
  

 

MANOVA: Type I Error Rate Analysis 

 

 

 

 

A Senior Project 

Presented to 

The Faculty of the Statistics Department 

California Polytechnic State University, San Luis Obispo 

 

 

In Partial Fulfillment 

Of the Requirements for the Degree 

Bachelor of Science 

By 

Kyle Wesley Gasperik 

 

 

 

 

 

 

June, 2010 

© 2010 Kyle Wesley Gasperik   



2 | P a g e 
 

Contents 

Introduction ..................................................................................................................................... 3 

What it is MANOVA & Type I Error ............................................................................................. 4 

MANOVA................................................................................................................................... 4 

Type I Error................................................................................................................................. 5 

Assumptions ................................................................................................................................ 5 

Independence .......................................................................................................................... 5 

Distribution ............................................................................................................................. 5 

Homogeneity of Variance ....................................................................................................... 5 

Simulations ..................................................................................................................................... 6 

Violating Assumptions................................................................................................................ 6 

Analysis of Empirical Type I Error Rate ........................................................................................ 7 

Multivariate Normal.................................................................................................................... 7 

Simulation I ............................................................................................................................. 7 

Simulation II ........................................................................................................................... 9 

Simulation III ........................................................................................................................ 10 

Simulation IV ........................................................................................................................ 11 

Multivariate Uniform ................................................................................................................ 12 

Simulation V ......................................................................................................................... 12 

Simulation VI ........................................................................................................................ 14 

Functions for Multivariate Methods ............................................................................................. 16 

Future Projects .............................................................................................................................. 17 

Conclusion .................................................................................................................................... 18 

Appendix ....................................................................................................................................... 19 

Section A - Simulation Function........................................................................................... 19 

Section B - Other Simulations .............................................................................................. 20 

Section C - Hotellings T2 Functions ..................................................................................... 21 

Section D - K Sample Profile Analysis Function ................................................................. 22 

 



3 | P a g e 
 

Introduction  

 Multivariate analysis of variance (MANOVA) is an analysis method used mainly in the 
field of biostatistics, along with other scientific related fields.  My project was introduced to me 
in order to help in-experienced programmers with the R software needed to perform this 
analysis.  The multivariate statistical methods class at Cal Poly (Stat 419/ BIO 542) uses the R 
software but the class on R is not a pre-requisite.  This makes it difficult for some students to use 
the software, and why I wrote some functions that would make analysis easier.   

 As my project progressed, questions started rising about some the assumptions of 
MANOVA and how certain settings would change variability in the results.  The bulk of my 
senior project was performing simulations to try and understand how robust MANOVA is 
against violations of assumptions.  Using the R software I looked at how introducing correlation 
between dependent variables, changing the covariance structure, would affect the empirical type 
I error rate.  I also investigated if simulating multivariate data from a uniform distribution rather 
than a normal distribution affected this error rate.  Type I error rate is very easy to calculate and 
interpret; this is why I used it to assess my simulations.   

 I wrote ten functions to perform a total of seventy individual simulations.  Each 
simulation was then saved and results were graphed for analysis purposes.  The body of my 
report highlights the simulations that were of most interest.  Other simulations not included in the 
body can be found in the appendix. 
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What it is MANOVA & Type I Error

MANOVA 

 Multivariate Analysis of Variance (MANOVA) is a generalized extension of univariate 
analysis of variance (ANOVA).  This analysis is used in situations where there are t
dependent variables.  MANOVA can also be thoug
instead of testing if three or more means are equal for one 
MANOVA tests if three or more mean vectors are identical.
test if the mean height and mean weight of three different football tea
one would use MANOVA.  The null and alternative 

Table 1: MANOVA Notation 

Term 

µi 

µi1 

µi2 

Null Hypothesis 

Alternative Hypothesis
  

 In order to further understand what MANOVA is attempting
1, which graphically explains MANOVA.  In the graph you will see three points plotted.  These 
three points are to represent the three population mean vectors of weight and height for each 
team.  MANOVA is trying to figure out 
vectors jointly differ from one another. 

