

1. Component-Based Systems
The demand for new specialized software systems is on the increase, with the size and complexity

of these systems challenging the effectiveness of the traditional software engineering development
methodologies. To meet this challenge, organizations must be increasingly agile, and quickly respond
to market conditions. Component technology is an effective methodology that provides powerful
means of building systems quickly from a library of existing components. As libraries grow larger, the
organization and retrieval task becomes more cumbersome.

In this paper we propose a framework to identify components according to syntactic, semantic, and
pragmatic criteria. This framework consists of three main modules: a signature extraction engine
(SEE), a facet-based component representation scheme (FCRS) and a neural associative memory
(NAM). SEE constructs meaningful signatures according to the ontology from the documentation
affiliated with the components. The signatures retrieved from components are categorized to the
respective facets, defined in FCRS. NAM provides instant, similarity-based access according to the

criteria provided via the facet representation, resulting in a very fast and reasonably powerful retrieval
mechanism.

1.1. Component Definition
Among the variety of definitions for components proposed in the literature, we will use here the

following one from (Szyperski, 1997):

A component is a unit of composition with contractually specified interfaces and explicit context

dependencies only. A software component can be deployed independently and is subject to third
party composition.

In this definition, code segments are explicitly included as “software components”; it is possible,

however, to also include components that are not necessarily executable software units, such as
templates, design patterns, system frameworks, or other units relevant for the design and construction
of system. This definition is more comprehensive than others in the sense that it includes different
types of reusable units within the scope of components. Components can be seen on two levels, the
design level and the implementation level. At the design level, components are used to describe the
functionality of a desired software system and how the system can be built based on available
components. The types of components found at this level are system architectures, frameworks,
templates and design patterns. At the implementation level, components are encapsulated code
segments, which are self-contained and perform specific functions. This kind of components is also
referred to as “commercial off-the-shelf components,” or COTS components, for short. Design level
components ensure the reuse of the design idea and efficiency and correctness of design work, whereas
implementation level components ensure the reuse of code and the efficiency and correctness of
building a software system.

1.2. Component Representation Scheme
We adopt a facet-based component representation scheme (FCRS), providing an easily changeable

representation scheme by modifying the underlying facet list. Such a feature meets the challenge
posted in the current software development environment where the content in a component library can
change rapidly. Although it does not contain much “deep” semantic information, we believe that the
facet representation is sufficient for describing components. Like components for other engineering
disciplines, software components have common attributes shared by each component, and unique
attributes to distinguish individual components from each other. In accord with the above observation,
we propose to represent components based on double facet lists. One facet list is used to describe the
common attributes and another facet list to describe the unique attributes. We have determined the 10
common facets to uniquely identify a component:

• Component: facet list
• Universal Identifier: string
• Local Identifier: string
• Originator Organization: string
• Domain: string
• Type: string
• Interface: parameter list
• Return Type: string
• Exception: exception list
• Location: string
• Description: facet list

Below is a more detailed explanation of each facet.
Universal Identifier: this facet is used to identify components universally. The value for this facet

has to be universally unique, like IP addresses. The scheme to determine universal identifiers should be
managed by a centralized organization.

Local Identifier: this facet helps to identify local components. The value is locally unique, but does
not have to be universally unique.

Originator Organization: this facet indicates who the originator of the components is. The value
has an URL-like format, xxx.yyy.zzz..

Domain: this facet specifies in which application domain the component is working. Possible
values could be “finance”, “education”, “medical” and so on. This facet is used to distinguish possible
similar components.

Type: this is used to distinguish a component from other components within the same domain by its
functionality. The value could be “design pattern”, “framework”, “stack”, “queue” and so on.

Interface: this facet specifies how to interact with the component. For an implementation
component, it could be a list of parameters. For a design component, it could be a command used to
access the content of the component.

Return type: return type is used to specify what the system will get when the interaction with the
component is finished. It is used together with the interface to specify the action of a component. These
two facets are important during the composition of components.

