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A Special Theory of Biphasic 
Mixtures and Experimental 
Results for Human Annulus 
Fibrosus Tested in Confined 
Compression 
A finite deformation mixture theory is used to quantify the mechanical properties of the 
annulus fibrosus using experimental data obtained from a confined compression protocol. 
Certain constitutive assumptions are introduced to derive a special mixture of an elastic 
solid and an inviscid fluid, and the constraint of intrinsic incompressibility is introduced 
in a manner that is consistent with results obtained for the special theory. Thirty-two 
annulus fibrosus specimens oriented in axial (n�16) and radial (n�16) directions were 
obtained from the middle-lateral portion of intact intervertebral discs from human lumbar 
spines and tested in a stress-relaxation protocol. Material constants are determined by 
fitting the theory to experimental data representing the equilibrium stress versus stretch 
and the surface stress time history curves. No significant differences in material constants 
due to orientation existed, but significant differences existed due to the choice of theory 
used to fit the data. In comparison with earlier studies with healthy annular tissue, we 
report a lower aggregate modulus and a higher initial permeability constant. These 
differences are explained by the choice of reference configuration for the experimental 
studies. �S0148-0731�00�01002-5� 
Introduction 
Several studies have demonstrated that intervertebral disc de-

generation and mechanical failure of the annulus fibrosus by 
nuclear prolapse occur simultaneously in patients with low back 
pain �1,2� and that annular degeneration is the product of a cellu­
lar remodeling response to alterations in tissue stress �3,4�. These 
observations suggest that the quantification of the mechanical 
properties and the prediction of the in vivo stresses for the inter-
vertebral disc may lead to an improved understanding of the com­
plex interactions between mechanical loading, degeneration, and 
structural failure. The intervertebral disc tissue is composed of 
three major constituents: water, proteoglycan, and collagen. 
Finite-element studies suggest that the healthy disc simulta­
neously experiences high tensile and compressive strains under 
physiological loading �5�. This loading induces fluid flow into and 
through the disc, which is important for nutritional purposes and 
maintaining the biological composition �6,7�. Thus, it is important 
that constitutive models for disc tissue accurately represent large 
deformations and fluid flow through the proteoglycan–collagen 
solid matrix. 

Mow et al. �8� used the theory of Craine et al. �9� with the 
constraint of intrinsic incompressibility �10� to derive the linear 
biphasic mixture theory. This theory has successfully described 
the creep and stress-relaxation behavior of various biological tis-
sues, including articular cartilage �8,11,12� and annulus fibrosus 
�13,14�. The development is based upon modern mixture theory, 
which was developed by authors such as Truesdell and Toupin 
�15�, Green and Naghdi �16,17�, Bowen �18�, and Müller �19�. 
Because large deformations were predicted in the solid matrix, a 
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finite deformation theory was subsequently used to derive nonlin­
ear constitutive restrictions �12�. Several simplifying assumptions 
were made to derive a ‘‘special’’ theory, which serves as the basis 
for several experimental studies �14,20,21�. In particular, it was 
assumed that the solid and the fluid free energy functions were 
equal and, apparently, that the partial derivative of the fluid free 
energy with respect to the fluid density vanishes. Several other 
biomechanical studies have arrived at a similar set of constitutive 
equations: Holmes �22� proposed a nonlinear theory but made no 
mention of a fluid free energy or a determinate fluid stress; Oo­
mens et al. �23� neglected the determinate fluid stress term that 
naturally appeared in their development; and Cohen �24� assumed 
that the fluid free energy function is constant. However, the con­
sequence of these constitutive assumptions has not been evaluated 
in any theoretical or experimental study in the biomechanics 
literature. 

In an attempt to address these issues, we employed an alterna­
tive approach for obtaining a special mixture theory and utilized 
new experimental data to quantify the effect of a particular fluid 
free energy function on the numerical solution to a stress-
relaxation protocol. The primary aims of the present work were to 
introduce a special theory of an intrinsically incompressible mix-
ture of an elastic solid and an inviscid fluid and to quantify the 
mechanical properties of the annulus using experimental data 
from a confined compression protocol. In comparison with earlier 
studies with healthy annular tissue that used a different reference 
configuration, we report a lower aggregate modulus and a higher 
initial permeability constant. Thus, a third aim was to explain 
these differences and to suggest that our choice of reference con-
figuration is more consistent with an assumption made in the con­
stitutive development. 