 

 

 

 

 

 
 

Figure 1: Graphical Representation of MANOVA
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& Type I Error 

Analysis of Variance (MANOVA) is a generalized extension of univariate 
analysis of variance (ANOVA).  This analysis is used in situations where there are t

MANOVA can also be thought of as a vector extension of 
instead of testing if three or more means are equal for one dependent variable (ANOVA), 

or more mean vectors are identical.  For example, if someone wanted to 
test if the mean height and mean weight of three different football team’s players are identical, 
one would use MANOVA.  The null and alternative hypotheses are below in Table 1.

Definition 

mean weight and length vector for 

mean weight for team i 

mean length for team i 

 

µ1   =  
 µ2  =

  µ3
  or  

 

Alternative Hypothesis At least two µi not equal 

In order to further understand what MANOVA is attempting to do, we can look at Figure 
, which graphically explains MANOVA.  In the graph you will see three points plotted.  These 

three points are to represent the three population mean vectors of weight and height for each 
team.  MANOVA is trying to figure out if these points are far enough apart to say that two

another.  

: Graphical Representation of MANOVA 
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Analysis of Variance (MANOVA) is a generalized extension of univariate 
analysis of variance (ANOVA).  This analysis is used in situations where there are two or more 

 ANOVA, so 
variable (ANOVA), 

For example, if someone wanted to 
m’s players are identical, 

in Table 1. 

 

mean weight and length vector for team i 

 

to do, we can look at Figure 
, which graphically explains MANOVA.  In the graph you will see three points plotted.  These 

three points are to represent the three population mean vectors of weight and height for each 
far enough apart to say that two 
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Type I Error  

 A type I error occurs when the null hypothesis is rejected when it is actually true. We are 
making an error because the null hypothesis is true but we say that it is false.  The probability of 
committing a type I error is sometimes referred to as the significance level, denoted alpha.  We 
set this value called alpha to 0.05 in most statistical test.  Meaning, we only want to make this 
error five percent of the time.  For all my comparisons I will be using this nominal alpha level of 
0.05. 

Assumptions 

 With any statistical test there are assumptions that need to be satisfied in order for the test 
to be valid. With MANOVA, there are three main assumptions that need to be validated, which 
are listed below. 

 Independence 

  The first assumption that’s needs to be satisfied for MANOVA to be valid is that 
the observations have to be independent of each other.  This clarifies that there is no pattern in 
the data and the sample is completely random. 

 Distribution  

  We clarify that the multivariate samples are drwan from a Multivariate Normal 
Distribution.   

 Homogeneity of Variance  

  The final assumption is that each group has equal population covariance 
structures.  Now that we have multiple dependent variables we not only have to make sure that 
their variances are equal across all groups, but we also have to check to see if all the covariance’s 
between them are equal.  This is done using a covaraiance matrix.  The diagnals of the matrix are 
the variance of each dependent variable, and the off-diagnals correspond to the covariance 
between different dependent variables.  Figure 2. is a graphical explanation of the covariance 
matrix. 

Figure 2: Covariance Matrix 
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On the main diagonal of the matrix we have the variance of all of our variables.  The off-
diagonal contains the covariance between each variable.  This covariance structure will be of 
dimension PxP, where P is the number of dependent variables you are testing.   
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Simulations  

 A big part of my investigation had to do with using some statistical software.  Below are 
some sections that help explain exactly how I performed my simulations using R.  

Violating Assumptions  

 The main goal of my investigation was to see how robust MANOVA was against certain 
violations of assumptions.  I focused on two main violations.  I wanted to see how robust 
MANOVA was when the dependent variables had different correlations between them in 
different groups and when we sampled from a Multivariate Uniform distribution.  In order to do 
this analysis many functions were created, but first I had to decide which settings I wanted to 
narrow my test by.   

 There are many different simulation settings that can be changed.   The main three are: 
the number of groups, the number of dependent variables, and the sample size within each group.  
For my investigation I can also change correlations between dependent variables for each group.  
As you will see in the next section, I limited which sets of correlations I looked at to try to find 
the best results. 

 For all of my simulations I stuck to three groups, and I looked at results for two, three, 
and four dependent variables.   I then varied sample size in each group, the correlation between 
variables in each group, and the distribution that I sampled from (Normal or Uniform).  When 
sampling, I made sure that each group had the exact same means, so I could then make an 
accurate decision when an error occurred.  

 All of my simulations investigated Type I error rate for MANOVA.  I choose to use this 
measure for testing robustness because it was very easy to simulate and understand.  An outline 
of how my simulation functions worked is found in Figure 3 below. 

