MANOVA: Type | Error Rate Analysis

A Senior Project
Presented to
The Faculty of the Statistics Department

California Polytechnic State University, San Luis Obispo

In Partial Fulfillment
Of the Requirements for the Degree
Bachelor of Science
By
Kyle Wesley Gasperik

June, 2010
© 2010 Kyle Wesley Gasperik



2|Page

Contents
1o o[8[ i o] o PP 3
What it iS MANOVA & TYPE | ETON ...ttt s e e s e e e e e e e e e e e eeeaenennnnnnns 4
Y L@ Y SRR 4
BN/ S I = 4 (o PP PPPPN 5
TS 1 o] 1o £ RSP 5
10 [T 01T o [T o ot R UPUPSSR 5
D EY U1 o101 i o] o [PPSR 5
HOMOQENEILY Of VAINANCE ... .uuiii ittt e e e e e e e e e e e eaeeeeeaesannne 5
11410 =1 1o OO PPPPPPPPRPP 6
VA To] b= Lo AN T U T 4] o (o] TR 6
Analysis of Empirical TYpe I Error RALE ......cooo oot 7
MURIVAIATE NOIMALL.... it e e e e e e e e e e e e e e e ee e b e e e e e e eeaaaas 7
1 [0 10 F= U1 o] o N PRSP 7
[ 101 F= U4 o] o T 1 TR 9
Y[ 10 F= U1 o] o 0 1 1 TSRS 10
SIMUIALION TV .. e e e e e e e e ettt e ettt bbbt a e e e e e e e e e eeaeeeeeeeeesennnnnns 11
MURIVAITATE UNITOIM ... e e et e e e ettt bbb e e e e e e e e e e e e eeeeeeeesnnnnes 12
SIMUIALION V ..o e e e e e e et e ettt et e tb it b a e e e e e e e e e eaaaeeeeeesesnnnnnnns 12
SIMUIALION V..o e e e e e et et et e e et b bbbt e e e e e e e e e e e eaaaeeeeeeesnnnnnnns 14
Functions for Multivariate MethOS .............eeiiiiiiiiiiiiii e 16
T U (= o (0] [T o USRS 17
(@] (o1 11 5] o] o R TP TTPPPPTP 18
Y 0] o L= T [ 19
Section A - SIMUIAtION FUNCLON.........oiiiiiiiiii e 19
Section B - Other SIMUIALIONS ........uiiiiiiiiiii e e e e e e e e e e e e e 20
Section C - HOtelliNGS TFUNCHONS .......c.oveveeeeeeeeeeee oottt ee e 21

Section D - K Sample Profile Analysis FUNCLION .............iiiiiiiiiiieccieeeeeeeees e 22



3|Page

Introduction

Multivariate analysis of variance (MANOVA) is an analysis method us&dly in the
field of biostatistics, along with other scientific related fields. My mtoyeas introduced to me
in order to help in-experienced programmers with the R software neededoionpiis
analysis. The multivariate statistical methods class at Cal Paly48/ BIO 542) uses the R
software but the class on R is not a pre-requisite. This makes it difficstrioe students to use
the software, and why | wrote some functions that would make analysis easie

As my project progressed, questions started rising about some the assumptions of
MANOVA and how certain settings would change variability in the results. blilkeof my
senior project was performing simulations to try and understand how robust MANOVA is
against violations of assumptions. Using the R software | looked at how introduaieigtomm
between dependent variables, changing the covariance structure, woulthaffstipirical type
| error rate. | also investigated if simulating multivariate data faamniform distribution rather
than a normal distribution affected this error rate. Type | error raryseasy to calculate and
interpret; this is why | used it to assess my simulations.

| wrote ten functions to perform a total of seventy individual simulatiomash E
simulation was then saved and results were graphed for analysis purposes. Tdfentypdy
report highlights the simulations that were of most interest. Other simulatbigcluded in the
body can be found in the appendix.
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Multivariate Analysis of Variance (MANOVA) is a generalized exteon of univariatt
analysis of variance (ANOVA). This analysis is dise situations where there awo or more
dependent variablesMANOVA can also be thotht of as a vector extension ANOVA, so
instead of testing if three or more means are efguainedependenvtariable (ANOVA),
MANOVA tests if threeor more mean vectors are identi For example, if someone wantec
test if the mean height and mean weight of thréereént football tem’s players are identice
one would use MANOVA. The null and alternathypotheses are below Table 1