Theory 
In the present paper, the superscripts s and f will refer to the 

solid and the fluid constituents, respectively. We adopt an ap-
proach based on the theory of Krishnaswamy and Batra �25� for a 
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mixture of an elastic solid and a viscous fluid. In this approach, a 
homothermal quasi-static process �HQSP� is constructed, which is 
assumed to be reversible, and an entropy prescription is obtained. 
We make two modifications to this theory. First, we consider a 
mixture of an elastic solid and an inviscid fluid; thus, all viscous 
properties of the mixture are modeled by the momentum supply. 
This assumption may be valid for the slow flow of fluid through 
the solid, which is a characteristic of our experimental protocol. 
Second, we follow the suggestion of Atkin and Craine �26�, who  
derived a special theory of an isotropic elastic solid and a viscous 
fluid. In particular, we assume: �1� the ‘‘equilibrium state’’ vari­
ables do not include Gs�grad Fs �where Fs is the deformation 
gradient tensor for the solid constituent� or grad � f �where � f is 
the apparent fluid density�; and �2� the partial stresses and the 
momentum supply are linear functions of the relative velocity a 
�vs�vf �where v� is the velocity of the � constituent�. The first 
assumption is made in an attempt to simplify the constitutive 
equations. The second assumption is valid for low values of the 
relative velocity. The derivation of the results that follow are pre­
sented in full by Klisch �27�; the reader may consult Atkin and 
Craine �28� for a detailed derivation and discussion of the balance 
equations. 

Thus, we define the quantity � as �Fs ,� f ,�� and write 

T��0T̂ �����eT̂ ����a (1) 

���0�̂ �����e�̂ ����a (2) 

���0�̂ �����e�̂ ���, a� (3) 

where � is the common mixture temperature, T� is the partial 
Cauchy stress tensor, �� is the internal momentum supply, and 
�� is the partial Helmholtz free energy function. We define the 
Helmholtz free energy function of the mixture as 

����s� s�� f� f (4) 

where ���s�� f is the mixture density. From the mixture energy 
equation for a HQSP we obtain the result 

ˆ s ˆ f�0� �0�
� �0 (5)

�� f �Fs 

which is the same result obtained by Atkin and Craine �26�. Thus, 
we have verified the constitutive restrictions, Eq. �5�, using the 
present theory as opposed to the theory used by Atkin and Craine 
�26� in which all constitutive restrictions were derived from an 
entropy inequality. As a consequence of Eq. �5�, the constitutive 
restrictions that we obtain from the mixture energy equation for a 
HQSP reduce to 

ˆ s�0� T 

0Ts��s Fs (6)
�Fs 

ˆ f 

0T f��� f 2 �0�
I (7)

�� f 

0��0. (8) 

The Clausius–Duhem inequality provides additional restrictions; 
those important for the present application are 

e�̂ ���, a��0����0�̂ ����; eT
��0; e�a•a�0. (9) 

Furthermore, due to the assumptions made in the special theory, 
from Eqs. �3�, �5�, and �9�, it is apparent that � obeys the additive 
decomposition 

���Fs , � f ���s�s�Fs��� f� f�� f �. (10) 

The approach taken here to define a constrained special mixture 
is based on a geometric treatment of internally constrained mix­
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tures of thermoelastic continua �29�. Specifically, we consider an 
internal constraint of the form 

��Fs , � f ��0 (11) 

where � is a sufficiently smooth scalar-valued function defined 
for the subset of the 10-dimensional space E for which det F� 

�0 and � f�0. This constraint represents a 9-dimensional con­
straint manifold S. Upon assuming that the constraint remains 
invariant under superposed rigid body motions, Eq. �11� may be 
written in the objective form �̂ (Cs ,� f)�0 where Cs is the right 
Cauchy–Green tensor; however, we use the more primitive form, 
Eq. �11�, to be consistent with Klisch �29�. The constraint, Eq. 
�11�, is considered while the material point X f is held fixed, al­
though it can also be considered while the material point Xs or the 
spatial point x are held fixed. A normal to S is given by n 
�(��/�Fs , ��/�� f) while a tangent to S is given by t 
�(D fFs/Dt , D f� f /Dt) where D�(•)/Dt is the material time de­
rivative following the � constituent. Hence, for any process satis­
fying the constraint it is necessary that n•t� 0. A constrained 
special mixture m� is constructed from an unconstrained special 
mixture m by first assuming that m� inherits the quantities 
(� , T , �m) for m when evaluated on the constraint manifold m m 
S. Using the approach of Klisch �29�, it is found that the partial 
stresses and momentum supply for m� must satisfy 

�� TsT m�
�Ts

m�p 
�Fs F

s

fT �T f �p 
�� 

(12)m� m �� f I 

�m���m�p 
�Fs grad Fs 

where (T , �m) are evaluated on S and p is arbitrary. m 
The constraint of intrinsic incompressibility first proposed by 

Mills �10� as 

�s � f
 

�sT � 
� f T  �1 (13)
 

is derived assuming that the mixture is saturated and that the true 
densities, �sT and � f T, are constant. Writing Eq. �13� in the form 
Eq. �11�, invoking Eq. �12�, and recalling Eqs. �6�–�9�, the final 
constitutive equations for the partial stresses and the momentum 
supply in our incompressible special theory become �dropping the 
subscripts� 

��s 

FsT ˆ sTs���spI� �s ���spI� T (14)
�Fs 

T f��� f pI� � f 2 �� f

pI� T̂ f (15)
�� f I� �� f

grad �s 

���  p�e�a (16)
�sT 

where we have introduced the volume fractions �����/�� T. 
These constitutive equations are less restrictive than their counter­
part �Eqs. �30�� of the special theory of Kwan et al. �12� by the 
inclusion of the determinate term in the partial fluid stress Eq. 
�15�. 