Figure 3: Simulation Scheme 

1. Simulated specific settings 
2. Randomized and ran a MANOVA 
3. Compared F-Statistic from simulation against a 95th percentile F-Statistic with the same 

degrees of freedom 
4. Repeated this 1000 times 
5. Calculated the proportion of times the random F-Stat was greater than the corresponding 

95th percentile. 
 
A copy of one of my simulation functions can be found in section A of the appendix.   
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Analysis of Empirical Type I Error Rate  

 In the following section I will present to you the different simulations that I performed to 
investigate type I error rate for MANOVA.  Each simulation will first be described by what 
assumptions were violated and then a graph of empirical type I error rates to analyze.  There are 
few other simulations not in the body of my paper that can be referenced in section B of the 
appendix.  Table 2 shows the settings that were simulated for each different simulation. 

Table 2: Simulation Overview 

Simulation Sample Size 
per Group (n) 

# of 
Variables 
per Group 
(p) 

Correlation Settings  Multivariate Distribution 

I 10,30,50,100 2,3,4 Identical between pairs of variables 
w/in each group.  Identical across 3 
groups, varies from 0.05-0.95 in steps 
of 0.05 

Normal  

II Varies from 
10-100 in steps 
of 10 

2,3,4 Identical between pairs of variables 
w/in each group.  Varies largely across 
3 groups 

Normal  

III Varies from 
10-200 in steps 
of 5 

2,3,4 Identical between pairs of variables 
w/in each group.  
Cor1=0.5,Cor2=0.5,Cor=0.95 

Normal 

IV Varies from 
10-200 in steps 
of 10 

2,3,4 Identical between pairs of variables 
w/in each group.  Varies minimally 
across 3 groups 

Normal 

V Varies from 
10-200 in steps 
of 10 

2,3,4 Variables are not correlated  All groups Uniform (0,1)  

VI Varies from 
10-400 in steps 
of 10 

2,3,4 Variables are not correlated Group1=Uniform(0,6) 
Group2=Uniform(1,5) 
Group3=Uniform(2,4) 

 

Multivariate Normal  

 In the first set of simulations I ran, data was simulated from a multivariate normal 
distribution.  Using R, I simulated a specific number of observations for each group from a 
multivariate normal distribution in which all groups have the same population mean vector.  
From there I started manipulating the covariance structures for each group.  Finally I plotted all 
of the empirical type I error rates in order to see if any of these settings increased the type I error 
of the test.  

Simulation I  

 This simulation investigated how the type I error rate was effected when dependent 
variables were correlated.  Figure 4 contains four graphs of empirical type I error rate.  On the x-
axis is the value of the correlation between dependent variables for each group, and each graph 
corresponds to a different sample size, which is labeled on the top of the graph.  As you can see 
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by the legend, the black, red, and blue points correspond to four, three and two dependent 
variables respectively.   

 In this simulation there are no technical violations of assumptions.  Although the 
dependent variables are correlated, all of the covariance structures are equal because there is the 
same amount of correlation between variables for each group.  Given that there is no violation of 
assumptions we would expect the average type I error rate to reach our nominal α=0.05 level.  It 
turns out that all the average empirical type I error rates didn't stray from our nominal alpha 
level, and the graphs above seem to support to this fact. 

 

Figure 4: Empirical Type I Error Rate vs. Correlati on 
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Simulation II  

 Now that we have investigated groups with the same correlation between variables for 
each group, the next step was to change the correlations between variables for each group.  Now 
we are violating the assumption of equal covariance structures, and we introduced correlation 
between dependent variables.  Because of this violation we would expect our empirical type I 
error rates to be above the nominal level, which is shown by the graphs below.  In this next 
simulation I investigate four different sets of correlation coefficients.  In Figure 5 you will see 
four graphs; at the top of each graph are the correlation coefficients for each group labeled cor1, 
cor2, and cor3.  On the x-axis is the different sample size in each group to investigate if 
increasing sample size might allow the type I error rate to reach our nominal level.  

Figure 5: Changing Variable Correlation between Dependent Variable 

 

 All of the average empirical type I error rates are above the nominal level, but 
specifically, I will highlight the correlation set in which we saw the biggest difference.  In the 
bottom left graph, the correlations are set to 0.05, 0.95, and 0.95.  These settings produced 
average empirical type I error rates of 0.0867, 0.818, and 0.0667 for four, three, and two 
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dependent variables respectively.  As you can see these error rates are well above our nominal 
level.  Please refer to Table 3 for average empirical type I error rates. 