Table 1: MANOVA Notation

- Tem  Definton
Mi mean weight and length vector team i
Miy mean weight for team i
iz mean length for team i

Null Hypothesis
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Alternative Hypothesis

At least twoy,; not equal

In order to further understand what MANOVA is atfgimg to do, we can look at Figu
1, which graphically explains MANOVA. In the gragbu will see three points plotted. The
three points are to represent the three populatiean vectors of weight and height for e
team. MANOVA is trying to figure ouif these points arear enough apart to say that 1

vectors jointly differ from onanother.

Figure 1: Graphical Representation of MANOVA
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Type I Error

A type | error occurs when the null hypothesis is rejected when ituallyctrue. We are
making an error because the null hypothesis is true but we say that it.isTaiserobability of
committing a type | error is sometimes referred to as the signiBdanel, denoted alpha. We
set this value called alpha to 0.05 in most statistical test. Meaning, weramiyo make this
error five percent of the time. For all my comparisons | will be using thisnmabmipha level of
0.05.

Assumptions

With any statistical test there are assumptions that need to besdatisfirder for the test
to be valid. With MANOVA, there are three main assumptions that need to be \@lwhteh
are listed below.

Independence
The first assumption that's needs to be satisfied for MANOVA to be vathis
the observations have to be independent of each other. This clarifies that therdtsrnanpa
the data and the sample is completely random.

Distribution
We clarify that the multivariate samples are drwan from a MuiiteNormal
Distribution.

Homogeneity of Variance

The final assumption is that each group has equal population covariance
structures. Now that we have multiple dependent variables we not only have to makatsure
their variances are equal across all groups, but we also have to check tldbe fovariance’s
between them are equal. This is done using a covaraiance matrix. The diagralsatiix are
the variance of each dependent variable, and the off-diagnals correspond to tiaacevar
between different dependent variables. Figure 2. is a graphical explanatiencof/ariance
matrix.

Figure 2: Covariance Matrix
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On the main diagonal of the matrix we have the variance of all of our variables. f-The of
diagonal contains the covariance between each variable. This covariactgestwill be of
dimension PxP, where P is the number of dependent variables you are testing.
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Simulations
A big part of my investigation had to do with using some statistical software. Betow
some sections that help explain exactly how | performed my simulations using R.

Violating Assumptions

The main goal of my investigation was to see how robust MANOVA was agaitehce
violations of assumptions. | focused on two main violations. | wanted to see how robust
MANOVA was when the dependent variables had different correlations betweeimnthe
different groups and when we sampled from a Multivariate Uniform distributioordier to do
this analysis many functions were created, but first | had to decide whiiclysé wanted to
narrow my test by.

There are many different simulation settings that can be changed. airhthrnee are:
the number of groups, the number of dependent variables, and the sample size @htgnoea.
For my investigation | can also change correlations between dependent vdoiabbesh group.
As you will see in the next section, | limited which sets of correlations | tbak® try to find
the best results.

For all of my simulations | stuck to three groups, and | looked at resultsdptiree,
and four dependent variables. | then varied sample size in each group, thé@otretaveen
variables in each group, and the distribution that | sampled from (Normal or tdhifo¥Yhen
sampling, | made sure that each group had the exact same means, so | coul#eheam ma
accurate decision when an error occurred.

All of my simulations investigated Type | error rate for MANOVAchibose to use this
measure for testing robustness because it was very easy to simulate asthnddekn outline
of how my simulation functions worked is found in Figure 3 below.

Figure 3: Simulation Scheme

1. Simulated specific settings

2. Randomized and ran a MANOVA

3. Compared F-Statistic from simulation against 3 pércentile F-Statistic with the samel
degrees of freedom

Repeated this 1000 times

ok

Calculated the proportion of times the random F-Stat was greatahthaarresponding
95" percentile.