Exception list: this is for implementation components only. We use exception lists to define the pre
and post-state conditions.

Location: location specifies where a component is. In order to distinguish the address of a library
from that of a WWW site, a location-independent naming system is needed. In their paper, Browne et
al [BRO95], gives a complete discussion of such a naming system.

Description: It contains a pointer to another facet list in which the characteristics of a component
are recorded. The facets in this facet list are determined by the type of the component. We believe that
when the component technology becomes mature, each component will be classified into one particular
class, and components in the same class have certain characteristics to differentiate themselves. In the
above representation scheme, the facet of description is the most important one since it uniquely
identifies the software component.

2. Component Identification
This section describes the process involved in identifying the characteristics of components. This is

a semi-automatic process also suitable for abnormal circumstances, which may require human
intervention in recognizing the relevant characteristics of components.

2.1. Ontology
An ontology provides an explicit formal specification for the terms used in a particular domain,

and identifies relations among these terms (Gruber, 1993). Such an ontology can be used as a common
framework among various parties interested in the domain. It identifies and formalizes the underlying
structure of the information and knowledge about the domain. An ontology is a graph whose nodes
represent the concepts or objects of a domain, and the edges indicate relationships between concepts.
Usually this graph is structured around a hierarchical “backbone” similar to the class/subclass
relationship in object-oriented programming. It is not a strict tree, however, and links can exist between
any concepts in the graph. Due to the formalization, it can be represented and to some degree
interpreted by machines, and enables the formal analysis of the domain. This allows an automated or
computer-aided extraction and aggregation of knowledge from different sources and possibly in
different formats (as long as the formats can be mapped to the ontology).

To a certain extent, ontologies can mirror class hierarchies, objects, relation, properties, and
methods used in software development. The latter, however, usually reflect the perspective of software
developers, whereas ontologies concentrate on aspects of the domain that are visible to all parties
interested in a particular domain, particularly users of software applications.

From an engineering perspective, ontologies can be very helpful with the reuse of domain
knowledge, and for the separation of domain knowledge and software code that performs operations on
that knowledge. In our proposed framework, ontology is used in both the signature extraction engine
and the facet categorization engine.

2.2. Component Documentation
In component libraries, valuable knowledge such as features, locations and interface definitions, are

encapsulated in unstructured or semi-structured documents. We denote such documents as component
documentation. Examples of component documentation include source code, software requirement
documents, software design documents, bug reports, and technical reports.

2.3. Signature Extraction Engine
In our framework, a signature refers to a set of keywords that links a component to a concept

within the ontology. For example, the signature EDUCATION may contain the keywords education,
training, and learning, whereas the signature FINANCE may likewise contain the keywords accounting,
tax-return, and commerce. The ontology enables the computer to correlate the occurrence of the words
in the component documentation with the respective meaning in the user context (Pan, 2002).

The objective of the signature extraction engine is to construct meaningful signatures according to
the ontology from the component documentation. Each time a signature is found, an instance of the
signature is created. For example, if the component documentation contains twenty occurrences of the
word tax-return, twenty instances of the signature FINANCE will be instantiated and stored in the
signature knowledge-base. The signature knowledge-base forms the input for the facet categorization
engine.

2.4. Facet Categorization Engine
A facet category is defined as a grouping of signatures having the same perspective. For example,

the signatures EDUCATION and FINANCE are grouped in the facet category DOMAIN. An ontology
defines the facet categories; each category corresponds to a facet in the FCRS. One benefit is that it is
possible to extend the ontology dynamically. For example, a new facet category SPECIFIC-DOMAIN
containing the signatures EDUCATION and FINANCE can be added to the ontology in run-time,
without re-compiling the source code of the facet categorization engine. The resulting facet categories
serve as input for the respective neural associative memories.

3. Component Retrieval
This section describes the component retrieval method, as well as the techniques employed in order

to facilitate a fast selection of components that best match a given set of criteria for the desired
component.