Table 3: Simulation II Results 

Correlation Coefficients  Average Empirical Type I Error Rate  
4 variables -- 3 variables -- 2 variables 

Cor1=0.05,Cor2=0.5,Cor3=0.95 0.0615         --     0.061       --    0.0582 
Cor1=0.05,Cor2=0.5,Cor3=0.5 0.0559         --     0.0514     --    0.0495 
Cor1=0.05,Cor2=0.95,Cor3=0.95 0.0867         --     0.0818     --    0.0667 
Cor1=0.5,Cor2=0.5,Cor3=0.95 0.0578         --     0.0567     --    0.0587 

Simulation III  

 In order to investigate the effect of increasing sample size on empirical type I error rate, 
the next simulation replicated a correlation set but looked at more sample sizes.  Figure 6 shows 
type I error rate vs. sample size when the correlations are set to 0.5, 0.5, 0.95, but now the 
sample size increases from 10-200 in steps of 5 rather than from 10-100 in steps of 10.  This will 
allow us to investigate if an increasing sample size would eventually lead to a nominal alpha 
level for the MANOVA test even though we have violated some assumptions.  

Figure 6: Investigating Sample Size 
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 As seen in the graph above, we never quite reach our nominal alpha level.  The average 
empirical type one error rates can be found in Table 4.  Also, we are looking for any downward 
trend in the points, which there seems to be a slight one here, but nothing significant.  However, 
there is still evidence that when dependent variables are correlated, the average type I error rate 
can be above our nominal level. 

Table 4: Simulation III Results 

Number of Variables  Average Empirical Type I Error Rate  
4 0.060 
3 0.0567 
2 0.0556 

Simulation IV  

 Now that we have looked at groups with highly differing correlation coefficients, we 
thought it would be interesting to look at a simulation in which the correlations between 
variables for each group were very close together.  In this simulation we looked at two other 
correlation sets.  These correlations can be found above each graph with labeled Cor1, Cor2, and 
Cor3.  Figure 7 shows two graphs of two different correlation sets that were investigated.  

Figure 7: Similar Correlation 
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variables in each group, we did see some rates above our nominal level.  All three error rates are 
barely above our nominal level.  This is demonstrating when there is similar high correlation 
between dependent variables for each group the empirical type one error rate can be above our 
nominal level.  

Table 5: Simulation IV Results 

Correlation Coefficients  Average Empirical Type I Error Rate  
4 variables -- 3 variables -- 2 variables 

Cor1=0.05,Cor2=0.10,Cor3=0.15 0.0499         --     0.0495     --    0.0478 
Cor1=0.85,Cor2=0.90,Cor3=0.95 0.0538         --     0.05295   --    0.0501 

 

 

Multivariate Uniform  

 In the following simulations data was simulated from a multivariate normal distribution 
for all three groups.  The R software did not have a multivariate uniform distribution simulation 
function, so in order to simulate this data, univariate uniform distributions were pasted together 
to form a multivariate data set.  In doing this we have to assume that samples within each group 
are independent and uncorrelated.  Essentially, there is zero covariance between each of the 
dependent variables, but the variance can still be changed to violate some assumptions.   

 

Simulation V 

 This first simulation using multivariate uniform data looks at three groups simulated from 
the same uniform distribution.  The uniform distribution allows for data to be uniformly 
distributed over a certain set of bounds.  If the bound are the same, then the mean and variance of 
the data is the same.  In this case each group has a minimum bound equal to zero and a 
maximum bound equal to one.  The only assumption we are violating in this case is the normality 
assumption because even though the data is multivariate uniform the three groups do have equal 
covariance structures.  Figure 7 is a graph of the empirical type I error rate with sample size on 
the x-axis. 
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Figure 8: Uniform 0-1 

 

 As seen in figure 8, the empirical type I error rate did not seem to stray very far from our 
nominal level.  The average empirical type I error rates can be found in Table 6 below.  Although 
the error rate for two variables is above 0.05, it is not significantly higher.  This difference could 
just be by random chance.  Also, it looks like a couple points in the graph are highly influential 
in making this average. Overall, the MANOVA procedure seemed to be a little robust against 
this normality assumption and produced results that stayed very close to our nominal alpha level.  
If you look at the fitted lines for three and four dependent variables it looks like that there may 
be a downward trend as sample size increases. After this discovery I re-ran the simulation a 
couple of times to see if these results could be replicated.  After further investigation, sample size 
did not seem to have an effect on empirical type I error rate for this simulation.  