A copy of one of my simulation functions can be found in section A of the appendix.
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Analysis of Empirical Type I Error Rate

In the following section | will present to you the different simulationslitpatformed to
investigate type | error rate for MANOVA. Each simulation will fiogt described by what
assumptions were violated and then a graph of empirical type | error ratedytzea There are
few other simulations not in the body of my paper that can be referenced in secfitreB
appendix. Table 2 shows the settings that were simulated for each differelatisin.

Table 2: Simulation Overview

Simulation Sample Size  # of Correlation Settings Multivariate Distribution
per Group (n) Variables

per Group
()

10,30,50,100 2,34 Identical between pairs of \dem
w/in each group. Identical across 3
groups, varies from 0.05-0.95 in stegs
of 0.05
Il Varies from 2,34 Identical between pairs of variables| Normal
10-100 in steps w/in each group. Varies largely across
of 10 3 groups
I Varies from 2,34 Identical between pairs of variables| Normal
10-200 in steps w/in each group.
of 5 Cor1=0.5,Cor2=0.5,Cor=0.95
v Varies from 2,34 Identical between pairs of variables| Normal
10-200 in steps w/in each group. Varies minimally
of 10 across 3 groups
\% Varies from 2,34 Variables are not correlated All groups Omii (0,1)
10-200 in steps
of 10
Vi Varies from 2,34 Variables are not correlated Groupl=Unifor@)0
10-400 in steps Group2=Uniform(1,5)
of 10 Group3=Uniform(2,4)

Multivariate Normal

In the first set of simulations | ran, data was simulated from a mu#tteanormal
distribution. Using R, | simulated a specific number of observations for eachfgroup
multivariate normal distribution in which all groups have the same population mean vect
From there | started manipulating the covariance structures for eagh grinally | plotted all
of the empirical type | error rates in order to see if any of these satiorgased the type | error
of the test.

Simulation I

This simulation investigated how the type | error rate was effected dd@endent
variables were correlated. Figure 4 contains four graphs of empypeal error rate. On the x-
axis is the value of the correlation between dependent variables for each gtbapch graph
corresponds to a different sample size, which is labeled on the top of the graph. As yee ca
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by the legend, the black, red, and blue points correspond to four, three and two dependent
variables respectively.

In this simulation there are no technical violations of assumptions. Although the
dependent variables are correlated, all of the covariance structures digeequae there is the
same amount of correlation between variables for each group. Given thas thenrealation of
assumptions we would expect the average type | error rate to reach our nov@ifallevel. It
turns out that all the average empirical type | error rates didn't strayour nominal alpha
level, and the graphs above seem to support to this fact.

Figure 4: Empirical Type | Error Rate vs. Correlati on
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Simulation II

Now that we have investigated groups with the same correlation betwednesfta
each group, the next step was to change the correlations between variablels fwoep. Now
we are violating the assumption of equal covariance structures, and we introduekdicor
between dependent variables. Because of this violation we would expect our értypieica
error rates to be above the nominal level, which is shown by the graphs below. Intthis nex
simulation | investigate four different sets of correlation coefficieltdzigure 5 you will see
four graphs; at the top of each graph are the correlation coefficientcfogeap labeled corl,
cor2, and cor3. On the x-axis is the different sample size in each group to mteeitig
increasing sample size might allow the type I error rate to reaatmoouinal level.