It is worthwhile to note that our definition for a constrained 
mixture resolves any apparent contradictions between the restric­
tions Eq. �5�, and the constraint Eq. �11�. In particular, we define 
Eq. �5�1 as the partial derivative of the solid free energy function, 
�s, with respect to the fluid density, � f , while holding Fs �and 
thus Js�det Fs� fixed. If �s was only defined on S, then this 
calculation would not be possible, because �s could not be calcu­
lated at different values of � f while holding Js fixed. In our defi­
nition for a constrained mixture, �s is inherited from an uncon­
strained mixture and, consequently, is defined off of S in the 
APRIL 2000, Vol. 122 Õ 181 



10-dimensional space (Fs , � f). In other words, our development 
ensures that the restrictions, Eq. �5�, are satisfied since �s can be 
calculated at different values of � f while holding Js fixed, even 
though the condition, Eq. �11�, ultimately allows one to express � f 

in terms of Js . Thus, the geometric treatment of internally con­
strained mixtures appears to be the first to resolve any apparent 
contradictions between the constitutive restrictions obtained by 
Atkin and Craine �26� and the constraint of intrinsic incompress­
ibility proposed by Mills �10�. 

Analysis 
In confined compression, the specimen is inserted into a rigid 

cylindrical confining chamber, which prevents radial expansion, 
and a constant compressive displacement rate is applied during 
the ramp phase by a rigid platen �X3�0; Fig. 1�. It is convenient 
to define a reference frame relative to the moving rigid platen; this 
definition suggests boundary conditions of zero solid and fluid 
displacements at X3�0 during the entire test. The specimen is 
supported at its other end by a free-draining porous platen (X3 
�h). This suggests a prescribed solid displacement boundary 
condition and a zero fluid pressure boundary condition at X3�h 
during the ramp phase. During the relaxation phase, the rigid 
platen is held at a fixed displacement, suggesting a fixed solid 
displacement boundary condition and zero fluid pressure bound­
ary condition (X3�h) during the relaxation phase. The deforma­
tion of both constituents is assumed to be one-dimensional. Thus, 
the boundary conditions for the stress relaxation protocol are: 

f ft�t0 : U�0, t ��v3�0, t ��0; U�h , t ���U̇ t; T33�h , t ��0 

(17) 
ft0�t�t f : U�0, t ��v3�0, t ��0; U�h , t ���Ut0 ; 

f �h , t ��0T33 

where U is the solid displacement, t0 is the duration of the ramp 
phase, and t f�t0 is the duration of the relaxation phase. The 
assumed initial conditions are 

Fig. 1 Schematic of experimental design. The specimen is 
supported between a rigid platen at X3Ä0, a fixed porous 
platen at X3Äh, and a rigid confining chamber on its periphery. 
The displacement is applied to the rigid platen. The junction 
between the rigid platen and the specimen „i.e., X3Ä0… is cho­
sen as a ‘‘stationary’’ reference plane. Thus, the displacements 
are zero at X3Ä0 and are prescribed at X3Äh. 
182 Õ Vol. 122, APRIL 2000 
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f s fU�X3 , 0 ��v3�X3 , 0 ��T33�X3 , 0 ��T33�X3 , 0 ��0. 
(18) 

The one-dimensional solid deformation is x3(X3 , t)�X3 
�U(X3 , t) where X3 is the reference position of the solid par­
ticle. The solid stretch is given by �3(X3 , t)�1 
��U(X3 , t)/�X3 . 

An important relation to obtain from our special theory is that 
of the equilibrium stress of the solid phase, which is obtained by 
setting the fluid stress to zero in Eq. �15�, since it is assumed that 
the fluid stress is zero at all points in the specimen at equilibrium. 
We then obtain from Eqs. �14�–�15� the result 

�s 
s fT33,eq�T̂33 

s � 
� f T̂ 33 , at equilibrium. (19) 

The result, Eq. �19�, also represents the surface stress due to the 
fluid pressure boundary condition at X3�h . We define the deter­
minate part of the momentum supply as 

� f 2 

e�33�v3 
s �v3 

f �� �v3 
s �v3 

f � (20)
k 

where k is the nonlinear permeability function. The governing 
partial differential equation for the solid displacement is 

s s fˆ ˆ�T �T �2Uk 33 �0 33 �U 
� 2 � . (21)

�U ��3 �U ��3 �X3 �t 
s1� 1� ��0�X3 �X3 

By setting the determinate part of the fluid stress to zero in Eq. 
�21�, we obtain the governing equation used by other authors 
�14,22�. 