Table 6: Simulation V Results 

Number of Variables  Average Empirical Type I Error Rate  
4 0.0479 
3 0.0498 
2 0.0504 
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Simulation VI  

 Now that we have investigated uniform data with the same bounds for each group, it only 
seemed natural to see what happened when we changed the bounds between groups.  We have to 
be careful when doing this because we still want the means for each group to be equal, so we 
must carefully choose the bounds we use.  The graph below shows what happened to the type I 
error rates when we sampled group one with bounds (0, 6), group two with bounds (1, 5), and 
group three with bounds (2, 4).  All of these groups still have the same mean but the variance of 
the variables in each group changes.  Please refer to Table 7 for group information.  Due to the 
way the sampling was done, there is no covariance between variables.  Now we are violating two 
main assumptions: normality and equal covariance structures.  Figure 9 explains the effect this 
has on empirical type I error rate. 

Table 7: Variable Information 

Group Variable Mean Variable Variance  
1 3 3 
2 3 1.333 
3 3 0.333 

 

Figure 9: Uniform, Different Bounds 
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0.05, and we can conclude that when the samples are from a uniform distribution with different 
bounds for each group, the empirical type I error rate can be above the nominal level. 

Table 8: Simulation VI Results 

Number of Variables  Average Empirical Type I Error Rate  
4 0.06665 
3 0.06535 
2 0.06382 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



16 | P a g e 
 

Functions for Multivariate Methods 

 Although the R software can easily perform all the multivariate analysis that are 
necessary for most applications, some of the code is fairly tedious and might be difficult for 
someone with little to no experience with statistical software.  I took that tedious code and 
condensed it into some very useful functions that would help in-experienced students.  The basis 
for writing these functions was for use in the multivariate statistics class offered at Cal Poly (Stat 
419).  I wrote four main functions.  The first three were fairly fundamental, just some condensing 
of code into a usable function.  These functions included one sample, two sample, and paired 
Hotellings T2 test.   

 One sample Hotelling's T2 test looks to test for if a population vector is equal to a 
hypothesized vector.  Similarly, a two sample Hotelling's T2 tests if two population vectors are 
equal to each other.  When you have paired observations for each population, you would then use 
the paired Hotelling's T2 test.  Please see appendix section C for these functions.  

 The fourth function that I wrote corresponded to a multivariate method called profile 
analysis.  This function was more complicated and difficult to write than the others.  This 
function can perform profile analysis for k number of groups.  Profile analysis a technique used 
to see how similar different groups are when comparing sequential measurements.  There are 
three main inputs.  The first is a data matrix in which the first column is a vector containing the 
categorical variable that you are comparing by (group, gender, etc.), and the rest of the column 
vectors contain the sequential measurements in which the means will be tested.  The second 
input pertains to what type of test you want to perform.  There are three options: Test=“P” for 
parallelism, Test=“C” for coincidence, and Test=“F” for flatness.  Finally, the third input 
corresponds to how many groups are being tested.  A copy of this function can be found in 
section D of the appendix.  
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Future Projects  

 My project barely skimmed the surface of what can be done in type I error rate analysis.  
I looked at particular sets of correlations between variables for each group, but looping over 
many different sets is easily possible.  I also looked at the uniform distribution, but I did not have 
the time to see how to introduce covariance between the dependent variables.  This is another 
thing than can be looked into in the future.  There is also the possibility of looking at other 
multivariate distributions.  We were thinking about introducing a skewed distribution like chi-
squared.  There is multivariate extension of the chi-squared distribution called the Wishart 
distribution, but unfortunately I did not have the time look into it.  I think that it would be very 
interesting to see what would happen to the type I error rate when other distributions are 
investigated. 