Figure 5: Changing Variable Correlation between Depndent Variable
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All of the average empirical type | error rates are above the nohaus) but
specifically, I will highlight the correlation set in which we saw the bgjglifference. In the
bottom left graph, the correlations are set to 0.05, 0.95, and 0.95. These settings produced
average empirical type | error rates of 0.0867, 0.818, and 0.0667 for four, three, and two
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dependent variables respectively. As you can see these error ratedl atowe our nominal
level. Please refer to Table 3 for average empirical type | etes. ra

Table 3: Simulation Il Results

Correlation Coefficients Average Empirical Type | Error Rate
4 variables -- 3 variables -- 2 variables
Cor1=0.05,Cor2=0.5,Cor3=0.95 | 0.0615 - 0.061 -- 0.0587
Cor1=0.05,Cor2=0.5,Cor3=0.5 | 0.0559 -- 0.0514 -- 0.049%
Cor1=0.05,Cor2=0.95,Cor3=0.95 0.0867 -- 0.0818 -- 0.0667
Cor1=0.5,Cor2=0.5,Cor3=0.95 | 0.0578 - 0.0567 -- 0.0587

Simulation III

In order to investigate the effect of increasing sample size on empypeal error rate,
the next simulation replicated a correlation set but looked at more sample Bigare 6 shows
type | error rate vs. sample size when the correlations are set to 0.5, 0.5, 0.95, th& now
sample size increases from 10-200 in steps of 5 rather than from 10-100 in steps o§14@ll Thi
allow us to investigate if an increasing sample size would eventually leadaminal alpha
level for the MANOVA test even though we have violated some assumptions.

Figure 6: Investigating Sample Size
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As seen in the graph above, we never quite reach our nominal alpha level. The average
empirical type one error rates can be found in Table 4. Also, we are lookiagyfdownward
trend in the points, which there seems to be a slight one here, but nothing significaetzeHow
there is still evidence that when dependent variables are correlated, dgeayee | error rate
can be above our nominal level.

Table 4: Simulation 11l Results

Number of Variables Average Empirical Type | Error Rate

4 0.060
3 0.0567
2 0.0556

Simulation IV

Now that we have looked at groups with highly differing correlation coeffisi we
thought it would be interesting to look at a simulation in which the correlations between
variables for each group were very close together. In this simulatiovoked at two other
correlation sets. These correlations can be found above each graph with |aiv&|eddt2, and
Cor3. Figure 7 shows two graphs of two different correlation sets that werggatess

Figure 7: Similar Correlation
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Looking at the graph on the left with the smaller correlation coefficigrdegsn't seem
that the empirical type | error rates stray from 0.05. The averagiei@htype | error rates can
be found in Table 5 on the following page. However, when the correlations are highrbitevee
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variables in each group, we did see some rates above our nominal level. Altribreates are
barely above our nominal level. This is demonstrating when there is similardnrghation
between dependent variables for each group the empirical type one erranrbeabove our
nominal level.

Table 5: Simulation IV Results

Correlation Coefficients Average Empirical Type | Error Rate
4 variables -- 3 variables -- 2 variables

Cor1=0.05,Cor2=0.10,Cor3=0.15 0.0499 - 0.0495 -- 0.047¢

Cor1=0.85,Cor2=0.90,Cor3=0.95 0.0538 -- 0.05295 -- 0.0501

Multivariate Uniform

In the following simulations data was simulated from a multivariate norrstaitdition
for all three groups. The R software did not have a multivariate uniform distributiatagon
function, so in order to simulate this data, univariate uniform distributions wesslgagether
to form a multivariate data set. In doing this we have to assume that samplesadh group
are independent and uncorrelated. Essentially, there is zero covarianeerbeaeh of the
dependent variables, but the variance can still be changed to violate some assumptions.

Simulation V

This first simulation using multivariate uniform data looks at three grsinpslated from
the same uniform distribution. The uniform distribution allows for data to be uniformly
distributed over a certain set of bounds. If the bound are the same, then the mean ardofarianc
the data is the same. In this case each group has a minimum bound equal to zero and a
maximum bound equal to one. The only assumption we are violating in this case is theyormali
assumption because even though the data is multivariate uniform the three groupsetuabve
covariance structures. Figure 7 is a graph of the empirical typer Irate with sample size on
the x-axis.
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Figure 8: Uniform 0-1
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As seen in figure 8, the empirical type | error rate did not seem to stsafjavérom our
nominal level. The average empirical type | error rates can be found inélablew. Although
the error rate for two variables is above 0.05, it is not significantly higher.diffesence could
just be by random chance. Also, it looks like a couple points in the graph are highly iafluent
in making this average. Overall, the MANOVA procedure seemed to be a little egjairsst
this normality assumption and produced results that stayed very close to ourlrahphadevel.

