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This paper will go over power and how power is calculated using SAS or R.  Chapter 1 
will give an introduction to power, what it is, and what is needed for the calculation of 
power.  Chapter 2 goes in depth of the power calculations for a general ANOVA test and 
a chi squared test.  Chapter 3 contains examples and syntax for calculating power using 
SAS and R.  It will also go through the plotting capabilities of power curves in SAS.  
 
 
1  Introduction to Power 
 
 
This chapter will introduce the concept of power and what things are needed to calculate 
it, why it’s important and what affects it.  It also goes through a simple example of 
calculating power and sample size. 
 
 
1.1 What is Power? 
Power is one of the most important things in experimental design.  When a hypothesis 
test does not reject the null hypothesis when it’s false a type II error has been made.  The 
power of the test is the probability of rejecting the null hypothesis when it is false, in 
other words that the test will not make a type II error.  Thus power is defined as, 
 
      Power = 1 – P(Type II Error) = P(Rej H0 when H0 is false)     (1.1.1) 

 
Since power is the probability of correctly rejecting the null hypothesis when it is false it 
makes sense that we would like this as large as possible.  To do this, as shown in the 
formula above, we would like the probability of a type II error to be as small as possible.  
As well as having a small probability of a type II error, for a test to be useful it also has to 
have a small probability of a type I error, rejecting the null hypothesis when it is true. 
 
 
1.2 Why is Power Important? 
The usefulness of a test will be determined with power.  A useful test would be one that, 
with a high probability, correctly rejects the null hypothesis.  One that does this has high 
power. 
 
For example suppose one has a test designed to detect if a person has cancer.  If the test 
has low power, the probability of correctly determining the patient has cancer is low.  
Thus, there is a good possibility doctors will tell the patient they don’t have cancer, when 
in fact they do. This would not be an optimal situation.  Most people would want to know 
if they indeed have cancer. 
 
A power analysis is generally used in one of two ways, determining the power of the test 
or determining the needed sample size to achieve a certain power.  It is generally done 
before the data is collected.  Suppose that a company can only afford 10 runs of an 
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experiment, they run a power analysis and find the power of their experiment is.50.  In 
this situation it would not be beneficial for them to run the experiment, since in reality 
they can correctly reject the null hypothesis with the same probability as flipping tails on 
a coin. 
 
A power analysis is useful when determining sample size.  One of the issues in running 
experiments is the cost.  In general, the bigger the sample size the more expensive the 
experiment is to run.  Thus, when running experiments most people would like to know 
the fewest number of runs or samples that are needed to achieve a high pre-specified 
power. 
 
 The power of a test will determine if the test is useful and worth while to do, or if the 
analysis was done afterwards, to see if the results of an experiment can be trusted.  The 
higher the power, the higher probability of correctly rejecting the null hypothesis.  
Sample size calculations determine how big a sample needs to be and how much the 
experiment will cost.  One can see a power analysis is an important and beneficial thing 
to do before running an experiment or conducting a study. 
 
 
1.3 What is Needed to Calculate Power and Sample Size? 
There are several parameters that are needed in a power or sample size calculation.  Each 
of which will affect power or sample size, either increasing them or decreasing them.  All 
of the parameters of the calculation and their effects are discussed below.  The 
explanation assumes all the other parameters are being held constant. 
 
Type I Error Rate 
Since power is defined as the probability of correctly rejecting the null hypothesis it 
makes sense that the probability of rejecting the null hypothesis when it’s true will affect 
power.  This probability, incorrectly rejecting the null hypothesis, is the probability of a 
Type I error, α.  The smaller the alpha, the smaller the probability that the null hypothesis 
will be rejected.  A type II error, β, is the probability that the one fails to reject the null 
hypothesis when it’s false.   As alpha increases, beta decreases, and power increases.  As 
alpha decreases, beta increases, and power decreases. 
 
If one is looking for sample size, as alpha increases the sample size decreases and as 
alpha decreases sample size increases. 
 
Standard Deviation 
Standard deviation is the variation or spread of the data.  The less variable the data is, the 
easier it is to approximate the population value that is being measured.  The more 
variable the data, the harder it is to approximate the population value that is being 
measured.   Therefore, it is optimal to have the standard deviation be small. 
 