3.1. Neural Associative Memories
A neural associative memory Anderson, 1972; Kohonen, 1972; Palm, 1980) is a single-layered

neural network that maps a set of input patterns X={x1, …, xm} into a set of output patterns Y = {y1, …,
ym}, where each pair (xk, yk) ∈ IRn × IRm . The associative memory remembers a set, S = {(xk, yk): k=1,
…, M}, of mappings. When a new input x is presented to the network, the corresponding output y is
calculated by a mapping y = xW, where W is referred to as the synaptic connectivity matrix. During the

learning stage, each pair (xk, yk) ∈ S is presented to the associative memory. This provides a
presynaptic and a postsynaptic signal at every synapse. According to these two signals, the synaptic
weight is changed. For learning, we use the Hebb rule (Hebb, 1949). It states that if both the neuron at
position i of the input pattern, xi, and the neuron at position j of output pattern, yj, are active, the weight
of the corresponding synapse, wij, is increased by 1; otherwise, the weight remains the same. In the
retrieval stage, a new input pattern x is applied to the input of the network. The input signals are
propagated through the synaptic connection wij to all neurons at the same time. Each neuron j
transforms the input signals into its dendritic potential dj, which is the sum of inputs weighted by the
corresponding synaptic strength: dj = Σ xiwij. The new activity of neuron j is determined by a non-linear
operation called threshold detection: yj = fj (dj - θj). The function fj is called the activation function
where θj represents the threshold value. This equation is used to determine if the neuron j is active or
not.

3.2. Retrieval Method
For each component, there are 10 facets to describe the component; in order not to lose generality

we suppose there can be at most n facets to represent the component. Let the facets be denoted R1, R2,
…, Rn. Each facet Ri is a set of finite values, Ri={Vij: j = 1 to Ni} where Ni is the number of possible
values for facet Ri. The space for the library then is R = R1 × R2 × … × Rn, where Ri = {Vij : j = 1, …,
Ni}. Let ϕ denote a component and dϕ denote the representation of a component. Then dϕ = (U1, U2, U3,
…, Un) where Ui ⊆ Ri. Note that dϕ is a facet list. Let L denote the relevancy between two components.
L is defined as follows:

L(dϕ , dϕ’) = L((U1, U2,…, Un), (U1’, U2’,…, Un’))
 = Σ Lf (Ui, Ui’) / n where i = 1, 2, …, n
Lf is called facet relevancy. Note that the relevancy of two components is actually the relevancy

between two facet lists. So L is also used to denote the relevancy between two facet lists and called
facet list relevancy. It is the sum of all facet relevancies divided by the number of facets. The
description facet of a component adopts a facet list to describe a component. The facet list contains
several key aspects of the component. We denote the facet list by F and each of the facets by fi, i = 1,
…, n; n is the number of facets. For each facet fi, there is a set of values associated with it, fi = {Tik : k
= 1, …, Mi} where Mi is the number of values associated with facet fi. The space for F then is F = f1 ×
f2 × … × fn. We dedicate one neural associative network Ni to one facet Ri in the representation of
components. A binary vector is used to represent the feature space of Ri. The dimension of the vector is
the same as the number of values for Ri. Thus each bit in the vector represents one value in the feature
space. Another binary vector is used to represent the components. We set the number of bits in the
binary vector the same as that of components in the component library. One bit in the vector represents
one particular component. During the training stage, each facet of the component representations is fed
into the dedicated neural associative network. For example, in our representation framework, there are
10 facets, so we use 9 neural associative memories to remember the facet values of each component,
except for the facet “Description”. For the description facet, we need more neural associative memories
since it is again a facet list. For each facet, we use an n-dimensional vector to denote the feature space
assuming that the components have n unique values. After all the training component representations
are fed into the associative memory, the synaptic connectivity matrix W is constructed. During the
retrieval stage, the desired component representation is broken down into facets. The value for each
facet is fed into its dedicated associative memory to recall the components that have the same value for
this facet. After one processing step, all the components having this value will be recalled. Note that if
the number of searched values is larger than one, the components with at least one value in the look-up
list are all recalled. One component may partially match a desired component. This unique feature of
associative memory gives us a way to determine how close the retrieved components are to the query.

