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Abstract 

Aircraft aerodynamics have been predicted using computational fluid dynamics for a number of years. While viscous 
flow computations for cruise conditions have become commonplace, the non-linear effects that take place at high angles 
of attack are much more difficult to predict. A variety of difficulties arise when performing these computations, 
including challenges in properly modeling turbulence and transition for vortical and massively separated flows, the need 
to use appropriate numerical algorithms if flow asymmetry is possible, and the difficulties in creating grids that allow 
for accurate simulation of the flowfield. These issues are addressed and recommendations are made for further 
improvements in high angle of attack flow prediction. Current predictive capabilities for high angle of attack flows are 
reviewed, and solutions based on hybrid turbulence models are presented. 

Contents 

I. Introduction 370� 

2. Computational challenges 372� 

2.1. Governing equation complexity 372� 
2.2. Turbulence modeling . . . . . . 374� 
2.3. Transition modeling . . . . . . 376� 
2.4. Flowfield asymmetry and algorithm symmetry. 377� 
2.5. Grid generation and density ..... 379� 
2.6. Numerical dissipation . . . . . . . . 380� 

3. Computational results and future directions 381� 

4. Conclusions. 382� 

References. . . .� 383 



1. Introduction 

Aircraft fly at a variety of incidence angles, depending 
on their purpose and flight requirements. For instance, 
commercial transports rarely fly at an angle of attack 
larger than a ¼ 10�; but tactical aircraft and missiles fly 
regularly at angles of attack above a ¼ 20�: During 
unsteady maneuvers, such as the Cobra maneuver 
performed by the Su-27, aircraft may even fly at angles 
of attack over a ¼ 90�: Key geometric components of 
aircraft while flying at high angles of attack are 
forebodies, wings, and strakes (or leading-edge exten
sions); each of these creates special difficulties when 
attempting to model the flowfield. 
While it is somewhat difficult to precisely describe the 

various angle of attack regions, a good categorization 
system has been developed [1–4]: 

* low angle of attack 0�pap15� (attached, symmetric, 
steady flow, linear lift variation); 

* medium angle of attack 15�pap30� (separated, 
symmetric rolled-up vortices, steady flow, non-linear 
lift variation); 

* high angle of attack 30�pap65� (separated, asym
metric rolled-up vortices, steady/unsteady flow, non
linear lift variation); 

*	 very high angle of attack a > 65� (separated, un
steady turbulent wake, post stall). 

These angle of attack regimes cannot be defined 
precisely, since the aircraft geometry and freestream 
conditions will create conditions where flow of one type 
will exist at angles of attack outside the ranges given. A 
fairly good representation of the regimes is shown in 
Fig. 1. 
An example of an axisymmetric slender body at 

medium angle of attack is shown in Fig. 2. The flow 
separates in the crossflow plane and wraps up into two, 
counter-rotating, symmetric vortices. These vortices 
then lift away from the fuselage, and new vortices begin 

Fig. 1. Angle of attack flow regimes (aSV is the angle of attack where symmetric vortices are formed, aAV is the angle of attack where 
asymmetric vortices are formed, and aUV is the angle of attack where an unsteady vortex wake is formed; from [1–4]). 



Fig. 2. Slender body at medium angle of attack a ¼ 30� (from 
[5]). 

Fig. 3. Slender body flow topology at medium angles of attack 
(from [6]). 

to form further downstream. The crossflow flowfield 
topology at one of the downstream crossflow planes is 
shown in Fig. 3. When the high angle of attack regime is 
reached, the vortices become asymmetric, creating a flow 
topology as shown in Fig. 4. Similar flowfields exist 
above wings at high angles of attack, with the delta wing 
flowfield serving as a representative case. The medium 
angle of attack flowfield above a delta wing is shown in 
Fig. 5, where the vortices are steady and coherent. At 

Fig. 4. Slender body flow topology at high angles of attack 
(from [7]). r 1992 by the American Institute of Aeronautics 
and Astronautics, Inc. Reprinted with permission. 

Fig. 5. Delta wing at medium angle of attack (from [5]). 

higher angles of attack, the adverse pressure gradient of 
the wing causes vortex breakdown to take place, yielding 
an unsteady and highly non-linear flowfield (see Fig. 6). 
The breakdown location moves forward as the angle of 



Fig. 6. Delta wing at high angle of attack with vortex break
down (from [5]). 

Fig. 7. Delta wing flow topology at medium angle of attack 
(the original version of this figure was first published by 
AGARD/NATO in [8]). 

attack is increased, further complicating the features of 
the flowfield. The crossflow flowfield topology for a 
delta wing at medium angles of attack is shown in Fig. 7. 
There are certain similar features in these flowfields. 