However, the standard deviation of the population is hardly ever known.  Thus, one must 
approximate one.  There are several ways to do this.  One of the ways this can be done is 
by taking the range of the data (the maximum value – the minimum value in normally 
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distributed data) and dividing it by four or six.  Since a majority of data falls two 
deviations of either side of the population value being measured and most of it falls three 
deviations of either side of the population value being measured dividing the range of the 
data by 4 or 6 is a good approximation of the standard deviation. 
 
A pilot study could also be used to find an approximation of the standard deviation.  One 
can run a small version of the actual experiment and use the standard deviation found 
from it, as an approximation for the standard deviation of the regular experiment. 
 
In some cases one can find a previous study that looks at the same population value of 
interest and use the standard deviation of it.  Or one can take their best guess.  Regardless 
of which method is used, a standard deviation must be chosen. 
 
If the standard deviation is small, this will result in greater power than if the standard 
deviation is large.  If the standard deviation is large, then the power will be low.   
 
Thus, a small standard deviation will need fewer samples to achieve the same power as a 
large standard deviation.     
 
Sample Size/Power 
To determine n, the power needs to be specified.  To determine power, n needs to be 
specified.  The affect that sample size has on power is fairly intuitive.  With a greater 
sample size the population value of interest can be easier seen against the background of 
variability.  A larger sample size will in turn have a greater power than a small sample 
size.  By the same token gaining higher power requires the test to have more samples 
than if one were to settle for less power. 
 
Effect Size 
The effect size is a very important component in a power analysis.  It is the part of the 
analysis that is the most misunderstood.  Effect size, Δ, is the size of the effect that one 
expects to see in the test.  In other words it’s how small or big a difference from the null 
hypothesis that one wants to detect. 
 
For example, if the null hypothesis states the mean IQ of children is 100 and it is found to 
be 96, the effect size would be 4 IQ units (Δ = 4).  For another example, say that from a 
population of male patients at a psych ward 52% have bipolar disorder. Tested against the 
assumption that 50% have bipolar disorder, would give a 2% effect size (Δ=2). 
 
All in all the effect size is an index of the degree of departure that one wants to find from 
the null hypothesis.  It is not hard to see that on average cherries are smaller than oranges, 
since there is a ‘big’ effect size.  However, it is much harder to see that on average 
cherries are bigger than grapes, because of the ‘small’ effect size.  
 
The relationship between power and effect size is fairly intuitive.  Big effect sizes are 
easier to detect and therefore have greater power, all else being equal.  In contrast, 
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detecting a very small effect is more difficult.  If there is a small effect size, the power 
will be low compared to that of a large effect size.   
 
In the case of sample size, one would need a lot more samples to detect a small effect 
size. 
 
Finding and selecting effect sizes will be discussed in later chapters.   
 
 
1.4 Simple Example Using a z-test 
 
Example 1.4.1 Calculating Power 
Suppose that we are testing H0: μ ≤ 80 versus H1: μ > 80.  We know that n = 50, σ = 5, 
Δ= 1, and α = .05.  Since Δ= 1 we can express the alternative hypothesis as H1: μ > 81    
Calculate power. 
 
To calculate power, first  find the standard deviation of the sample mean which is  

50
5 = .707. 

 
Then find the z score of the rejection region, z1-α.  This P(z* ≥ z1-α), where z* is the test 
statistic.  Here, z1-α = 1.645 since α = 0.05.  Using this we then find this point under the 
alternate distribution.  The alternate distribution is normal with a mean of 81 and a 
standard deviation of 0.707.  Thus 80+(1.645)(0.707) = 81.16.  Converting this to a z 
score we get     z = (81.16 – 81)/0.707 = 0.23.  The probability that we will get a z score 
greater than 0.23 is the power of the test.  Thus, the probability that the sample mean is 
greater than 81.16 is 0.4090.  Figure 1.4.1, on the next page, illustrates this.  The solid 
black curve is the null distribution and the dotted red curve is the alternative distribution.  
The gray vertical line is the critical value and the area to the right represents the power. 
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 Figure 1.4.1 

 Mean = 81.16
Example 1.4.2 Finding Sample Size 
Using the information from example 1.4.1, to find the sample size needed to achieve a 
power of 0.90, we first must use the null distribution to express the critical point for the 

test in terms of n.  The critical point is ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

n
5645.180 .  The power of the test is the area 

of the rejection region under the alternative hypothesis which is 0.90.  This gives  

z1-power = -1.28  so we get the expression ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−

n
528.181 .  Since there is only one critical 

point, the two expressions are equal.  We then can set them equal to each other and solve 
for n. 
 

