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1.0.0 Introduction 

 The focus of this project is low-count-level gamma-ray spectroscopy on meteorite 

samples in search of a particular isotope of Technetium (98Tc), which according to stellar 

theory, should be present in the universe.  The spectral lines for 99Tc have, however, been 

observed in S-, M-, and N- type stars, which makes finding 98Tc created naturally a 

possibility, and thus a search can be justified. 

 Technetium-98 has a half-life of about 4.2x106 years (4,200,000 years) and is 

created only artificially on Earth, so we expect that the meteorite samples would not be 

contaminated by 98Tc from a source on Earth.  Other isotopes do have similar decays as 

the 98Tc which we are looking for, so careful examination of the data will need to be 

performed to rule out other possibilities if peaks are found in the correct areas.  The 

meteorite used for this sample was a stony-iron meteorite, originally found at Lake 

Labyrinth, Australia in 1924. 

 Since the half-life of 98Tc is relatively long compared to the time which we have 

to measure the decays, the length required for a useable run must be fairly long in order 

to detect an above background level of counts from our sample.  Our sample was run for 

50000 minutes (approximately 35 days), which we deemed sufficient to detect any 98Tc 

that may be in the meteorite sample.  The gamma-ray energies of interest for identifying 
98Tc are 0.6524 MeV and 0.7454 MeV, and so the gain and number of channels were set 

up such that the spectrometer readout would include these energies. 

 In order to look for these low level gamma-ray emissions, a two-dimensional anti-

coincidence shielded gamma-ray spectrometer was used.  This spectrometer was 

constructed by Dr. Roger Grismore, who is also the advisor for the project.  The way that 

the spectrometer works is by using two scintillator detectors set 180 degrees from each 

other with a scintillating annulus surrounding them.   

 Coincident events are then recorded on a two-dimensional plot with the lower 

detector and upper detector energies each on their own axis, with a line of symmetry 

between the two.  Single events are also recorded on two one-dimensional spectra.  The 

annulus ring detector is set to anti-coincidence, which filters out gamma rays not 

originating from the sample chamber inside the detector, and so we expect the coincident 
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rays detected to be emitted only from the sample and not from any type of outside source, 

or from any internal Compton scattering. 

  

Figure 1-1.  Decay scheme for 98Tc 

 The decay emitting the 0.6524 MeV gamma ray and the decay emitting the 

0.7454 MeV gamma ray are seen in coincidence.  This will be useful for later reducing of 

our data and deciding whether or not we are looking at 98Tc or some other isotope. 

 

1.1.0 A Method of Formation of Technetium 

 One possible method for the formation of Technetium naturally has been explored 

by Robert Malaney in an article from Nature titled “Production of technetium in red 

giants by gamma-ray-induced fission."  This article goes over various mathematical 

proofs for the energy needed to create Technetium as the fission yield from heavy 

isotopes.  The radioactive chain that leads to the production of 99Tc is shown in this 

article (with half lives in parenthesis) as: 

�
99Zr(35s)�99Nb(2.4min)�99Mo(67h)�99Tc(2.1x105yr) 
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 The article describes the formation of Technetium as a result of γ-ray-induced 

fission of the heavy nuclei in the hydrogen burning shell of red giants.  Red giant stars are 

large in radii and sometimes massive, ranging from 0.5Mʘ to 6Mʘ with radii sometimes 

tens or hundreds of times larger than that of our Sun.  These stars have exhausted the 

hydrogen that they used to burn inside their cores and now (as red giant stars) fuse 

hydrogen in a shell outside their core, which is where the fission we are talking about 

would take place.  It is the energies of these gamma rays coming from the fusion of 

hydrogen in this shell that gives the energy needed to produce the Technetium which has 

been seen from the spectra of these stars.  The radio isotope which we are looking for, 
98Tc, can be produced by (p,d) or (d,t) reactions on 99Tc, all of which would be possible 

in red giant stars. 

 

1.2.0 Acknowledgements 

 I would first, of course, like to acknowledge the invaluable direction of Dr. Roger 

Grismore, without whose help this study would not have been conducted, and for his 

dedication and knowledge in and of the field of spectroscopy.  I would like to thank Dr. 