The crossflow approaches the fuselage from the wind
ward side and forms a boundary layer that eventually 
separates at location fS1 

(see Figs 3 and 4). The 
separated flow creates a pair of primary vortices that 
reattach at locations marked fA: The primary vortices 
induce an outward flow on the leeside of the fuselage 
that eventually separates at fS2 

to form secondary 
vortices. The secondary vortices can also create tertiary 
vortices, with each set of vortices rotating in opposite 
directions from the set above them. When the vortices 
are asymmetric, as shown in Fig. 4, the pressure 
differences between the left and right side of the fuselage 
cause a side force on the configuration which can often 
produce significant yaw moments due to the large 
moment arm to the forebody or strake. 
The flow topology is quite complex with separation 

points/lines (primary, secondary, and tertiary, etc.), 
attachment points/lines, and vortex interaction. This 
viscous-dominated flowfield is highly non-linear and can 

lead to complex flow topologies, such as vortex break
down. The resulting flowfields are very difficult to 
predict theoretically, which leads to the necessity of 
using experiments and/or computational fluid dynamics 
(CFD) to model the flow. Researchers in high angle of 
attack aerodynamics have noted a variety of interesting 
features of the flow, including [1,2]: 

*	 vortex asymmetry begins when the angle of attack is 
about twice the nose angle; 

*	 separation is very sensitive to nose geometric 
asymmetries; 

*	 increased nose bluntness decreases asymmetry; and 
*	 the results are difficult to reproduce experimentally. 

2. Computational challenges 

While all CFD simulations require a detailed knowl
edge of fluid dynamics, numerical methods, mathe
matics, and the use of computer systems, high angle of 
attack aerodynamics has its own set of difficulties that 
are not always seen in other flowfields. Some of the 
issues that are extremely important for the accurate 
simulation of high angle of attack flowfields include: 

*	 governing equation complexity; 
*	 turbulence modeling; 
*	 transition modeling; 
*	 algorithm symmetry; 
*	 grid generation and density; 
*	 numerical dissipation. 

While a detailed understanding of each of these issues 
would require volumes of information and years of 
experience, a brief overview of the specific difficulties 
encountered in high angle of attack aerodynamics will 
be addressed. 

2.1. Governing equation complexity 

The governing equations of fluid dynamics for a 
Newtonian fluid are the Navier–Stokes equations, which 
are often written in body-conforming coordinates 
(x; Z; z) and represented in vector form for ease in 
applying numerical algorithms 

@tQ# þ @xðF#þ F#vÞ þ @ZðG þ G#vÞ þ @zðH# þ H# vÞ ¼ 0; ð1Þ 

#where Q represents the vector of conserved quantities 
(mass, momentum, and energy), F; G; and H represent# # #

# # #the inviscid flux vectors, and Fv; Gv; and Hv are fluxes 
containing the viscous terms. Details about the equation 
set and the definition of the various flux vectors may be 
found in Viviand’s article [9]. 
The Navier–Stokes equations are a set of five, 

coupled, non-linear, second-order partial differential 
equations with no known general, closed-form solution. 



There are various techniques for the numerical predic
tion of turbulent flows, ranging from Reynolds-averaged 
Navier–Stokes (RANS), to large eddy simulation (LES), 
to direct numerical simulation (DNS). DNS attempts to 
resolve all scales of turbulence, from the largest to the 
smallest, by solving Eq. (1) directly. Because of this, the 
grid resolution requirements are very high, and increase 
drastically with Reynolds number—this is only currently 
possible for low Reynolds number flowfields, such as flat 
plates, shear layers, and simple three-dimensional 
geometries [10]. LES attempts to model the smaller, 
more homogeneous scales, while resolving the larger, 
energy-containing scales, which makes the grid require
ments for LES significantly less than for DNS. To 
accurately resolve the boundary layer, however, LES 
must accurately resolve the energy-containing eddies in 
the boundary layer, which requires very small stream-
wise and spanwise grid spacing. Finally, the RANS 
approach attempts to solve the time-averaged flow, 
which means that all scales of turbulence must be 
modeled. The RANS equations appear to be identical to 
the full Navier–Stokes equations (Eq. (1)), although all 
flow variables have been replaced with time-averaged 
values. RANS models often fail to provide accurate 
results for high angle of attack flows since the large 
turbulence scales for separated flows are very dependent 
on the geometry. RANS models, however, can provide 
accurate results for attached boundary layer flows, thin 
shear layers, and steady coherent vortical flowfields, but 
at the cost of increasing empiricism due to the closure 
problem. Spalart provides a good discussion and 
comparison of these various approaches [11]. 
These various techniques have very different compu

tational requirements. In 1997, Spalart et al. estimated 
that LES computations over an entire aircraft would not 
be possible for over 45 years [12]. Of course, that makes 
DNS computations for full aircraft unthinkable for the 
foreseeable future. Spalart’s estimate led to the formula
tion of detached-eddy simulation (DES), which is a 
hybrid approach combining the advantages of LES and 
RANS into one model. For the DES approach, RANS 
is used in the boundary layer, where it performs well 
(and with much lower grid requirements than LES), and 
LES is then used in the separated regions where its 
ability to predict turbulence length scales is important. 
Shur et al. [13] calibrated the model for isotropic 
turbulence, and applied it to an NACA 0012 airfoil 
section; the model agreed well with lift and drag 
predictions to 90� angle of attack. 
Historically, solutions of the Navier–Stokes equations 

required a great deal of computer resources, and until 
recently solutions were only obtainable on supercom
puters. Because of the limitations of computers, even the 
RANS equations were often simplified for the high angle 
of attack case. One way to simplify the RANS equation 
set is to assume that the flow is steady and that the 

longitudinal viscous terms may be neglected (Eq. (2)). 
This creates a parabolic-hyperbolic equation set that 
allows for solution by marching longitudinally in space. 
These assumptions restrict solutions to supersonic flow 
cases at high Reynolds numbers (thin boundary layers) 
with no upstream recirculation in the flowfield. The 
advantage of the parabolized form of the equations is 
that solutions may be obtained very quickly when 
compared with the full RANS equations (Eq. (1)) [10]: 