 As well as looking at different violations of assumptions, there are other settings that 
could be looked at that might affect type I error rate.  Although it is not mentioned in my report, I 
performed some minor analysis corresponding to which type of test statistic was used in 
MANOVA.  All of my simulations were run using the Pillai test statistic, but there are others that 
are known to help in certain situations.  For instance the Wilks test statistic is known to be a little 
more robust against the normality assumption.  These different test statistics can be investigated 
to see how they affect type I error rate.  
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Conclusion  

 After all of the simulations and analysis had been run, some definite conclusions can be 
drawn.  When the correlations are different across groups, making the covariance matrices differ, 
the type I error rate can differ from the nominal level.  If the correlation is the same between 
variables for each group, MANOVA assumptions are not violated and the empirical type I error 
rate stays below our nominal level.  However, when each group has different correlation 
coefficients the error rate was significantly higher.  If each group's dependent variables are 
correlated differently, I would not expect the MANOVA procedure to hold at the nominal alpha 
level. 

 When sampling from the same uniform distribution for each group, the type I error rate of 
MANOVA seemed to hold at our nominal level.  Although when sampling different groups from 
different uniform distributions, the type I error rate was significantly higher than 0.05.  This was 
expected because we are violating two main assumptions of MANOVA: normality and equal 
covariance structures.  

 We would have liked to see a sample size effect in the simulations.  The sample size 
effect we would have liked to see was as the sample size increased our type I error rate would 
decrease. However, we did not see this downward trend we were looking for in the simulations.  
However, we just looked at the smoothed data curves and did not perform any statistical analysis 
on a sample size effect. This could be something that could be investigated further in the future.   

 Another interesting observation was the effect that the number of variables has on type I 
error rate.  In every simulation, except simulation V, the average empirical type I error rates 
decrease as the number of variables decreases.    

 In order to further investigate the method of MANOVA, there are many other questions 
that could be asked.  I have just scraped the surface of the possibilities, and I welcome anyone to 
further investigate to see what they can discover. 
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Appendix 

Section A - Simulation Function 

emp.p.value.normal <- function(data,size1,size2,size3,cor1,cor2,cor3,times) 
{ 
   count=0 
     means <- apply(data[,-1],2,mean) 
     sigma <- apply(data[,-1],2,sd)  
     covar <- cov(data[,-1]) 
     size <- c(rep(1,times=size1),rep(2,times=size2),rep(3,times=size3)) 
## Covariance ## 
   n=nrow(covar) 
   p=ncol(covar)  
   covar1=covar    
   covar2=covar 
   covar3=covar 
   for(i in 1:n) 
   { 
    for(itor in 1:p) 
    { 
        if(i-itor!=0) 
         { 
            covar1[i,itor]=cor1*sqrt(covar[i,i]*covar[itor,itor]) 
            covar2[i,itor]=cor2*sqrt(covar[i,i]*covar[itor,itor]) 
            covar3[i,itor]=cor3*sqrt(covar[i,i]*covar[itor,itor]) 
         } 
    }  
   } 
 
   for( i in 1:times) 
   {  
     rand.data1 <- rmvnorm(n=size1, mean=means, sigma=covar1) 
     rand.data2 <- rmvnorm(n=size2, mean=means, sigma=covar2) 
     rand.data3 <- rmvnorm(n=size3, mean=means, sigma=covar3)     
     rand.data.final <- cbind(size,rbind(rand.data1,rand.data2,rand.data3)) 
     rand.manova.obj <- manova(as.matrix(rand.data.final[,-1])~as.factor(rand.data.final[,1])) 
     rand.f <- summary(rand.manova.obj)$stats[1, "approx F"] 
     if(rand.f >= qf(.05,summary(rand.manova.obj)$stats[1, "num Df"],summary(rand.manova.obj)$stats[1, 
"den            Df"],lower.tail=F)) 
     { 
       count=count + 1 
     } 
     ff[i]=rand.f 
   }   
   count 
   emp.p = count/times   
   #output= paste("Emperical P-value=", emp.p,"emperical F stat=", ff) 
   output=emp.p 
   output 
} 
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Section B - Other Simulations 
Figure 10:Uniform, Same Bounds (0.30) 

 

Figure 11: Uniform, Same Bounds (0,10) 
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Figure 12:Uniform, Different Bounds (0,30),(14,16),(10,20) 

 

 

Section C - Hotellings T2 Functions  

one.sample.hotelling = function(Data,mu.not) 
{ 
### One Sample Hotellings T squared test ###  
### data: matrix of the 2 vectors you want tested ### 
### mu.not:vector of length p, with hypothesized values of mu ###  
 