Grismore and Cal Poly for allowing me the opportunity to both work with an experienced 

research professor on a one on one basis, as well as perform work relative to my field of 

interest.   
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2.0.0 Procedures 

2.1.0 The Spectrometer 

 The spectrometer is a very sophisticated machine and therefore must be used in a 

specific manner which preserves the integrity of the instrument, as well as of the samples 

inside the chamber. 

2.1.1 Handling the Sample 

 The meteorite sample is always handled with great care to ensure both the 

integrity of the sample is intact, and that one is careful not to cross contaminate the 

sample with something from Earth.  In order to do that, we take the following steps to 

ensure the sample is well managed. 

1) Always wear a pair of latex gloves when handling the sample, never touch 

the meteorite with your bare hands.  This will help ensure that no cross 

contamination of any type gets on the sample. 

2) Change gloves often when handling different samples or any time you 

touch anything new.  This again helps to ensure the sample is not 

contaminated with any outside sources.  This is especially crucial when 

putting in and taking back out the calibration sources from the 

spectrometer. 

3) Wearing long sleeve shirts (or in my case having a lab coat on) will help 

reduce the likelihood of dust or skin particles from getting inside the 

spectrometer housing and possibly contaminating a run. 

4) Dual Ziploc bags are used around the sample to further keep outside 

influences from contaminating the sample. 

5) The meteorite sample sits on a small cardboard stand inside the 

spectrometer for runs. 

 

2.1.2 Calibration 

 Because individual runs of the spectrometer are so lengthy, it is necessary to 

calibrate the system every time we wish to make a run, whether it is a background run or 

a sample run.  Calibration is important because it ensures that the channels which the 

events of decay are recorded correspond to the proper energy levels.  To do this, we make 
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runs with a 137Cs + 60Co source, from which we know the energy of decay peaks as well 

as the channels we wish them to go in.  From 137Cs we know there will be a decay with 

an energy of 0.6616 MeV, which we want to be in channel 132.3 of the detector.  From 

the 60Co source we expect to see two decay energies of 1.1732 MeV and 1.3325 MeV, 

which we desire in the channels 234.6 and 266.5, respectively. 

 With the energies of the target calibration source known, 7 minute runs are made 

and the corresponding adjustments to gains and baselines are carefully made on the 

spectrometer.  After a calibration run has completed, a program on the computer is used 

to determine the location of the characteristic peaks for the gamma rays discussed above.  

The name of the program that does this is CALDSK.exe.  The tolerances (given by this 

program on a printout) for a properly calibrated spectrometer are: baselines to be 0.0 ± 

0.1 and the sum gain of the 60Co peaks to be 501.1 ± 1.0.  Adjustments are made after 

each calibration run, and a new 7 minute calibration run is made until these values are 

reached.  Once the spectrometer has been successfully calibrated, we can begin a sample 

run with confidence that our channels are properly calibrated. 

  

2.2.0 How To: Measuring Gamma Rays 

 Since the goal of the procedure is to determine an energy level for an event, we 

need to determine the energy from what we are given by the program running the 

spectrometer.  Lower energy levels are in the lower channel number cells, and higher 

energy levels are in the higher channel number cells, as you would expect.  Since output 

from the spectrometer gives a count and channel numbers, we need a method for 

converting these channel numbers into something that we can use like energy levels. 

 

2.2.1 Correction of Predicted Channels 

 The relationship between the channel number and the energy of that channel used 

to plot data points from the spectrometer comes from the linear relationship: 

Channel # = Gain*Energy + Baseline    (1) 

Where Gain refers to the gain of the amplifiers, Energy refers to the energy of the decay, 

and Baseline refers to a linear offset.  (The gain is determined by the needs of the 

experiment and is set before a run.)  
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 There is also a correction that needs to be made for both the lower and the upper 

detectors for the predicted channel numbers.  This correction is determined with known 

energy emissions (using a sample source), and for the lower detector the correction is 

linear: 

Correction (# of channels) = 0.5509-0.1387*x                              (2) 

And for the upper detector, we have a second degree relationship: 

Correction = 0.3539+0.001804*x+0.3645*x2                               (3) 

The x term in both equations represents the energy that we are looking for in MeV.  

These relationships will be useful for the analysis of our data, and help to determine what 

channels we need to look at for our 0.6524 MeV and 0.7454 MeV gamma ray emissions. 