1# # # # #@xF þ @ZG þ @zH ¼ ð@ZS þ @zSÞ: ð2Þ 
Re 

Another simplification of the RANS equations that has 
been used is the ‘‘thin layer’’ equations. These equations 
are derived from Eq. (1) by assuming that only the 
viscous terms in the surface-normal direction are 
essential for resolving the flowfield, yielding 

1# # # # #@tQ þ @xF þ @ZG þ @zH ¼ @zS: ð3Þ 
Re 

Various alternative forms of the thin-layer equations 
exist, all based on the assumption that various viscous 
derivatives may be neglected (such as cross derivatives). 
Eq. (3) is only valid for thin boundary layers, and thus is 
used for flows at high Reynolds numbers. The equations 
require considerably more time to compute than Eq. (2), 
however, because they must be solved by marching in 
time. Upstream propagation and recirculation, however, 
are allowed, and thus these equations can be used in 
subsonic flow with separated regions. Degani and 
Marcus showed that these equations could adequately 
resolve steady vortical flow structures in the medium 
angle of attack range where the vortices were symmetric 
[14]. Fig. 8a shows the side force coefficient, CY ; for an 
ogive cylinder at a ¼ 40�; the computations were made 
using both the full Navier–Stokes equations and the 
thin-layer equations (FNS and TLNS, respectively, in 
the figure). Little or no difference in the solutions can be 
seen after a non-symmetric disturbance is added to the 
flowfield at approximately 135 s. At high angles of 
attack, however, they found that differences existed 
between Eqs. (1) and (3) for the same flow conditions 
and geometry, and that the differences increased with 
angle of attack, as shown in Fig. 8b. Degani and Marcus 
conjectured that the two equation sets were following 
different paths of asymmetric vortex formation once the 
disturbance had been initiated. The thin-layer equations, 
however, should probably only be used for steady flow 
at medium to high angles of attack in order to maintain 
the assumptions the equations are based on. 
Finally, the equation set can be simplified further by 

assuming that the flowfield is inviscid, yielding Euler’s 
equation 

@tQ# þ @xF#þ @ZG# þ @zH# ¼ 0: ð4Þ 

Euler’s equation cannot be used to predict separation. 
However, in cases where the separation location is 



� � 

Fig. 8. Time history of side-force coefficient (from [14]); 
B-W=body-wing, FNS=full Navier–Stokes (RANS), 
TLNS=thin-layer Navier–Stokes. 

known a priori, the equations can be used to compute 
the vortical flowfield. The most common application of 
Euler’s equation to high angle of attack aerodynamics is 
for delta wing configurations. Delta wings with sharp 
leading edges have a fixed primary vortex separation 
location, and the equations do a reasonable job in 
simulating the linear characteristics of the flowfield, but 
cannot model the non-linear interaction of secondary or 
tertiary vortices on the location and strength of the 
primary vortices. Configurations without fixed separa
tion locations cannot be handled well using Euler’s 
equation; most practical aircraft configurations would 
make it difficult to obtain good high angle of attack flow 
simulations using the Euler equations. 

2.2. Turbulence modeling 

The RANS form of the Navier–Stokes equations is 
used in many practical high angle of attack applications 
to reduce the computational time and memory required 
for performing non-averaged computations. While DNS 
Navier–Stokes calculations are being performed on 

increasingly complex geometries, these geometries are 
still relatively basic and can be solved only at very low 
Reynolds numbers. Because of these restrictions, the 
Navier–Stokes equations have been Reynolds (time or 
ensemble) averaged [15]. For compressible flows the 
equations are Favre (mass-weighted) averaged [16]. The 
averaging process introduces correlations between fluc
tuating flow variables (the Reynolds stresses, Eq. 5) that 
require the use of a turbulence model in order to affect 
closure of the equation set 

0 0tij ¼ �ruiuj : ð5Þ 

Turbulence models are semi-empirical formulations that 
are used to close the RANS equations by providing the 
Reynolds stresses. They are generally calibrated on 
building block flows such as boundary layers, shear 
layers, and wakes [17]. The Reynolds stresses are 
modeled in one of two ways: either through an eddy-
viscosity model or a stress-transport model. Stress 
transport models make no general assumptions about 
the form of the six components of the Reynolds stress. 
Unless additional assumptions are made, these models 
are therefore solving for six unknowns. The more 
common eddy-viscosity models are based on the 
Boussinesq approximation—that the Reynolds stresses 
are proportional to the strain rate of the mean flow. The 
turbulent eddy viscosity (mt) is the constant of propor
tionality, i.e. 