We assume isotropy and use the constitutive equation for the 
solid free energy function proposed by Holmes and Mow �21� 

�0
�0 

s �s� � exp��1�I1�3 ���2�I2�3 �� (22)
I3 

where � i , � are material constants and I i is the ith invariant of 
Cs. The constant �0 has dimensions of stress while the remaining 
constants are dimensionless. From Eq. �14� we can calculate the 
normal solid stress component in the loading direction as 

2�0 � 
T̂s � 2��1 �1�2�2� exp���1�2�2 ���3

2�1 ��.33 �3 �2
3 

(23) 

We specify the fluid free energy function based on an equation 
used by Shi et al. �30� 

Q � f 

� f��  
� f T  ln 1� 

� f T (24) 

where Q�0 is a material constant with dimensions of stress. In 
writing Eq. �24�, we have scaled the material constant Q and the 
fluid density � f by dividing by the constant � f T  for matters of 
convenience. We obtain from Eqs. �13�, �15�, and �24�, and the 
continuity equations, the determinate fluid stress 

s �2Q ��3��0
T̂ f ��  (25)33 s . 

�0 �3 

To arrive at Eq. �25�, we first calculate �� f /�� f in terms of � f 

and then evaluate this quantity on the constraint manifold, allow­
ing us to rewrite the results in terms of �3 �this procedure is 
consistent with our definition of a constrained mixture�. 

The primary reasons that we chose the natural logarithm func­
tion for � f are that it allows us to introduce a nonlinear function 
while only introducing one additional material constant, and that it 
(� f) and the determinate fluid stress appear to be well-behaved. 
In proposing �s, Holmes and Mow �21� introduced the plausible 
restriction that �s becomes unbounded as Js�� . In the present 
Transactions of the ASME 
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application, as � f �1, �s�0��s�0�Js�� . It seems physi­
cally reasonable that both free energy functions should prevent the 
Jacobian from becoming unbounded; thus, one reason we chose 
the natural logarithm is that � f becomes unbounded as � f �1. 
Another reason for choosing the natural logarithm is that � f ap­
proaches zero as � f �0, which again seems physically reason­
able, and which provides a vanishing determinate fluid stress as 
� f �0. 

By assuming that there exist a stress-free reference configura­
tion, we obtain from Eqs. �19�, �23�, and �25� the restriction 

s�Q�1��0� 
�1�2�2� �� . (26)

2�0 

For the confined compression deformation, we have to determine 
three unknown material constants representing the solid and fluid 
stresses: �0 , �, and Q. The final constitutive equation that we use 
is the one-dimensional nonlinear permeability function k proposed 
by Holmes and Mow �21� 

s�3��0
k�k0 exp�M ��3

2�1 �/2� (27)� 1��0 
�s 

where k0 and M are material constants. The governing partial 
differential Eq. �21� can be written in terms of U and its partial 
derivatives and the material constants. For comparison with other 
studies in the biomechanics literature, it is useful to compute the 
aggregate modulus HA0 defined as �21�: 

s s ��T33,eq Q�1��0sHA0� �Q�1��0 � ���1 �4��0��3 2�0�3�1 

s�Q�0 . (28) 

Experimental Protocol 
Thirty-two annulus fibrosus specimens were harvested from the 

middle-lateral portion of intact intervertebral discs �IVD’s� from 
the L23, L34, and L45 motion segments of seven intact human 
spines �Table 1�. The motion segments were removed by sawing 
through the mid-transverse plane of the adjacent vertebral bodies 
and cut in half along the mid-sagittal plane using a precision dia­
mond saw �Exakt 3000, Electromechanical Cutter, Norderstedt, 
Germany�. A degeneration grade was assigned according to the 
Thompson scale �31�; only grade I or II specimens were used. A 
block of the IVD was removed from the lateral portion and cut 
into two pieces, one for obtaining axial loading slices and one for 
obtaining radial loading slices �Fig. 2�. These tissue blocks were 
wrapped in gauze soaked in physiological saline �0.15 M NaCl 
solution�, placed in a sealed bag and stored at �20°C. After 24 
hours, the tissue blocks were removed from the freezer and 2-mm­
thick slices were cut on a vibratome �MicroCut H1200, Energy 
Beam Sciences, Agawam, MA� while spraying with tissue freez­
ing spray �Quick-Freeze, Electron Microscopy Sciences, Fort 
Washington, PA� to keep the tissue block from thawing. Each 
slice was wrapped in gauze soaked in physiological saline and 
stored at �20°C until testing. 

A servo-hydraulics materials testing machine �MTS Bionix 
858, Material Test System, Eden Prairie, MN� was used to per­
form the experiments. Displacement was measured with the test­
ing system LVDT and force was measured with a 1000 gram load 
cell �Model 31, Sensotec, Columbus, OH�. Without the specimen 
in place, the load cell was zeroed and the MTS crosshead was 
lowered until the load cell registered a negative reading at contact. 
This determined the initial height �IH�. The internal confining 
chamber was removed and used to punch a cylindrical test speci­
men from the 2-mm-thick tissue slice (diameter�5 mm). The in­
ternal confining chamber was replaced and the final height �FH� 
was determined after lowering the crosshead until the load cell 
registered a negative reading. The tissue thickness �h� was calcu-
Journal of Biomechanical Engineering 
Table 1 Level, degeneration grade, age, and sex for all inter­
vertebral discs harvested for experimentation. Axial „A… and 
radial „R… loading test specimens „one each… were obtained 
from each disc „an axial specimen is one with the axial plane 
cut normal to the loading direction…. 