 

2.2.2 Energy from Channel Determination 

 In order to go from channels to energies (in MeV) we need a way to know what 

energies lie in each channel.  This is done simply for each sample spectrum by observing 

certain peaks which always appear in the singles spectra along the edges of the two-

dimensional main spectrum.  These peaks at gamma-ray energies of 0.511 MeV, 1.461 

MeV, and 2.223 MeV.  After each sample run, the channels of these strong peaks are 

noted by the computer software and recorded for the upper and lower detectors.  Peak 

channels (in ascending order of energies listed above) are for the run which I analyzed: 

UPPER 24.06 71.79 109.68 

LOWER 24.67 74.57 113.72 

 Taking these values with their known energies (in MeV) we are able to get a 

relationship between the detector channel number and the corresponding energy.  The 

equations come out as quadratic, and are as follows: 

UPPER E = 0.000004427*C2 + 0.019403*C + 0.0416                   (4) 

LOWER E = 0.000004750*C2 + 0.018567*C + 0.0502                   (5) 

Here E is the energy of the disintegration in MeV and C is the channel number on the 

detector. 
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 If we wish to know the position of a disintegration when given an energy in MeV, 

we can solve the equations above for C in terms of E: 

UPPER C = -0.55256*E2 + 51.522*E – 2.125                          (6) 

LOWER C = -0.66685*E2 + 53.841*E – 2.673                          (7) 

3.0.0 Data 

3.1.0 Explaining the Tables 

 Tables 3-1 and 3-3 show the counts versus channel numbers for the detectors, 

with the lower channels along the horizontal axis and the upper channels along the 

vertical axis.  Similarly, tables 3-2 and 3-4 show the uncertainty in the counts for each 

respective channel, with the axes labeled in the same way.  The uncertainty is calculated 

by the program written to display the spectrometer run background-subtracted data.  The 

background run was made with all objects in the sample volume except for the meteorite 

itself. 

 Tables 3-5 and 3-6 are used in the actual peak determination, and show the 

summed areas for peak channels with uncertainties factored out.  These peak sums are 

used to determine where the spikes in energy are, and thus can be used to determine the 

isotope whose decay we are looking at.  For a peak channel determination, cells are 

summed 8 wide by 6 tall to yield a peak-count total given by: 

     � � �∑ �����	
���            (8) 

Here ‘x’ is the sum of an 8x6 cell box, and δxi is the uncertainty for each cell within the 

box.  For example, the upper and leftmost peak we can observe from using tables 3-1 and 

3-2 would be centered at (upper channel) 42.5 x (lower channel) 27.5, as the 8x6 box 

would be constructed from channel 24 to 31 (lower detector) and 45 to 40 (upper 

detector).  The center of this summed area is then halfway between 24 and 31 for the 

lower detector and halfway between 45 and 40 on the upper detector, or 27.5 and 42.5, 

respectively.  These peak positions determine the energies of decay in the meteorite 

sample. 

 Table 3-7 is a summary of the results which will be discussed in the analysis and 

conclusion sections of this report.  This table shows the identified peaks, corrections to 

peak channels, energies of those corresponding channels, and difference in MeV of the 
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experimental results as compared to the disintegration energies we are looking for.  The 

mirrored upper and lower channels have 3 distinct peaks, an issue which will be 

discussed in the analysis section of this report. 
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3.2.0 Tables 

                

Counts 
(x)                 