@ui @uj0 0�ruiu ¼ mt þ : ð6Þj @xj @xi 

This assumption reduces the number of unknowns from 
the six components of the Reynolds stresses to a single 
unknown, the turbulent eddy viscosity. Because Eq. (6) 
takes the same form as the laminar stresses, the 
turbulent eddy viscosity can simply be added to the 
laminar viscosity in the Navier–Stokes equation, i.e. m ¼ 
ml þ mt (ml is the laminar viscosity and mt is the turbulent 
eddy viscosity). This is the reason Eq. (1) appears similar 
for both the DNS and RANS form of the Navier–Stokes 
equations. In addition, all flow variables are replaced by 
their time-averaged values (e.g. ui is replaced by u%i). The 
turbulent viscosity is then provided by the turbulence 
model, which is often classified by the number of partial 
differential equations it adds. Most common are zero-, 
one-, and two-equation turbulence models. The zero-
equation models use algebraic relationships rather than 
a partial differential equation. Since the modeled 
equations are semi-empirical, they require experimen
tally determined coefficients that are usually found for 
flow over simple geometries like a flat plate or various 
types of shear layers. 
For compressible flows additional terms similar to 

Reynolds stresses appear in the energy equation invol
ving correlations of fluctuating velocities and tem
perature—the turbulent heat flux vector. These terms 



account for enhanced heat transfer due to the turbulent 
motions, and are commonly modeled by appealing to 
the Reynolds analogy which relates the heat transfer to 
the momentum transfer by the Prandtl number. By 
assuming a turbulent Prandtl number (generally as
sumed constant), the turbulent heat transfer can there
fore be obtained without any additional equations. See 
Ref. [18] for a more complete discussion. 
But what happens at high angles of attack? Do the 

turbulence models adequately resolve the flow features 
found in separated, vortical flowfields? An illustration of 
the difficulties can be seen by using the zero-equation 
(algebraic) turbulence model of Baldwin and Lomax [19] 
as an example. The Baldwin–Lomax model contains a 
function, F ðyÞ, which is used as part of the outer-layer 
model 

�ðy =AþÞ	;F ðyÞ ¼  yO½1 � e 
þ

ð7Þ 

where y is the normal distance to a flat plate and O is the 
vorticity magnitude. In an attached boundary layer (see 
Fig. 3, f ¼ f1 radial line), F ðyÞ increases to a maximum 
value and then decreases near the edge of the boundary 
layer. However, in a separated vortical flow layer (see 
Fig. 3, f ¼ f2 radial line), F ðyÞ attains a local maxima 
in the attached boundary layer and then reaches a global 
maxima in the separated layer (see Fig. 9). The 
turbulence model chooses the highest F ðyÞ and its 
corresponding distance from the wall, which greatly 
overpredicts the turbulent viscosity in this region. The 
overpredicted turbulent viscosity creates non-physical 
results when added to the laminar viscosity, altering 
separation locations and the proper formation of 
secondary and tertiary vortices. 
A variety of researchers have proposed methods for 

altering algebraic turbulence models for high angle of 
attack flow [6,20,21]. Degani and Schiff proposed a 
modification to the model (and hence to all eddy-
viscosity turbulence models) that obtains the correct 

Fig. 9. Variation of Baldwin–Lomax outer layer function, F ðyÞ 
(from [6]). 

value of F ðyÞ and gives better prediction of the flow 
topology in a separated flow region [6]. This modifica
tion has led to the ability to accurately simulate steady 
vortical flows with RANS computations. An example of 
the improvements to both zero-equation and one-
equation turbulence models for predicting vortical 
flowfields was done by Gee et al. [22]. Vortical flow 
modifications for the k � e turbulence model have also 
been suggested [23] and have been applied to flow over 
slender bodies at high incidence angles [24]. However, in 
spite of these improvements the RANS-based equations 
still lead to questionable predictions at high to very high 
angles of attack, where the flow is unsteady and the 
time-averaged equations are no longer capable of 
properly modeling the flowfield. This has led to further 
developments in equation and turbulence modeling, 
including vortex filtering [25] and the DES method. 
DES was proposed by Spalart et al. [11,12] as a 

method to combine the best features of LES with the 
best features of the RANS approach. RANS tends to be 
able to predict attached flows very well with a relatively 
low computation cost. LES, on the other hand, has a 
high computation cost, but can predict unsteady 
separated flows more accurately. The model was 
originally based on the Spalart–Allmaras one-equation 
RANS turbulence model [26]. The wall destruction term 
is proportional to u*=d2; where d is the distance to the 
closest wall. When this term is balanced with the 
production term, the eddy viscosity becomes u*pSd2; 
where S is the local strain rate. The Smagorinski LES 
model [27] varies the sub-grid-scale (SGS) turbulent 
viscosity with the local strain rate and the grid spacing, 
D (i.e. uSGSpSD2 ). If, therefore, d is replaced by D in 
the wall destruction term, the Spalart–Allmaras model 
will act as a Smagorinski LES model. 
To exhibit both RANS and LES behavior, d in 

*the Spalart–Allmaras model is replaced by d ¼ 
minðd; CDESDÞ; where CDES is the DES model constant. 
When d ¼ D; the model acts as a RANS model, and 
when d{D; the model acts as a Smagorinski LES 
model. Therefore, the model can be ‘‘switched’’ to LES 
mode by locally refining the grid. In an attached 
boundary layer, a RANS simulation will have highly 
stretched grids in the streamwise direction. To retain 
RANS behavior in this case, D is taken as the largest 
spacing in any direction (D ¼ maxðDx; Dy; DzÞ). This 
type of extension can be applied to other turbulence 
models as well, as has been shown by Strelets [28] and 
Forsythe et al. [29]. The DES approach provides a way 
to model unsteady, asymmetric flowfields at high to very 
high angles of attack without resorting to new and 
untrustworthy ‘‘fixes’’ to flat-plate turbulence models. 
DES has the advantage of computing the unsteady 

three-dimensional flow features necessary to accurately 
predict flow quantities in massively separated flows. The 
additional computational cost of DES can be attributed 



to the need to compute a time-accurate flowfield (i.e., it 
may require more solutions or time steps), as well as a 
need to accurately resolve small three-dimensional flow 
structures spatially (i.e., it may require more grid 
points). 