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+

n
5645.180  = ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
−

n
528.181 .  Solving gives us n ≈ 214. 
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2 Theory of Power 
 
 
 
This chapter will go into the theory and computations of calculating power for both a one 
way ANOVA test and a chi square test.  It will also show you some examples of using 
SAS and R to do the analysis.  Details of syntax are discussed in chapter 3. 
 
 
2.1 Theory of Power for a One WayANOVA 
To calculate power for a global F test in a completely randomized design with one 
treatment at k levels we first need to understand and define the hypothesis.  The 
hypotheses are defined as, 
 
H0: μ1 = μ2 = … =  μk   
H1: μi ≠ μj  for some i,j where i≠j 
 
μi = mean of group i 
k = number of groups 
 
This test is the F test for equality of means in a one way ANOVA.  It assumes that the 
data is normal with common group variances.  Also N ≥ k+1 and ni ≥1, where N is the 
total sample size and ni is the sample size of group i. 
 
The distribution of the F statistic under the null hypothesis follows a central F 
distribution, whereas the distribution of the F statistic under the alternative hypothesis 
follows a noncentral F distribution with the noncentrality parameter, λ.  Thus, when the 
null hypothesis is true it follows a central F distribution and when it’s false it follows a 
noncentral F distribution.  Therefore power can be defined as the probability that the F 
statistic follows a noncentral distribution. 
 
The exact power is given as, 
 
Power = P(F(k – 1, N – k, λ) ≥ F1-α(k – 1, N – k))  (2.1.1) 
 
Figure 2.2.1 shows you what the distributions of both the hypotheses look like and will 
visually show you the power. 
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                 Figure 2.2.1 

 
F=6.26 

 
In figure 2.2.1 the solid black curve is the F-distribution under the null hypothesis (this is 
arbitrarily chosen to be an F distribution with 5 and 4 degrees of freedom).  The dotted 
red curve is the distribution under the alternative hypothesis (same F with a noncentrality 
parameter of 9).  The vertical line represents the F value with a probability of 0.05 under 
the null hypothesis.  If we get an F statistic to the left of the line we conclude that it came 
from the null distribution and if it is to the right of the line then we conclude it came from 
the alternative distribution.  The area under the alternative distribution to the right of the 
line represents the power of the test.  As you can see this particular test will have 
relatively low power since the area under the curve is rather small. 
 
 
SAS and R both use formula 2.1.1 to compute power.  However, they differ in the way 
they define λ, the noncentrality parameter. 
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SAS defines the noncentrality parameter as, 
 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
−

=
∑
=

2
1

2)(

σ

μμω
λ

k

i
ii

N     ( 2.1.2) 

Where μ  is the overall mean and ωi is the weight for the ith group.  The weights would 
be used if one was using an unbalanced design.  An unbalanced design is discussed later 
in the section. 
 
R defines λ in a more complicated way.  The computation relies on the effect size of the 
test.  Recall form section 1.3 effect size is how big or small a difference you want to 
detect from the null hypothesis. 
 
To find the effect size, Δ, we use the formula, 
 

σ
σ μ=Δ  (2.1.3) 

where, 
 

  
    
  (2.1.4) 

k
i
∑
=

−
=

k

i
1

2)( μμ
σ μ 

 
 
σμ = between “mean” variation 
σ = error variaiton 
 
Using this λ is defined as, 
 
λ = Δ2n(k)  ( 2.1.5) 
 
n = sample size of balanced groups 
 
 
Either way you do it you will come up with the same answer.  This is shown below. 
 