If you look at the fitted lines for three and four dependent variables it looks like treanthg

be a downward trend as sample size increases. After this discovegnlttersimulation a
couple of times to see if these results could be replicated. After furthstigaten, sample size
did not seem to have an effect on empirical type | error rate for this sionula

Table 6: Simulation V Results

Number of Variables Average Empirical Type | Error Rate
4 0.0479

3 0.0498

2 0.0504
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Simulation VI

Now that we have investigated uniform data with the same bounds for each group, it onl
seemed natural to see what happened when we changed the bounds between groups. We have to
be careful when doing this because we still want the means for each group to pbsoegeal
must carefully choose the bounds we use. The graph below shows what happened to the type |
error rates when we sampled group one with bounds (0, 6), group two with bounds (1, 5), and
group three with bounds (2, 4). All of these groups still have the same mean but the wdiriance
the variables in each group changes. Please refer to Table 7 for groumtidornbue to the
way the sampling was done, there is no covariance between variables. Noawvaading two
main assumptions: normality and equal covariance structures. Figureathsxpe effect this
has on empirical type | error rate.

Table 7: Variable Information

(€170]0]0) Variable Mean Variable Variance

1 3 3
2 3 1.333
3 3 0.333

Figure 9: Uniform, Different Bounds
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Here, we see a big stray away from our nominal alpha level, which was ekp@&teare
violating the two main assumptions of MANOVA and would expect the type | ereotaat
increase. The average rates can be found in Table 8 below. All of thesegaatel above
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0.05, and we can conclude that when the samples are from a uniform distribution wigmtiffe
bounds for each group, the empirical type | error rate can be above the nominal level.

Table 8: Simulation VI Results

Number of Variables Average Empirical Type | Error Rate

4 0.06665
3 0.06535
2 0.06382
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Functions for Multivariate Methods

Although the R software can easily perform all the multivariate asalyat are
necessary for most applications, some of the code is fairly tedious and mightdust dicffi
someone with little to no experience with statistical software. | tookdtetus code and
condensed it into some very useful functions that would help in-experienced studentssighe ba
for writing these functions was for use in the multivariate statistass @ffered at Cal Poly (Stat
419). | wrote four main functions. The first three were fairly fundamgotilsome condensing
of code into a usable function. These functions included one sample, two sample, and paired
Hotellings T test.

One sample Hotelling's*Test looks to test for if a population vector is equal to a
hypothesized vector. Similarly, a two sample Hotelling'se$ts if two population vectors are
equal to each other. When you have paired observations for each population, you would then use
the paired Hotelling's “ftest. Please see appendix section C for these functions.

The fourth function that | wrote corresponded to a multivariate method callel profi
analysis. This function was more complicated and difficult to write than thesothbrs
function can perform profile analysis for k number of groups. Profile analysthaitjue used
to see how similar different groups are when comparing sequential measgreittese are
three main inputs. The first is a data matrix in which the first column istan@ntaining the
categorical variable that you are comparing by (group, gender, etc.), aiedttbéthe column
vectors contain the sequential measurements in which the means will be testedcortik
input pertains to what type of test you want to perform. There are three optiasSPTéw
parallelism, Test="C” for coincidence, and Test="F" for flatness. IKinthe third input
corresponds to how many groups are being tested. A copy of this function can be found in
section D of the appendix.
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Future Projects

My project barely skimmed the surface of what can be done in type | erranedysis.
| looked at particular sets of correlations between variables for each Quaupoping over
many different sets is easily possible. | also looked at the uniform distribbtit | did not have
the time to see how to introduce covariance between the dependent variables arfdtises
thing than can be looked into in the future. There is also the possibility of looking at other
multivariate distributions. We were thinking about introducing a skewed distrriblike chi-
squared. There is multivariate extension of the chi-squared distribution callistinert
distribution, but unfortunately | did not have the time look into it. | think that it would be very
interesting to see what would happen to the type | error rate when othéutishs are
investigated.