2.3. Transition modeling 

Most high angle of attack computations are per
formed under either fully laminar or fully turbulent 
conditions, with no attempt to model transition. Note 
that in the present context, ‘‘fully laminar’’ implies a 
solution of the Navier–Stokes equations in which no 
explicit turbulence model is included in the calculation. 
‘‘Fully turbulent’’ solutions imply that the turbulence 
model is everywhere active within the boundary layers 
formed over solid surfaces. Such solutions are estab
lished in Reynolds-averaged methods that employ the 
Boussinesq approximation, for example, by specifying at 
the inflow boundary a small level of eddy viscosity, 
sufficient to ignite the model as the fluid enters the 
boundary layer. Fully laminar or fully turbulent 
computations are limiting cases but represent the norm 
in practice since the numerical prediction of laminar-to
turbulent transition and application of transition models 
within large-scale CFD computations remains difficult. 
Such approaches introduce uncertainty since researchers 
often compute both fully laminar and fully turbulent 
solutions and then compare with experimental data. One 
complication introduced by such an approach is that the 
amount of transitional flow present in the experiment is 
often unknown, in turn complicating interpretation of 
CFD results against measurements. 
Further, in many applications of practical impor

tance, laminar-to-turbulent transition can have a crucial 
effect on the overall behavior of the flow, substantially 
altering forces and moments. One example is provided 
by a notional forebody in a crossflow, shown in Fig. 10. 
The forebody cross section is a rounded-corner square, 

Fig. 10. Cross section of notional rounded-corner forebody. 

similar to the cross sections of the X-29 and T-38. The 
flow around the cross section was measured by 
Polhamus et al. [30] for a range of Reynolds numbers 
and angles of attack. The motivation was to understand 
spin characteristics of aircraft forebodies, the angle of 
attack being idealized to represent an actual aircraft in a 
flat spin. 
The effect of laminar-to-turbulent transition is cru

cially important for the forebody shown in Fig. 10, as it  
alters the locations at which boundary layer separation 
occurs, which in turn affects the streamwise and lateral 
(side) forces acting on the body. Polhamus et al. found 
that the side force reverses from positive (along the 
positive y-axis in Fig. 10) to negative at a critical 
Reynolds number, analogous to the drag crisis which 
occurs over cylinders and spheres. A reversal of the side 
force is important since at sub-critical Reynolds 
numbers the negative side force is spin-propelling, while 
the positive side force at higher Reynolds numbers is 
spin-damping. Reversal of the side force is influenced by 
the location of boundary layer separation along the 
upper surface of the forebody, which in turn is sensitive 
to the location of laminar-to-turbulent transition. 
Super-critical regimes can be accurately modeled via 

prediction of the fully turbulent flow. Squires et al. [31] 
applied DES to prediction of the three-dimensional flow 
around the forebody shown in Fig. 10, obtaining 
accurate predictions of the pressure distribution and 
averaged streamwise and side forces at a Reynolds 
number of 800,000, above the critical value. Prediction 
of the sub-critical flows requires an approach for 
handling the effect of laminar-to-turbulent transition. 
One approach is the ‘‘tripless’’ method employed by 
Travin et al. [32] used for prediction of the sub-critical 
flow over a circular cylinder. These investigators applied 
DES, with the baseline closure being based on the 
Spalart–Allmaras model. Effects of laminar-to-turbulent 
transition were modeled by seeding the initial condition 
with a small level of eddy viscosity, and with the level of 
eddy viscosity at the inlet boundary equal to zero. Once 
the flow attains equilibrium in the attached regions of 
the flow (prior to boundary layer separation), the eddy 
viscosity is zero and the boundary layers are effectively 
laminar. Recirculation of the flow in the wake of the 
cylinder provided a mechanism for sweeping non-zero 
values of the eddy viscosity from downstream to 
upstream. In this case the turbulence model is sustained 
by the recirculating motion of the wake, the turbulent 
region of the flow beginning downstream of separation. 
While the tripless approach does not attempt to mimic 
the very complex details governing transition, the 
method possesses the substantial advantage that the 
location of transition (identified by the region over 
which the eddy viscosity sharply increases from zero) is 
dictated by the turbulence model and flow conditions, 
rather than the initial and/or boundary conditions. 