Position 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

45 0 -51 14 20 21 -1 -4 4 7 17 9 1 -10 -23 -16 7 

44 -8 -32 -4 17 32 -2 -9 -16 30 9 -8 6 10 -4 -9 -13 

43 12 -6 34 -16 12 -7 -2 3 6 -19 5 13 16 -4 -4 -30 

42 43 8 26 -7 10 3 5 5 34 28 22 -7 -4 28 11 -10 

41 21 -6 44 -12 -31 21 34 43 -16 39 28 -5 44 12 -5 -37 

40 -20 22 43 19 -16 16 78 61 36 11 20 28 8 4 -1 -22 

39 9 13 21 44 47 47 61 43 41 53 4 -22 -4 9 30 -21 

38 34 12 -11 1 8 12 32 58 61 42 -29 44 16 13 27 -2 

37 23 27 -23 18 -1 12 44 18 9 48 -5 14 -21 -12 0 18 

36 16 -7 1 13 15 36 10 30 14 54 25 -27 -19 10 30 -3 

35 33 42 1 -5 12 46 27 54 24 31 1 1 4 -8 -11 -17 

34 -29 -40 -14 -22 6 17 2 8 37 -20 7 -4 -7 19 -12 -8 

33 0 -8 27 17 -8 -4 26 22 35 34 -7 16 -27 7 -24 22 

32 44 25 26 -5 25 29 6 25 13 -35 24 10 34 29 51 0 

31 49 42 24 6 34 50 4 45 50 83 61 12 37 73 5 36 

30 55 42 43 9 54 35 33 20 77 41 17 5 31 37 36 99 

29 -6 -2 -12 45 40 58 3 11 19 6 24 -12 24 40 25 30 

Table 3-1.  Counts vs. Channel 

                

Uncertainty 
Counts (±δδδδx)                 

Position 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 

45 23 23 24 24 24 23 21 20 18 17 15 15 14 14 14 13 

44 22 22 23 23 24 23 22 22 21 18 16 16 14 14 14 13 

43 21 20 22 22 24 24 24 23 22 19 18 16 15 14 14 14 

42 21 20 21 21 23 24 24 24 24 22 18 17 15 15 15 13 

41 22 20 21 20 21 23 25 26 25 24 21 19 17 15 14 14 

40 21 21 20 20 21 23 26 27 26 24 23 21 19 16 16 16 

39 21 21 21 21 21 22 25 26 26 26 24 22 21 18 17 16 

38 21 22 21 21 21 22 24 25 25 25 25 24 22 21 19 16 

37 23 23 20 21 20 22 23 23 24 24 24 24 23 22 20 19 

36 23 22 21 21 21 22 22 22 22 23 23 22 23 22 22 20 

35 23 22 21 21 21 20 21 22 21 21 22 22 22 22 23 21 

34 23 23 22 21 21 21 21 22 22 21 21 20 21 23 22 23 

33 24 24 23 23 22 22 22 22 22 21 21 20 22 23 23 23 

32 26 25 25 24 24 24 24 23 24 22 22 21 22 22 24 25 

31 27 27 26 26 25 24 25 25 24 24 24 22 23 24 25 27 

30 29 28 28 26 26 25 25 25 25 24 23 23 23 23 25 26 

29 27 27 27 26 26 25 25 25 24 23 23 22 22 22 22 24 

Table 3-2.  Uncertainties of Counts 
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Counts 
(x)                 

Position 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

43 -2 3 6 -19 5 13 16 -4 -4 -30 29 -4 -12 11 22 21 

42 5 5 34 28 22 -7 -4 28 11 -10 16 -1 -21 -12 21 -14 

41 34 43 -16 39 28 -5 44 12 -5 -37 25 -15 -7 -1 12 0 

40 78 61 36 11 20 28 8 4 -1 -22 -1 0 -7 5 24 -21 

39 61 43 31 53 4 -22 -4 9 30 -21 -9 -22 -6 -28 -16 -19 

38 32 58 61 42 -29 44 16 13 27 -2 17 27 5 10 -16 -15 

37 44 18 9 48 -5 14 -21 -12 0 18 4 -23 -3 17 -11 -2 

36 10 30 14 54 25 -27 -19 10 30 -3 9 1 -31 -6 13 8 

35 27 54 24 31 1 1 4 -8 -11 -17 0 9 1 2 15 -9 

34 2 8 37 -20 7 -4 -7 19 -12 -8 -13 6 7 -5 8 6 

33 26 22 35 34 -7 16 -27 7 -24 22 26 11 -9 17 -32 -3 

32 6 25 13 -35 24 -1 34 29 51 0 27 -15 2 10 1 14 

31 4 45 50 83 61 12 37 73 5 36 35 77 24 38 7 -5 

30 33 20 77 41 17 5 31 37 36 99 56 44 47 44 38 22 

29 3 11 19 6 24 -12 24 40 25 30 29 -4 0 31 45 8 

28 -8 38 10 22 8 4 -8 -18 -6 23 8 -4 -16 2 -5 -13 

27 35 -2 53 27 7 15 7 38 -14 -13 27 30 21 28 -14 -24 

26 58 31 44 7 21 37 15 6 6 41 50 -31 -15 -5 26 -2 

25 49 36 24 23 -5 -119 4 12 51 2 42 16 -9 -3 10 -13 

24 36 20 -12 19 17 8 -16 -21 -14 28 13 0 25 -6 14 -8 

Table 3-3.  Mirror Image Spectra 

                