Data=Data 
n=nrow(Data)  
p=ncol(Data) 
S <- cov(Data)  
y.bar <- apply(Data,2,mean)  
ybar.minus.mu <- y.bar - mu.not 
T.square <- n*t(ybar.minus.mu)%*%solve(S)%*%ybar.minus.mu 
F.stat <- round((n-p)/(p*(n-1))*T.square,digits=3) 
P.value <- round(1-pf(F.stat,p,n-2),digits=5) 
Output <- paste("F=",F.stat,"P-Value=", P.value,sep=" ") 
return(Output) 
} 
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############################################################################## 
two.sample.hotelling = function(formula,data) 
{  
as.formula(formula) 
as.matrix(data) 
### Formula: Y~X format, Y is matrix of variables whose means you want tested, using variable 
names for input ###  
### Data: Name of the data frame  ### 
   manova.obj <- manova(formula,data=data) 
   return(summary(manova.obj)) 
} 
############################################################################## 
 
paired.hotelling = function(Data) 
{ 
### Data: Data matrix-all y varibalers first p/2 columns, all x variables [(p/2)-p] ### 
n=nrow(Data) 
col=ncol(Data) 
half=col/2 
D=matrix(0,n,half) 
for(i in 1:half) 
{ 
   d <- Data[,i]-Data[,half+i]  
   D[,i]=d 
} 
paired.Tsq <- manova(D~1) 
return(summary(paired.Tsq,intercept=T,test="Hotelling")) 
} 

Section D - K Sample Profile Analysis Function 

k.sample.profile = function(Data,Test="P",K=1) 
{ 
### Data: first column catagorical variable, next columns, sequential measurements ### 
### Test: which type of test, p=parellelism,c=coincidence,f=flatness ###  
### K: number of groups, default is 1 ### 
Data <- as.matrix(Data) 
nrow=nrow(Data) 
ncol=ncol(Data) 
C=matrix(0,ncol-1,ncol) 
for(itor in 1:ncol-1) 
{ 
   for(itorat in 1:ncol) 
   { 
      if(itorat-itor==0) 
      { 
         C[itor,itorat]=1 
      } 
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      if(itorat-itor==1) 
      { 
         C[itor,itorat]=-1 
      } 
   } 
} 
trans.data <- Data%*%t(C) 
one.samp.profile <- manova(trans.data~1) 
output=(summary(one.samp.profile,intercept=T,test="Hotelling")) 
 
if((Test=="P" | Test=="p") & K!= 1) 
{ 
   crow=ncol-2 
   ccol=ncol-1 
   C=matrix(0,crow,ccol) 
   for(itor in 1:crow) 
   { 
      for(itorat in 1:ccol) 
      { 
       
         if(itorat-itor==0) 
         { 
            C[itor,itorat]=1 
         } 
         if(itorat-itor==1) 
         { 
            C[itor,itorat]=-1 
         } 
      } 
   } 
   Y <- as.matrix(Data[,2:ncol]) 
   trans.data <- Y%*%t(C) 
   two.samp.profile <- manova(trans.data~as.factor(Data[,1])) 
   output=summary(two.samp.profile,test="Wilks") 
} 
if((Test=="C" | Test=="c")  & K!= 1) 
{ 
   j <- rep(1,times=ncol-1) 
   Y <- as.matrix(Data[,2:ncol]) 
   trans.data <- Y%*%j 
   coin.test <- aov(trans.data~as.factor(Data[,1])) 
   output=summary(coin.test,test=F) 
} 
 
if((Test=="F" | Test=="f") & K!= 1) 
{ 
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   crow=ncol-2 
   ccol=ncol-1 
   C=matrix(0,crow,ccol) 
   for(itor in 1:crow) 
   { 
      for(itorat in 1:ccol) 
      { 
       
         if(itorat-itor==0) 
         { 
            C[itor,itorat]=1 
         } 
         if(itorat-itor==1) 
         { 
            C[itor,itorat]=-1 
         } 
      } 
   } 
   Y <- as.matrix(Data[,2:ncol]) 
   trans.data <- Y%*%t(C) 
   test.flat <- manova(trans.data~1+as.factor(Data[,1])) 
   output=summary(test.flat,intercept=T,test="Hotelling") 
} 
return(output) 
} 
  