An additional example illustrating some of the com
plexities introduced by details of the process of transition 
on the interpretation of flowfield predictions is provided 
by a forebody at angle of attack, for which a crossflow is 
established as shown in Fig. 2. For the configuration 
shown, transition can take place along streamlines that 
convect along the windward plane of symmetry before 
flowing around the fuselage—what is the laminar run for 
such a flowfield? Very different results are obtained if the 
flow attaches within a crossflow plane and then flows 
around the vehicle than if the flow travels down the 
length of the forebody (or some partial length of the 
forebody) and then flows around the vehicle. 
A good review of transition models has been 

performed [33], and various researchers have attempted 
to apply transition models to CFD computations 
[34,35]. The difficulty with transition modeling is similar 
to the difficulties with turbulence modeling: most models 
are either theoretical or semi-empirical and are for
mulated for flat plates or curved surfaces, but do not 
possess the breadth of development to support high 
angle of attack flow predictions. These methods often 
require the solution of stability equations, which also 
increases the total computation time for a solution 
(again, similar to turbulence models). It is doubtful that 
transition models will be accurate enough to be used in 
high-angle flow simulations for the foreseeable future; 
useful modeling of transition should be targeted as a 
pacing item for full aircraft simulations. 

2.4. Flowfield asymmetry and algorithm symmetry 

As more researchers have simulated medium, high, 
and very high angle of attack flowfields, a controversy 
has developed regarding vortex flow asymmetries. As 
anyone who works in aircraft or missile aerodynamics 
knows, side forces and yaw moments develop at high 
angles of attack due to vortex asymmetries on ‘‘real-life’’ 
configurations. The cause of the asymmetries, however, 
is not well understood. 
Two possible explanations have surfaced for the 

vortex asymmetry: (1) the asymmetry is due to an 
absolute hydrodynamic instability—small perturbations 
yield a bifurcated asymmetry, even after the perturba
tion is removed (example: the Karman vortex street 
behind the flow over a cylinder), or (2) the asymmetry is 
due to a convective instability—small, permanent 
perturbations are required for asymmetry to exist, and 
the flowfield is not limited to the two bifurcated states. A 
good overview of the two views, including references for 
supporting simulations and theoretical concepts was 
reported by Thomas [36]. 
In either case, however, a perturbation is required! In 

experiments the perturbation is always present, but 
rarely the same, due to flowfield angularity, freestream 
turbulence, or surface imperfections on the model. But, 

what causes the perturbation in numerical calculations? 
Certainly, a variety of usual suspects can be rounded up, 
including truncation error, round-off error, the numer
ical algorithm, boundary conditions, or initial condi
tions. Everyone agrees that the flow asymmetry in a very 
high angle of attack flowfield is caused by an absolute 
instability, but the asymmetries in the high angle of 
attack region are more difficult to understand, and 
therefore, to accurately predict. 
Zilliac et al. conducted an experiment using a 

rotatable ogive tip on the front of a cylindrical cross-
section afterbody [37]. The results, presented in Fig. 11, 
showed some very interesting features. At medium 
angles of attack (a ¼ 20�) there was no asymmetry, as 
was expected. In the high angle of attack range 
(20�oao50�), the side force coefficient varied continu
ously with the ogive roll angle—it was possible to obtain 
any value of side force between the positive and negative 
maximums. Eventually, as the angle of attack reached 
the very high range (50�oao65�), the flowfield reached 
the absolute instability case, with side forces of either a 
positive or negative maximum, but with no intermediate 
values. These results suggest that the high angle of 
attack regime could attain any level of side force 
between the maxima, a situation that seems to suggest 
that the asymmetry is due to a convective instability. 
These results have been verified, with attention paid to 
the affects of transition caused by various levels of 
surface roughness [38]. 
The prediction of these high angle of attack flows was 

made more difficult to understand since not all research
ers performing numerical simulations were replicating 
these experimental results. Many researchers were com
puting asymmetric vortices in the high angle of attack 
range, and using the results as evidence that the 
asymmetric flowfield was due to an absolute flow 
instability. Other researchers, however, were computing 
symmetric vortices for similar geometries at the same 
angles of attack. As can be imagined, this led to a great 
deal of disagreement and confusion. In an important 
study, Levy et al. showed that certain numerical 
algorithms break symmetry preservation, thus causing 
the flowfield to be asymmetric [39]. They first investigated 
the Beam–Warming algorithm [40], which is an implicit 
algorithm that requires block tridiagonal matrix inver
sions. The algorithm has relatively high memory require
ments and high operation counts per grid point. When 
computing geometries in the high angle of attack range, 
the Beam–Warming algorithm produced symmetric flow-
fields, and the algorithm was proven to be symmetric. 
In order to compute flowfields at a variety of subsonic 

and supersonic Mach numbers, many researchers began 
using flux-vector splitting algorithms [41]. These algo
rithms are also implicit and require block tridiagonal 
matrix inversion, and also have high memory require
ments and high operation count per grid point. These 



Fig. 11. Side force variation with nose roll angle (from [37]). r 1991 by the American Institute of Aeronautics and Astronautics, Inc. 
Reprinted with permission. 

algorithms were also found to yield symmetric flowfields 
at high angles of attack, and were shown to be 
symmetric algorithms. 
In order to speed up these algorithms, a diagonaliza

tion process [42] was developed that requires five scalar 
tridiagonal matrix inversions, and thus has much lower 
memory requirements and lower operation count per 
grid point. When the diagonal algorithm was used to 
compute high angle of attack flowfields, however, the 
results were very interesting (see Fig. 12). While the flux-
split algorithm maintained symmetry throughout the 
computations, the diagonal algorithm yielded unsteady, 
asymmetric results. There was no obvious asymmetry in Fig. 12. Comparison of flowfield results for flux-split and 

the diagonal algorithm, but after deconstructing the diagonalized algorithms (from [39]). 