lated as h�FH�IH. Next, a tare cycle loaded the specimen to 30 
gf and allowed relaxation for 2000 s. The tare cycle was followed 
by four stress-relaxation cycles each with a 2000 s ramp phase 
conducted at a fixed displacement rate of 0.0001 mm/s �corre­
sponding to a total displacement of 0.2 mm� followed by a 6000 s 
relaxation phase. The data collected were the solid surface stress 
and displacement (X3�h) in the loading direction. Upon comple­
tion of the experiment, the test specimen was removed from the 
confining chamber, gently blotted to remove excess water, and 
placed in a vial. The specimen and vial was weighed �WT1� and 
then heat-dried at 65°C for 24 hours. The specimen and vial were 
weighed again �WT2�, the dried specimen was removed from the 
vial, and the vial alone was weighed �WT3�. Initial water 
content was then calculated as �0 

f ��WT1�WT2�w.p.o.�/ 
�WT1�WT3�w.p.o.� where w.p.o.�water pushed out during 
experiment. 

Fig. 2 Protocol for obtaining cylindrical axial and radial test 
specimens from an intact intervertebral disc. A lateral block of 
the disc was removed and 2-mm-thick axial and radial slices 
were cut from the block. A cylindrical test specimen was 
punched from each slice using the internal confining chamber. 
APRIL 2000, Vol. 122 Õ 183 



Solution Procedure 
The offset stress was defined as the stress at the end of the tare 

step �i.e., 2000 s after application of the tare load�. This offset 
stress was subtracted from the remaining data. The equilibrium 
stress was identified as that corresponding to the final value of 
stress in each loading cycle �i.e., at intervals of 8000 s�. The 
equilibrium stretch was calculated by subtracting from unity the 
total applied displacement �i.e., either 0.2, 0.4, 0.6, or 0.8 mm� 
divided by the initial tissue height. A nonlinear fitting algorithm in 
DeltaGraph �DeltaPoint, Monterey, CA� was used to fit the theo­
retical equilibrium stress, Eq. �19�, using Eqs. �23�, �25�, and �26� 
to determine the material constants �0 , �, and Q. This curve-fit 
was first performed with the material constant Q�0 correspond­
ing to the theory used by other authors to obtain �0 and �. The 
curve-fit was repeated with Q as a variable to obtain �0 , �, and Q. 

Then, initial values of the permeability constants k0 and M were 
assumed and the one-dimensional partial differential Eq. �21� sub­
ject to the boundary conditions, Eq. �17�, and initial conditions, 
Eq. �18�, was solved numerically for the solid displacement 
U(X3 , t). The numerical solution was achieved using the 1987 
version of the program PDECOL �32�. The solid stress at X3�h 
was calculated and used in a custom optimization scheme using 
the simplex method to determine the values of the permeability 
constants k0 and M that maximized the R2 correlation statistic 
between our predicted solid stress at X3�h and the experimental 
data. The optimization scheme requires as input the initial values 
of the permeability constants k0 and M, the lengths of the simplex 
triangle sides �k0 and �M , and the maximum number of itera­
tions. A numerical solution is first obtained for three points in the 
two-dimensional (k0 ,M ) space corresponding to the vertices of 
the triangle: (k0 ,M ), (k0��k0 ,M ), and (k0 ,M��M ). For each 
of the vertices of the simplex, the R2 correlation statistic between 
our predicted solid stress at X3�h and the experimental data is 
calculated. The vertex with the least R2 value is rejected and a 
new vertex is defined; if the vertex with the least R2 value corre­
sponds to the most recently created vertex, then the vertex with 
the lower R2 value of the remaining two is rejected. The optimi­
zation procedure continues in this fashion until the maximum 
number of iterations is achieved. The optimization procedure was 
performed with both sets of material constants �0 , �, and Q rep­
resenting both the present theory and that used by other authors. 

All statistical analyses were performed using the SYSTAT sta­
tistical software package �V5.2, SYSTAT, Inc., Evanston IL�. 
Normal probability �rankit� plots were first generated for each 
outcome variable (�0 ,� ,Q ,HA0 ,k0 ,M ) to determine whether 
these data followed an underlying normal distribution. All vari­
ables except M were positively skewed. Therefore, in order to test 
whether the categorical variables �employed theory or specimen 
orientation� significantly influenced the parameters of interest 
(�0 ,� ,Q ,HA0 ,k0 ,M ) we utilized a paired t-test, with the null 
hypothesis that the paired difference, e.g., ��0 , was equal to 
zero. In this case we demonstrated that the paired differences for 
all dependent variables followed a normal distribution. 

Results 
The specimens exhibited a typical stress-relaxation response to 

the applied loading conditions �Fig. 3�. Both the equilibrium solid 
stress versus stretch �Fig. 4� and the solid surface stress time 
history �Fig. 5� responses were well described by the present 
theory. For all specimens, the initial water content was �0 

f 

�0.84�0.03, the initial specimen thickness was h�2.42 
�0.43 mm, and the maximum applied stretch was �max�0.66 
�0.05. No swelling was observed in the tare step and the offset 
stress for all specimens was �0.005�0.004 MPa. 