As well as looking at different violations of assumptions, there are othiegsetiat
could be looked at that might affect type | error rate. Although it is not mentioned epory,
performed some minor analysis corresponding to which type of test sta@stiused in
MANOVA. All of my simulations were run using the Pillai test statidbiat there are others that
are known to help in certain situations. For instance the Wilks test statistiown to be a little
more robust against the normality assumption. These different tesicstatist be investigated
to see how they affect type | error rate.
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Conclusion

After all of the simulations and analysis had been run, some definite conclcaiohe
drawn. When the correlations are different across groups, making the coxaniaimices differ,
the type | error rate can differ from the nominal level. If the cormeias the same between
variables for each group, MANOVA assumptions are not violated and the einyiied error
rate stays below our nominal level. However, when each group has differerdatcmmrel
coefficients the error rate was significantly higher. If each gsalgpendent variables are
correlated differently, 1 would not expect the MANOVA procedure to hold at thenabalpha
level.

When sampling from the same uniform distribution for each group, the type lagafr
MANOVA seemed to hold at our nominal level. Although when sampling different groups from
different uniform distributions, the type | error rate was signifigamtjher than 0.05. This was
expected because we are violating two main assumptions of MANOVA: norasaditequal
covariance structures.

We would have liked to see a sample size effect in the simulations. The sample siz
effect we would have liked to see was as the sample size increasedeouertyy rate would
decrease. However, we did not see this downward trend we were looking for indkeiems.
However, we just looked at the smoothed data curves and did not perform anyaitatisiigsis
on a sample size effect. This could be something that could be investigated furthéutarthe

Another interesting observation was the effect that the number of variabless tyae |
error rate. In every simulation, except simulation V, the averageieaipype | error rates
decrease as the number of variables decreases.

In order to further investigate the method of MANOVA, there are many othelianses
that could be asked. | have just scraped the surface of the possibilities, anahievaefg/one to
further investigate to see what they can discover.
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Appendix

Section A - Simulation Function
emp.p.value.normal <- function(data,sizel,size2,size3,corl,cor2,cor3,times)

{
count=0
means <- apply(data[,-1],2,mean)
sigma <- apply(data[,-1],2,sd)
covar <- cov(data[,-1])
size <- c(rep(1,times=sizel),rep(2,times=size2),rep(3,tismE=3))
## Covariance ##
n=nrow(covar)
p=ncol(covar)
covarl=covar
covar2=covar
covar3=covar
for(iin 1:n)
{
for(itor in 1:p)

if(i-itor!=0)
{
covarl]i,itor]=corl*sqrt(covarli,iJ*covar[itor,itor])
covar2[i,itor]=cor2*sqrt(covarli,iJ*covar[itor,itor])
covar3l[i,itor]=cor3*sqrt(covar[i,i]*covarfitor,itor])
}
}
}

for(iin 1:times)
{
rand.datal <- rmvnorm(n=sizel, mean=means, sigma=covarl)
rand.data2 <- rmvnorm(n=size2, mean=means, sigma=covar2)
rand.data3 <- rmvnorm(n=size3, mean=means, sigma=covar3)
rand.data.final <- cbind(size,rbind(rand.datal,rand.data2,rand.data3))
rand.manova.obj <- manova(as.matrix(rand.data.final[,-1])~awfectd.data.final[,1]))
rand.f <- summary(rand.manova.obj)$stats[1, "approx F"]
if(rand.f >= gf(.05,summary(rand.manova.obj)$stats[1, "num Df"],sumnaeny(manova.obj)$stats[1,
"den Df"],lower.tail=F))
{

count=count + 1

}
ff[i]=rand.f
}
count
emp.p = count/times
#output= paste("Emperical P-value=", emp.p,"emperical F stat=", ff)
output=emp.p
output
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Section B - Other Simulations
Figure 10:Uniform, Same Bounds (0.30)
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Figure 11: Uniform, Same Bounds (0,10)
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Figure 12:Uniform, Different Bounds (0,30),(14,16)10,20)
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Section C - Hotellings T? Functions
one.sample.hotelling = function(Data,mu.not)