algorithm, Levy et al. found that the circumferential 
Jacobian matrix was not symmetric along the leeward to allow the algorithm to supply the perturbation that 
plane of symmetry [39]—the algorithm was causing the must be there anyway (from a physical perspective), it is 
flowfield asymmetry. While some researchers are content much more desirable to use an algorithm that does not 
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Fig. 13. Alternative explanations for high angle of attack 
asymmetry. 

add an unknown level of perturbation. It would be 
superior to have the perturbation be added explicitly as 
a geometric disturbance or flowfield disturbance. 
But there is more to these results than first meets the 

eye. In fact, the two views of asymmetry may have more 
in common than first appears. When viewed from a 
static angle of attack perspective, the absolute instabiliy 
concept and the convective instability concept are quite 
different (see Fig. 11). The absolute hydrodynamic 
stability hypothesis states that as the angle of attack is 
increased, a bifurcation will take place at a critical angle 
of attack that will produce one of two ‘‘mirror image’’ 
asymmetries (see Fig. 13a). At any angle of attack above 
the critical value, only two values of side force are 
possible; no intermediate values of side force are 
possible with this hypothesis. But the results of Fig. 11 
and [37] show that there are angles of attack where a 
variety of side forces are possible. 
The convective instability hypothesis states that any 

level of asymmetry is possible at angles of attack in the 
high alpha range. As the angle of attack is increased, an 
unstable state is reached where an infinite number of 
‘‘paths’’ are possible until the very high angle of attack 
regime is reached. At that point the flowfield has reached 
the full bifurcated state, but in the intermediate region 
(high angle of attack region), there are many possible 
states (see Fig. 13b), which could be called an unstable 
bifurcation [43]. This hypothesis would explain the 
results found in Fig. 11, while still acknowledging 
that the flowfield eventually (in a pitch-up sense) is 
bifurcated. 

2.5. Grid generation and density 

All CFD solutions require appropriate grids, with 
sufficient grid density in regions of high flow gradients. 
The problem with accomplishing this is knowing a priori 
where the regions of high gradients are located. In a 
vortical flowfield, high gradient regions exist in the 
boundary layers, regions of shear layer separation, and 
the high-vorticity regions of the primary and secondary 
vortices. While all CFD solutions should be accompa
nied by a grid resolution study, it is common to place 
large numbers of grid points in regions where flow 
gradients are small, resulting in unnecessarily long 
computation times. While it is not possible to perfectly 
define the grid required for a good computation, some 
rules of thumb have been found to give reasonable 
results. 
Many researchers have found that adequate resolu

tion of the boundary layer is the first place to look when 
insuring that a grid will properly resolve a flowfield. 
Boundary layers require at least 20 grid point normal to 
the surface, with at least two of those grid points being 
in the laminar sub-layer [44]. Of course, more grid 
resolution in the boundary layer is always desired, but 
this normal grid resolution usually yields acceptable 
results. In addition, grid stretching in the normal 
direction should be kept below 25% increase in grid 
size moving away from the surface. Other definitions of 
grid ‘‘goodness’’ are available and should be investigated 
for high angle of attack computations [45]. 
Another very important grid requirement has to do 

with the grid resolution in the circumferential direction 
in the vicinity of the separation lines on the body 
surface. The primary and secondary separation locations 
require ‘‘enough’’ grid points for proper resolution— 
studies have shown that at least five grid points should 
exist in the circumferential direction between separation 
points. Of course, this means that the same grid may not 
be satisfactory for different angles of attack, as the 
separation points move in the circumferential direction. 
The usual solution to this is to have a circumferential 
grid fineness that is high enough for all computations 
being performed using the grid. Obtaining a ‘‘fast’’ 
solution is usually dangerous—spending the time 
necessary to develop a good grid will save a great deal 
of work later on. 
One way to create a good grid, and still not take too 

much time is to use multiple, overset grids [46] or 
unstructured grids. Overset grids can be especially useful 
in high angle of attack flowfield prediction as they allow 
the placement of high grid density in regions of high flow 
gradient without having to re-create the entire grid. This 
can save time when several calculations are being 
performed at different angles of attack, where the 
separated flow region moves to different locations in 
the flowfield. Other grid generation concepts should be 



developed to aid in reducing the considerable time that 
grid generation requires. An example of such a valuable 
grid generation tool is adaptive mesh refinement [47,48]. 