Table 2 lists the results �mean�1 standard deviation� for mate­
rial constants determined using the theory proposed in this paper 
and that of Holmes and Mow �21� (n�32) and for axial and 
radial specimens (n�16). Paired t-tests revealed a significant 
184 Õ Vol. 122, APRIL 2000 
difference due to orientation in the correlation coefficient for 
the transient data curvefit �Table 2�. The values of �HA0 (p 
�0.0001), �k0 (p�0.000001), and �� (p�0.001) due to the 
choice of theory were significantly different from zero, while 
�M (p�0.053) was a borderline case �Table 3�. No significant 
differences in orientation existed for these parameters. 

The aggregate modulus HA0 and the initial permeability con­
stant k0 were the only material constants significantly correlated 
with initial water content �0 

f (p�0.001) �Figs. 6 and 7�. Nonlin­
ear power law relationships were fit to the data to obtain 

HA0�0.008��0 
f ��13.1 MPa (29) 

k0�0.1156��0 
f �15.41 mm4/N-s (30) 

resulting in R2 values of 0.49 and 0.38, respectively. 

Fig. 3 Experimental data measured for the solid stress at X3
Äh „surface stress… versus time for four consecutive stress-
relaxation cycles during test 1A. 

Fig. 4 Theoretical curve-fit using Eqs. „19…, „23…, „25…, „26… to 
the experimental data representing the equilibrium solid stress 
versus the measured equilibrium stretch �3 for test 1A. 
CirclesÄexperimental points, lineÄtheoretical fit. The material 
constants were �0Ä0.074 MPa, �Ä0.658, and QÄ0.027 MPa, 
and the R2 value was 1.000. With QÄ0, the R2 value was 1.000 
„not shown…. 
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Fig. 5 Optimized numerical solution to Eq. „21… to achieve a 
best-fit regression to the experimental data measured for the 
solid stress at X3Äh „surface stress… versus time for the first 
two stress-relaxation cycles for test 1A. CirclesÄexperimental 
points, lineÄtheoretical fit. The material constants were k0 
Ä0.0061 mm4ÕN-s and MÄ9.5 and the R2 value was 0.989. With 
QÄ0, the R2 value was 0.991 „not shown…. 

Table 2 Results „meanÁ1 standard deviation… for material 
constants determined using the theory proposed in this paper 
and that of Holmes and Mow †21‡ „nÄ32… and for axial and 
radial specimens „nÄ16…. �0 ,Q,HA0 are in MPa, k0 is in 
mm4ÕN-s. R2* is the correlation statistic for the equilibrium 
stress versus stretch fit; R2** is the correlation statistic for the 
surface stress history fit. Paired t-tests revealed no significant 
differences in R2* and R2** due to the choice of theory; a sig­

R2**nificant difference existed in due to orientation „p
Ë0.05…. 

Discussion 
We derived a special theory of an intrinsically incompressible 

mixture, which was applied to stress-relaxation data from annulus 
ffibrosus specimens. The values for the initial water content �0 , 

the initial elastic modulus HA0 , and the permeability constants k0 
and M are substantially different from those obtained for other 
confined compression studies with human annulus fibrosus 
�13,14�. These discrepancies can be explained by the choice of 
reference configuration chosen for the experimental studies. In the 
current study, care was taken to keep the specimens well hydrated 
at all steps of the specimen preparation process and the value of 
initial water content �0 

f �0.84�0.03 is substantially higher than 
that reported by Best et al. �13� of �0 

f �0.70�0.05. As a conse­
quence of a lower water content, in these previous experiments, 
Journal of Biomechanical Engineering 
Table 3 Results „meanÁ1 standard deviation… for paired dif­
ferences in material constants determined using the theory 
proposed in this paper and that of Holmes and Mow †21‡ „n 
Ä32… and for axial and radial specimens „nÄ16…. ��0
Ä„�0…HMÀ„�0…KL or ��0Ä„�0…AXÀ„�0…RAD where „�0…HM is ob­
tained using Holmes and Mow †21‡, „�0… is obtained using 
the theory proposed in this paper, „�0…AX is for axial specimens 
„using the present theory…, and „�0…RAD is for radial specimens 
„using the present theory…. ��, �Q, �HA0 , �k0 , and �M are 
defined in a similar fashion. Paired t-tests were used to inves­
tigate whether the paired differences were significantly differ­
ent than zero. The values of �HA0 „pË0.0001…, �k0 „p
Ë0.000001…, and �� „pË0.001… due to the choice of theory 
were significantly different than zero, while �M was a border­
line case „pÄ0.053…. No significant differences in orientation 
existed. 