{

### One Sample Hotellings T squared test ###

### data: matrix of the 2 vectors you want tested ###

### mu.not:vector of length p, with hypothesized values of mu ###

Data=Data

n=nrow(Data)

p=ncol(Data)

S <- cov(Data)

y.bar <- apply(Data,2,mean)

ybar.minus.mu <- y.bar - mu.not

T.square <- n*t(ybar.minus.mu)%*%solve(S)%*%ybar.minus.mu
F.stat <- round((n-p)/(p*(n-1))*T.square,digits=3)
P.value <- round(1-pf(F.stat,p,n-2),digits=5)

Output <- paste("F=",F.stat,"P-Value=", P.value,sep="")
return(Output)

}
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HHAHHHH AR AR R R R R R R R R
two.sample.hotelling = function(formula,data)
{
as.formula(formula)
as.matrix(data)
### Formula: Y~X format, Y is matrix of variables whose means you wandl fest@g variable
names for input ###
### Data: Name of the data frame ###
manova.obj <- manova(formula,data=data)
return(summary(manova.obj))

}
HAB R HHAHH AR R AR R AR AR R

paired.hotelling = function(Data)

{

### Data: Data matrix-all y varibalers first p/2 columns, all x varidige®)-p] ###
n=nrow(Data)

col=ncol(Data)

half=col/2

D=matrix(0,n,half)

for(i in 1:half)

d <- Datal,i]-Data[,half+i]

DI,i]=d
}
paired.Tsg <- manova(D~1)
return(summary(paired.Tsq,intercept=T,test="Hotelling"))

}

Section D - K Sample Profile Analysis Function
k.sample.profile = function(Data, Test="P",K=1)
{
### Data: first column catagorical variable, next columns, sequential measts &
### Test: which type of test, p=parellelism,c=coincidence,f=flatness ###
### K: number of groups, default is 1 ###
Data <- as.matrix(Data)
nrow=nrow(Data)
ncol=ncol(Data)
C=matrix(0,ncol-1,ncol)
for(itor in 1:ncol-1)
{
for(itorat in 1:ncol)
{
if(itorat-itor==0)
{
Clitor,itorat]=1
}



}

if(itorat-itor==1)
{
Clitor,itorat]=-1
}
}

trans.data <- Data%*%t(C)
one.samp.profile <- manova(trans.data~1)

output=(summary(one.samp.profile,intercept=T,test="Hotelling"))

if((Test=="P" | Test=="p") & K!= 1)

crow=ncol-2
ccol=ncol-1
C=matrix(0,crow,ccol)
for(itor in 1:crow)

{

for(itorat in 1:ccol)

{

if(itorat-itor==0)

{ Clitor,itorat]=1

i}f(itorat-itorzzl)

{ Clitor,itorat]=-1
} ! |

Y <- as.matrix(Data[,2:ncol])

trans.data <- Y%*%t(C)

two.samp.profile <- manova(trans.data~as.factor(Data[,1]))
output=summary(two.samp.profile,test="Wilks")

}
if((Test=="C" | Test=="c") & K!= 1)

{

}

j <- rep(1,times=ncol-1)

Y <- as.matrix(Data[,2:ncol])

trans.data <- Y%*%;

coin.test <- aov(trans.data~as.factor(Data[,1]))
output=summary(coin.test,test=F)

if((Test=="F" | Test=="f") & K!= 1)

{
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}

crow=ncol-2
ccol=ncol-1
C=matrix(0,crow,ccol)
for(itor in 1:crow)

{

for(itorat in 1:ccol)

{

if(itorat-itor==0)

{ Clitor,itorat]=1

i}f(itorat-itorzzl)

{ Clitor,itorat]=-1
} ! |

Y <- as.matrix(Data[,2:ncol])

trans.data <- Y%*%t(C)

test.flat <- manova(trans.data~1+as.factor(Data[,1]))
output=summary(test.flat,intercept=T,test="Hotelling")

return(output)

}
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