Uncertainty 
Counts (±δx)                 

Position 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 

43 24 23 22 19 18 16 15 14 14 14 14 13 13 13 13 14 

42 24 24 24 22 18 17 15 15 15 13 14 14 14 13 14 13 

41 25 26 25 24 21 19 17 15 14 14 14 14 13 13 14 13 

40 26 27 26 24 23 21 19 16 16 15 14 14 13 13 13 14 

39 25 26 26 26 24 22 21 18 17 16 14 14 14 14 14 14 

38 24 25 25 25 25 24 22 21 19 16 16 16 15 14 14 14 

37 23 23 24 24 24 24 23 22 20 19 17 16 15 15 14 13 

36 22 22 22 23 23 22 23 22 22 20 18 18 16 15 15 14 

35 21 22 21 21 22 22 22 22 23 21 21 18 17 16 15 14 

34 21 22 22 21 21 20 21 23 22 23 22 21 18 17 15 15 

33 22 22 22 21 21 20 22 23 23 23 23 23 22 20 18 16 

32 24 23 24 22 22 21 22 22 24 25 25 25 24 22 21 20 

31 25 25 24 24 24 22 23 24 25 27 27 28 27 25 24 22 

30 25 25 25 24 23 23 23 23 25 26 27 27 27 26 26 24 

29 25 25 24 23 23 22 22 22 22 24 23 24 25 25 26 25 

28 24 24 23 23 22 21 20 21 21 21 21 22 23 24 24 24 

27 26 24 24 23 22 22 21 20 20 20 21 20 22 23 24 24 

26 27 26 26 24 23 23 22 21 22 22 21 21 21 22 23 24 

25 28 27 26 25 24 23 23 21 22 21 20 21 22 22 22 24 

24 27 27 27 26 24 23 22 21 21 21 21 22 21 21 22 23 

Table 3-4.  Uncertainty for Mirror Image Spectra 
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27.5 28.5 29.5 30.5 31.5 32.5 33.5 34.5 35.5 

42.5 265 313 463 385 403 444 434 316 120 

41.5 547 619 740 648 618 638 611 473 210 

40.5 716 776 885 777 800 848 823 680 354 

39.5 805 857 999 937 926 949 896 710 416 

38.5 826 886 1069 1035 983 985 879 706 393 

37.5 923 1012 1140 1121 1068 986 835 661 355 

36.5 649 748 908 934 890 771 632 522 282 

35.5 436 539 702 712 733 646 556 425 247 

34.5 462 508 582 609 603 518 426 345 201 

33.5 594 655 750 797 802 740 696 659 505 

32.5 765 851 884 882 924 874 858 804 761 

31.5 687 807 860 894 874 816 837 844 891 

Table 3-5.  Center Counts with Uncertainties Factored Out 

33.5 34.5 35.5 36.5 37.5 38.5 39.5 40.5 41.5 

40.5 813 670 344 278 118 27 -33 -57 -164 

39.5 886 700 406 311 65 -6 -60 -80 -201 

38.5 869 696 383 301 29 -55 -83 -94 -174 

37.5 825 651 345 196 -44 -94 -125 -94 -162 

36.5 622 512 272 108 -97 -121 -131 -100 -156 

35.5 556 425 247 113 -42 -60 -64 -27 -65 

34.5 416 335 191 113 -9 -84 -46 -12 -37 

33.5 686 649 495 405 347 231 290 283 169 

32.5 848 794 751 645 642 610 686 653 524 

31.5 827 834 881 809 817 761 878 853 692 

30.5 832 856 904 881 837 756 871 833 688 

29.5 905 931 969 929 912 847 974 919 721 

28.5 1026 955 1030 982 908 830 905 894 702 

27.5 684 615 666 653 579 534 700 725 586 

26.5 473 352 333 367 272 207 321 369 257 

Table 3-6.  Center Counts with Uncertainties Factored Out (Mirrored) 