KL 

the specimens generated high swelling pressures during the tare 
step of approximately �0.12�0.06 MPa, which was subse­
quently defined as an offset stress and subtracted off of the re­
maining data. In contrast, none of our specimens exhibited notice­
able swelling and our offset stress of �0.005�0.004 MPa is two 
orders of magnitude lower. As a result, our reference configura­
tion is closer to that of a stress-free state for the mixture, which is 
important since a restriction on the elasticity constants �e.g., see 
Eq. �26�� is developed from assuming the existence of a stress-
free configuration. If a reference configuration with a nonvanish­
ing stress is chosen, then considerable errors may be introduced. 

As a consequence of our chosen reference configuration, we 
arrived at different material constants than those presented by oth­
ers. In the present study, we obtained values of HA0�0.116 

Fig. 6 Plot of equilibrium aggregate modulus HA0 versus ini­
tial water content �0

f . A nonlinear power law relationship HA0 
fÄ0.008„�0…

À13.1 MPa best describes the curve, R2Ä0.49. This 
dependence was significant „pË0.001…. 
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Fig. 7 Plot of initial permeability constant k0 versus initial wa­
ter content �0

f . A nonlinear power law relationship k0 
f 
…

15.41Ä0.1156„�0 mm4ÕN-s best describes the curve, R2Ä0.38. 
This dependence was significant „pË0.001…. 

�0.127 MPa, k0�0.013�0.015 mm4/N-s, and M �9.09�2.05 
whereas Best et al. �13� reported values of HA0�0.38 
�0.16 MPa, k0�0.00025�0.00011 mm4/N-s, and Iatridis et al. 
�14� reported values of HA0�0.56�0.21 MPa, k0�0.00018 
�0.00007 mm4/N-s, and M �1.5�1.6. These differences are all 
physically intuitive. With a higher water content, the equilibrium 
elastic modulus should be lower, as there exists less solid matrix 
per unit mixture area to support the compressive load while the 
fluid is assumed to experience zero stress at equilibrium. Also, 
with a higher water content, there exists less frictional resistance 
to fluid flow since the solid is less compressed and its pores are 
larger, and thus the permeability should be higher. As our results 
for the initial permeability constant are two orders of magnitude 
higher than those reported with a lower initial water content, the 
material constant M representing the degree of nonlinearity in the 
exponential permeability function should be higher. In fact, to 
obtain a water content of 0.7 after starting with our initial water 
content �0 

f �0.84, a stretch of 0.53 must be applied during the 
experiment. Using �3�0.53 and our mean permeability constants 
of k0�0.013 mm4/N-s and M �9.09, the permeability k at �3 

�0.53 was calculated to be k�0.00021 mm4/N-s, which lies be­
tween the mean values reported by Best et al. �13� and Iatridis 
et al. �14�. 

The material properties did not depend on orientation. This re­
sult can be expected as the highly anisotropic response of the 
annulus is primarily due to the presence of collagen fibers, which 
offer little resistance in compression. Our results suggest that the 
ground substance may be isotropic and that an appropriate aniso­
tropic formulation for the annulus may be obtained by using a 
fiber-reinforced theory in which the annulus is modeled as an 
isotropic ground substance reinforced with families of fibers �33�. 
There did exist significant differences in the values obtained for 
HA0 and k0 depending on the choice of the theory that was used 
�Table 3�. Although these results are statistically significant, there 
is some doubt as to the significance from a biological or a clinical 
perspective since the variabilities due to biological differences are 
considerably more important than those due to the choice of 
theory. Yet, the biological importance of these differences needs 
to be evaluated in the context of future studies that use these data 
to address biological questions. Regardless, the present study is 
the first to quantify the effect of constitutive assumptions that 
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have been imposed yet never directly justified in previous experi­
mental and theoretical studies in the biomechanics literature. 

A possible limitation is that there exists some uncertainty as to 
the plausibility of the boundary conditions, Eq. �17�, in an experi­
mental protocol employing a free-draining porous platen. In par­
ticular, Buschmann et al. �34� have shown that a more precise 
specification of the boundary conditions between the specimen 
and both the porous platen and the confining chamber results in 
substantially different material constants as determined from con­
fined compression experimental data. We invoked the boundary 
conditions, Eq. �17�, and initial conditions, Eq. �18�, that are the 
same as those used by other authors in the biomechanics literature 
�21,14� for a confined compression stress-relaxation protocol. For 
a creep protocol in which a prescribed load is applied at X3�h , it  
is usually assumed that the solid matrix supports all of the load at 
X3�h �8�. Thus, Eq. �17� would be changed by prescribing a 
solid stress, as opposed to a solid displacement, boundary condi­
tion at X3�h . It should be pointed out that there exists consider­
able uncertainty regarding the specification of boundary condi­
tions in the mixture theory literature. In particular, Rajagopal and 
Tao �35� have discussed two methods for specifying traction 
boundary conditions: a method of ‘‘splitting’’ the total traction on 
the boundaries using the volume fractions of the constituents, and 
a method invoking a saturation condition on the boundary. In 
addition, Reynolds and Humphrey �36� have proposed a velocity 
boundary condition for a solid–fluid mixture. 