4. Implementation
Based on the framework outlined above, a system has been designed and implemented for the

retrieval of components from a library. A user (client) sends a request to the server looking for a
particular component. The client interface can be a standalone GUI or a Web browser. The server gets
the request, parses it, converts the necessary information into a query and sends it to the component
registry. The registry uses its neural associative memories to search all the representations of
components it contains. When a matching component is found, either exact or approximate, it sends the
universal identifier or local identifier of the retrieved component to the server. The server sends the
representation of the component back to the user. If the user is satisfied with the search result, he sends
the request again to the server to retrieve the component by presenting the unique identifier to the
server. The server then queries the component library to get the component. The component library
performs routine updates, such as adding new components, deleting old components and replacing old
versions of components by new versions. It also reports the changes to the registry so that the registry
keeps the most up-to-date representation of the components. Every time the state of the component
library changes, the component identification process is invoked to adjust the contents of the neural
associative memory. Many of these maintenance operations can be performed off-line during low
system usage times. Figure 1 depicts the overall system illustration.

Result

Query
Server

Look up

Result
Register

Query

Result Component
Library

Component
Registry

Client

Fig. 1 System illustration.

4.1. Implementation Issues
According to the above analysis, the size of each neural associative memory is O(m2). Based on

this analysis, we decided to carefully design our implementation of the associative memories so that it
fully utilizes the memory space of a computer. Recall that the input vector, output vector and synaptic
connectivity matrix are represented as binary data types. When 0 or 1 is stored in the computer, it is
usually treated as an integer, and thus occupies 32 bits or even 64 bits in memory. In order to save
computer memory, we want to represent 0 and 1 by one bit instead of one integer. So we compress
every 32(64) bits into one integer and use that integer to represent these 32(64) bits in the matrix.
Every time we perform an operation on the matrix, we decompress the needed part and compress it
back when the operation is done. This way, we sacrifice some execution time for compression and
decompression, but we utilize memory much more effectively.

4.2. Extensions
One of the main limitations of our framework lies in the way neural associative memories work:

they calculate the similarity of stored items according to the presence or absence of certain pre-defined,
simple criteria. The internal structure of components, for example, or other semantic information
contained in the specification, is beyond the representational power of these memories. There are some

approaches under investigation that combine the fast access of such neural networks with the higher
representational power of recurrent networks (Kurfess, 1999). These networks essentially compress
structural information into a very compact representation, which then allows fast operations like the
approximate matching of the structure of two graphs. This could be used to specify important structural
characteristics of a desired component, and to perform a fast search for the most suitable candidate
components.

5. Conclusions
In this paper, we proposed a content-based framework for component libraries and an efficient

algorithm using neural associative memories to retrieve components based on the framework. The
advantage of this algorithm is a single-step process for each neural network to determine the matching
components, and each neural network can work independently. While a prototypical implementation
showed the feasibility of the overall approach, some implementation issues like memory utilization had
to be treated with special care in order to ensure usability of the system. In addition, the framework is
not immediately suitable for the fully automated construction of systems since the matching method
only relies on specific features of components, and cannot capture their full semantics. If this is
desired, our methods may be used to provide a fast selection of candidates, which then can be
examined more carefully for suitability according to their full specification.

6. References
Anderson, J., 1972, “A Simple Neural Network Generating an Interactive Memory,” Mathematical

Bioscience, Vol. 14, pp. 197-220.
Browne S., Dongarra, J., Green, S., and Moore K., 1995, “Location-Independent Naming for Virtual

Distributed Software Repositories,” in Proceedings of the 17th international conference on software engineering
on Symposium on software reusability, pp. 179-185.