Un-Corrected Peak Channels Corrected Peak Channels 

upper lower upper lower 

37.5 29.5 36.929026 29.032834 

Un-Corrected Peak Ch. (mirrored) Corrected Peak Ch. (mirrored) 

upper lower upper lower 

29.5 39.5 29.007645 39.059354 

28.5 33.5 28.016104 33.043442 

28.5 35.5 28.016104 35.048746 

Energy of Peak Channels (MeV) Difference (Accepted-Exp, MeV) 

upper lower upper lower 

0.7641712 0.59326 -0.018821 0.05916357 

0.6081604 0.78266 0.0442596 -0.037311783 

0.5886712 0.6689 0.0637488 0.076446034 

0.5886712 0.70679 0.0637488 0.038564964 

Table 3-7.  Summary Results Table 
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 Though neither of the peaks found perfectly match the expected position for the 

emitted decay gamma ray, they don’t really have to.  Uncertainties and drifts in channels 

can easily shift the peaks of these 0.6524 MeV and 0.7454 MeV gamma rays into slighty 

different positions, but the more interesting question we need to ask now is what could 

these peaks be? 

 Certainly one option is that these peaks are from the decay of 98Tc into 98Ru as 

seen in figure 1-1, as they are in coincidence (as expected) and near the right energy 

values.  Other possibilities for decays which will need to be ruled out before a final 

decision is made can be found through a search of the National Nuclear Data Center 

online (http://www.nndc.bnl.gov).  Two other elements with similar energies of decay are 
166Ho, which has disintegration energies at: 611, 670, 691, 711, 752, 778, 810, and 830 

(all energies in keV), and also 108Ag with disintegration energies at: 614 keV and 723 

MeV. 

 

4.3.0  Conversion of Peaks Found to MeV 

 Looking at tables 3-5 and 3-6, the strongest peak(s) are highlighted around the 

region where we expect to find the 0.6524 MeV and 0.7454 MeV peaks from the 

disintegration of the 98Tc into 98Ru.  Starting with the peak highlighted in table 3-5 and 

seen in figure 4-1, equations 4 and 5 are used to convert the upper and lower channel 

numbers into energies of disintegration: 

UPPER EU = 0.76417 MeV 

LOWER EL = 0.59326 MeV 

Then with table 3-6, we examine the highlighted peaks seen in figure 4-2 using equations 

4 and 5 in a similar fashion: 

UPPER EU = 0.60816 MeV 

LOWER EL = 0.78266 MeV 

UPPER EU = 0.58867 MeV 

LOWER EL = 0.66890 MeV 

UPPER EU = 0.58867 MeV 

LOWER EL = 0.70679 MeV 
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 In the above list, the red-colored values indicate the closest values to the energies 

of 98Tc, which are 6.78% and 5.01% different (upper and lower). 

 

5.0.0 Conclusion 

 The main goal behind this study was to learn the methods by which spectroscopy 

is conducted, as well as to attempt to detect the isotope 98Tc in a meteorite sample, and 

thus find evidence of 98Tc from a source other than spectral lines from distant stars.  The 

proximity of the peaks found to the position of peaks predicted from the disintegration 

energies for 98Tc (0.6524 MeV and 0.7454 MeV) make the possibility of having found 
98Tc in the Lake Labyrinth meteorite sample realistic. 

 The results to date (seen in summary table 5-1) indicate that there is a reasonable 

possibility that I have found 98Tc gamma rays coming from the Lake Labyrinth 

meteorite.  However, further studies are needed to confirm that the gamma-ray energies 

coming from that meteorite do have exactly the correct values for 98Tc disintegrations, 

and that these gamma-ray energies do not originate from disintegrations from any other 

isotope. 

Energy of Peak Channels (MeV) Difference (Accepted-Exp, MeV) 

% 

Difference 

upper lower upper lower upper lower 

0.76417 0.59326 -0.01882 0.05916 2.53 9.07 

0.60816 0.78266 0.04426 -0.03731 6.78 5.01 

0.58867 0.66890 0.06375 0.07645 9.77 10.3 

0.58867 0.70679 0.06375 0.03856 9.77 5.17 

Table 5-1.  Peak Energies Summary 
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