Another possible limitation of the present study is that we have 
produced a constrained fit to the experimental data because the 
values of the elasticity constants (�0 , � , Q) affect the optimized 
values of the permeability constants (k0 , M ), although the former 
parameters are fixed during the optimization. However, we be­
lieve that the physics of the problem suggest that the best way to 
fit the transient data is the method that we have chosen. In par­
ticular, we have determined the three constants (�0 , � , Q) by  
fitting the equilibrium stress versus stretch to the four equilibrium 
stresses defined as those occurring at the end of the loading cycles 
in Fig. 3. Then, we determined the two constants (k0 , M ) by  
fitting the first two loading cycles of the transient curve. The 
reasons that we chose not to determine these permeability con­
stants by fitting the transient curve for all cycles or to determine 
all five constants simultaneously by optimizing the solution to the 
transient data are the same. In particular, at the apex of the fourth 
loading cycle in Fig. 3, we would be using our equilibrium stress 
versus stretch relationship at stretches much larger than those that 
the relationship is validated for. In other words, the stretch at the 
apex of the last loading cycle is much larger than the stretch at the 
end of the fourth loading cycle. If we had optimized the numerical 
solution to the transient data from all four loading cycles, then we 
may have used the wrong stress versus stretch curve at this high 
level of strain, and thus may be optimizing the permeability con­
stants to the wrong quantities. Similarly, if we had attempted to 
determine all five constants simultaneously by optimizing the so­
lution to the transient data, then we may obtain optimal values of 
the five constants that, individually, may be incorrect, but collec­
tively produce a good fit to the data in the regions of the ramp 
phases of the third and fourth cycles where the instantaneous 
stretches are higher than the final equilibrium stretch. Thus, the 
method we have used provides a validated fit of the theory to the 
first two loading cycles and to the four equilibrium stress points. 

A final limitation of the present study is that the free energy 
functions with the determined material constants may not be good 
approximations to the true free energy functions of the material, 
because we have only considered experimental data from one-
dimensional tests whereas the true free energy functions must 
hold in a higher-dimensional space. Based on our experience of 
fitting an anisotropic solid strain energy function to annular data 
�33,37�, the strain energy functions used in the present paper will 
provide large errors when predicting the stress versus stretch re­
sponse for other deformations. Nevertheless, the reader may use 
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the material constants that we have reported in conjunction with 
the proposed theory to reproduce the mean�1 S.D. response of 
the annulus to confined compression in an effort to improve upon 
the estimates of the free energy and permeability functions upon 
invoking additional experimental data sets. 

The physical interpretation of the fluid free energy function is 
best addressed in the context of the mixture free energy function 
�. In Eq.  �4�, we assumed that � can be expressed as an additive 
decomposition of the constituent free energy functions. For any 
solid–fluid mixture, it seems reasonable to expect that the mixture 
free energy function � will depend on the nature of both constitu­
ents and their interactions. Due to the assumptions made in the 
special theory, we have assumed that � obeys the additive decom­
position given in Eq. �10�. As such, the manner in which the 
mixture free energy function � depends on the fluid constituent 
may be modeled by the � f � f term in Eq. �10�, and the manner in 
which � depends on constituent interactions may be modeled in 
an additive fashion such that these effects would appear in both 
the � f � f and �s� s terms in Eq. �10�. It is interesting to point out 
that Treloar �38� has related the material constants appearing in 
the theory of finite elasticity to parameters describing the molecu­
lar structure of rubbers. In an analogous manner, we may suggest 
that the material constants appearing in Eq. �10� may be related to 
parameters describing the molecular structure of cartilaginous tis­
sues, such as proteoglycan content �or fixed charge density�, col­
lagen content, the degree of collagen fragmentation, fluid content, 
and fluid ion concentration. An interaction mechanism that may 
be modeled by Eq. �10� would include the fixed charge density 
and the fluid ion concentration, which are intrinsic properties to 
the solid and the fluid constituents, respectively. Although there 
exist more structured theories to explain the effect of parameters 
related to the molecular structure on the mechanical properties of 
cartilaginous tissues, a mechanical theory of mixtures is certainly 
desirable for studying certain types of problems and, in a manner 
analogous to the work of Treloar �38�, the material properties 
appearing in such a theory may be interpreted in terms of the 
tissue microstructure. 

In summary, we have presented an intrinsically incompressible 
special mixture theory and have determined the material constants 
for healthy human annulus fibrosus using new confined compres­
sion experimental data. In comparison to the results of previous 
studies, we reported a higher initial water content, a lower aggre­
gate modulus, and a higher initial permeability constant. These 
differences appear to result from the choice of reference configu­
ration used in the experiments, and we have argued that the ref­
erence configuration chosen in the present study is closer to a 
stress-free reference configuration and, consequently, is more con­
sistent with an assumption made in the constitutive development. 
Furthermore, we sought to quantify the effect that retaining a 
particular fluid free energy function has on the solution to the 
confined compression boundary-value problem using experimen­
tal data for the annulus. Our results suggest that the assumption of 
a constant fluid free energy function is reasonable, as the differ­
ences observed in the numerical solutions with and without invok­
ing this assumption are small relative to the inherent tissue 
variability. 
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