Dewey, M., 1979, “Decimal Classification and Relative Indexing,” 19th, ed., Forest Press Inc., Albany, N.Y.
Hebb, D., 1949, The Organization of Behavior, Wiley, New York.
Gruber, T. R., 1993 “A Translation Approach to Portable Ontology Specification” Knowledge Acquisition 5:

pp. 199-220.
Jeng, J., and Cheng, B., 1994, “A Formal Approach to Reusing More General Components,” in Proceedings

of IEEE 9th Knowledge-Based Software Engineering Conference, pp. 90-97, Monterey, Calif.
Kohonen, K., 1972, “Correlation Matrix Memory,” IEEE Trans. on Computer, Vol. 21, No. 4, pp. 353-359.
Kurfess, F., 1998, “Component-Based Knowledge Management,” Technical Report, New Jersey Institute of

Technology.
Kurfess, F., 1999,, “Neural Networks and Structured Knowledge,” special issue of Journal of Applied

Intelligence, Vol. 11, No. 1, and Vol. 12, No. 1/2.
Latour, L., and Johnson, E., 1988, “SEER: A Graphical Retrieval System for Reusable Ada Software

Modules,” in Proceedings of 3rd International IEEE Conference of Ada Applications and Environments.
Maarek, Y., Berry, D., and Kaiser, G. , 1991, “An Information Retrieval Approach for Automatically

Constructing Software Libraries,” IEEE Trans. on Software Engineering, Vol. 17, No. 8, pp. 800-813.
McIlroy, D., 1969,“Mass-produced software components,” in Proceedings of the 1968 and 1969 NATO

Conferences, pp. 88-98.
Mili, R., Mili, A., and Mittermeir, R. , 1997, “Storing and Retrieving Software Components: A Refinement

Based System,” IEEE Trans. on Software Engineering, Vol. 23, No. 7, pp. 445-460.
Ostertag, E., Hendler, J., Prieto-Diaz, R., and Braun, C., 1992, “Computing Similarity in a Reuse Library

System: An AI-Based Approach,” ACM Trans. on Software Engineering and Methodology, Vol. 1, No. 3, pp.
205-228.

Palm, G., 1980, On Associative Memory, Biol. Cybernetics, Vol. 36, pp. 19-31

Prieto-Diaz, R., 1985, “A Software Classification Scheme,” Doctoral Dissertation, University of California,
Irvine.

Prieto-Diaz, R., 1991, “Implementing Faceted Classification For Software Reuse,” Communication of ACM,
Vol. 35, No. 5, pp. 89-97.

Pan, X.S., 2002 “A context-based free text interpreter,” California Polytechnic State University San Luis
Obispo Master’s Thesis - Computer Science Department.

Sametinger, J., 1997, Software Engineering with Reusable Components, Springer Verlag.
Solderitsch, J., Wallnau, K., and Thalhamer, J.,1989, “Constructing domain-specific Ada reuse libraries,” in

Proceedings of 7th Annual National Conference Ada Technology.
Szyperski, C., 1997, Component Software: Beyond Object-Oriented Programming, Addison-Wesley, New

York.
Tang, Y., 1998, “A Methodology for Component-Based System Integration,” Doctoral Dissertation, New

Jersey Inst. of Technology.
Zaremski, A. and Wing, J., 1995, “Signature Matching: A Tool for Using Software Libraries,” ACM Trans.

on Software Engineering and Methodology, Vol. 4,No.2, pp. 146-170.

	Component-Based Systems
	Component Definition
	Component Representation Scheme

	Component Identification
	Ontology
	Component Documentation
	Signature Extraction Engine
	Facet Categorization Engine

	Component Retrieval
	Neural Associative Memories
	Retrieval Method

	Implementation
	Implementation Issues
	Extensions

	Conclusions
	References