2.6. Numerical dissipation 

Numerical solutions always have some type of artificial 
viscosity or numerical dissipation, either explicitly or 
implicitly added. While implicit dissipation is the 
preferred method in many modern algorithms, the 
downside of implicit dissipation is the inability to control 
the level of dissipation added, even though the levels are 
usually quite low. The ease of use of implicit dissipation 
should not allow the user to be deceived into thinking 
that the dissipation levels will not impact the solutions. 
High angle of attack flows are especially sensitive to 

artificially dissipation, perhaps more than many other 
flowfields. When the prediction of separation lines, 
including secondary or even tertiary separation lines, is 
an essential aspect of the flowfield prediction, it may be 
more satisfying to use explicitly added, fourth-order, 
dissipation. Solutions usually require fairly high levels of 
dissipation at the early iteration stages, but once the 
flowfield has settled down, the artificial dissipation should 
be reduced to the smallest possible levels. While it may be 
tempting to turn the artificial dissipation to extremely low 
levels, care should be taken to insure that pressure 

oscillations do not occur near the body surface—these 
oscillations can have a negative impact on the solution. A 
numerical experiment of dissipation levels can be found in 
[44]—investigations such as this should be conducted in 
all high angle of attack calculations. Another possible 
approach would be to use explicitly added viscosity and 
accounts for its effects [49]. 
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Fig. 15. Resolved turbulent kinetic energy in the vortex core 
for a 70� delta wing at 27� angle of attack. 

Fig. 14. Delta Wing with 70� of sweep at 27� angle of attack (from [50]). 



Fig. 16. 6:1 rectangular ogive at 90� angle of attack (from [52]). 

3. Computational results and future directions	 detailed numerical evaluation of the flow over a delta 
wing at high angles of attack shows incredible detail in 

Recent computations using DES have shown great the flow [50]. Fig. 14 shows the delta wing flowfield 
promise for predicting massively separated flowfields. A where the shear layer instability along the leading edge is 



(a) Iso-surfaces of vorticity over the aircraft 

CL CD CM 
%CL %CD %CM 

Exp 0.781 1.744 -0.466 

Coarse 0.747 1.677 -0.431 -4.25% 3.86% -7.62% 
DES Baseline 0.736 1.616 -0.495 -5.70% -7.35% 6.10% 

Fine 0.759 1.648 -0.457 -2.81% -5.52% -2.00% 

Coarse 0.855 1.879 -0.504 9.49% 7.73% 8.17% 
S-A Baseline 0.852 1.867 -0.523 9.09% 7.05% 12.22% 

Fine 0.860 1.880 -0.507 10.22% 7.78% 8.72% 

(b) Comparisons with experimental data 

Fig. 17. F-15E at 65� angle of attack (from [53]); DES—detached-eddy simulation, S-A—Spalart–Almaras turbulence model. 

clearly evident, as well as vortex breakdown, and shear 
layer roll-up from the delta wing blunt base. Computa
tions of this complexity are not possible with RANS 
calculations, since the unsteady flow features would not 
be able to be resolved using time-averaged turbulence 
models. 
Fig. 15 displays the resolved turbulent kinetic energy 

along the vortex core compared with experimental data 
[51]. As the grid is resolved the experimental peak is 
reached, although the computation required 10.5 million 
unstructured cells to attain the experimental level of 
resolved turbulent kinetic energy. 
Another recent application of DES for a massively 

separated flowfield is a 6:1 rectangular ogive at 90� angle 

of attack (see Fig. 16a; the forebody cross-section is 
shown in Fig. 10) [52]. This flowfield challenges RANS 
models because they are unable to properly resolve the 
pressure variations on the leeward side of the body. 
Even with modifications such as Degani–Schiff, the 
results for RANS models are still ‘‘averaged’’, and the 
averaging process does not allow for true unsteadiness 
to develop in the separated flow region. When DES is 
applied to the flowfield, the unsteady movement of the 
vortical structures ‘‘washes out’’ the pressures on the 
leeward surface, giving a flat pressure profile that 
matches experimental data, as shown in Fig. 16b. 
The end goal of massively separated flow computa

tions is to accurately predict aircraft at high angles of 



attack, including post-stall flowfields. Shown in Fig. 17 
is the F-15E at 65� angle of attack modeled as a half 
body with nearly 6 million cells [53]. Iso-surfaces of 
vorticity are shown, and comparisons with available 
experimental data reveal that the results are within 6% 
for lift, drag, and pitch moment coefficients. Of course, 
the aircraft would have to be resolved with both left and 
right sides in order to obtain the asymmetric flowfields 
that are certainly occurring, but the ability of DES to 
capture the complexities of this massively separated 
flowfield are impressive. 
While these DES results are impressive, they do not 

represent a final stage of high angle of attack flow 
prediction. Researchers will need to continue to 
investigate these types of hybrid RANS-LES models 
and insure that they work well for a wide variety of 
separated, vortical flowfields. In spite of this, however, 
the current state of CFD prediction for high angle of 
attack flowfields has progressed significantly, with the 
accurate prediction of full-scale maneuvering aircraft 
at hand. 

4. Conclusions 

High angle of attack flow computations have a variety 
of unusual aspects that make accurate predictions 
challenging. A variety of influences on high angle of 
attack flow predictions have been discussed, including: 
governing equation complexity, turbulence modeling, 
transition modeling, algorithm symmetry, grid genera
tion and density, and numerical dissipation. While some 
of these issues are important in many flowfield calcula
tions, successful simulation of high angle of attack 
flowfields must consider all of these factors. It is very 
easy to get a poor solution for these highly separated, 
vortical flowfields! A little careful forethought, planning, 
and evaluation can lead to amazingly useful simulations. 
Researchers should realize that when it comes to high 
angle of attack flow predictions, faster is rarely better— 
spend extra time in the beginning of the simulation work 
and very good results are obtainable. 
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