Formula 2.1.4 can be rewritten as 
 

∑
=

−=
k

i
ik1

2)(1 μμσ μ  
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Then rewriting formula 2.1.3 we get, 
 

σ

μμ∑
=

−
=Δ

k

i
ik1

2)(1

 

 
Using formula 2.1.5 we have, 
 

nkk

k

i
i

2
1

2)(1

σ

μμ
λ

∑
=

−
=  

 
nk = N so, 
 

⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜

⎝

⎛
−

=
∑
=

2
1

2)(1

σ

μμ
λ

k

i
ikN  

 

This is equivalent to formula 2.1.2 where ωi = 
k
1   

 
To find the sample size needed for a specific power you would set formula 2.1.1 equal to 
the desired power and solve for N.  Both SAS and R will go through an algorithm to find 
an N that will satisfy the equation. 
 
Examples 2.1.1 and 2.1.2 show you syntax and results for finding power and n in both 
SAS and R. 
 
Example 2.1.1 Finding power of a balanced one way ANOVA 
Suppose we have, 
µ1= 59  σ = 12  k = 3 
µ2= 66  α = 0.05 
µ3= 42  n = 4 
 
Using this information we have: 
f = 0.84 
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R Input/Output: 
> pwr.anova.test(f=.84,k=3,n=4,sig.level=0.05) 
 
     Balanced one-way analysis of variance power calculation  
 
              k = 3 
              n = 4 
              f = 0.84 
      sig.level = 0.05 
          power = 0.5848498 
 
 NOTE: n is number in each group 
 
SAS Input/Output 
proc power; 
 onewayanova e = erall t st ov
 groupmeans=59|66|42 
 std=12 
 npergroup=4 
 power=. 
 ; 
run; 
 
                                       The POWER Procedure 
                                 Overall F Test for One-Way ANOVA 
 
                                     Fixed Scenario Elements 
 
                              Method                          Exact 
                              Group Means                  59 66 42 
                              Standard Deviation                 12 
                              Sample Size Per Group               4 
                              Alpha                            0.05 
 
 
                                          Computed Power 
 
                                              Power 
 
                                              0.585 
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Example 2.1.2 Finding n of a balanced one way ANOVA 
Suppose, 
µ1= 15  σ = 1.5  k = 3 
µ2= 14  α = 0.05 
µ3= 18  power = .8 
 
Using this information we have: 
f = 1.13 
 
R Input/Output: 
> pwr.anova.test(f=1.13,k=3,power=0.80,sig.level=0.05) 
 
     Balanced one-way analysis of variance power calculation  
 
              k = 3 
              n = 3.718485 
              f = 1.13 
      sig.level = 0.05 
          power = 0.8 
 
 NOTE: n is number in each group 
 
SAS Input/Output: 
proc power; 
 onewayanova test=overall 
 groupmeans=15|14|18 
 std=1.5 
 npergroup=. 
 power=.80 
 ; 
run; 
 
 
                                       The POWER Procedure 
                                 Overall F Test for One-Way ANOVA 
 
                                     Fixed Scenario Elements 
 
                                Method                       Exact 
                                Group Means               15 14 18 
                                Standard Deviation             1.5 
                                Nominal Power                  0.8 
                                Alpha                         0.05 
 
 
                                       Computed N Per Group 
 
                                         Actual    N Per 
                                          Power    Group 
                                          0.846        4 
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Note that SAS rounds n up to the nearest whole number where R leaves n as a fraction.  
Thus the actual power may be greater than the power specified in SAS. 
 
Unbalanced ANOVA 
If an unbalanced design is used then formula 2.1.2 must be used for finding the 
noncentrality parameter.  This formula takes into account the weights of the sample sizes, 
whereas formula 2.1.5 does not. For a balanced design these weights are all 1, meaning 
that all the samples are equal.  If you want one sample to be twice as large as the other 
two samples then you would want the weights to be 2, 1, and 1. 
 
There are many reasons why one would want to use an unbalanced design, one being that 
maybe one of the treatment combinations of an experiment costs a lot more than the 
others.  So one must decide what they should do; have fewer expensive runs and more 
cheaper runs or more of the expensive and fewer cheaper runs. 
 
Another reason for using an unbalanced design is that the experiment has a control.  
Because we most likely know a lot about the control already, we don’t need a lot of runs 
in the experiment.  So we decrease the number runs for the control and increase the 
number of runs for the experimental treatments. 
 
Only SAS will accommodate the unequal sample sizes since it uses formula 2.1.2.  
Examples 3.2.5 and 3.2.6 show the SAS code and output for finding power and sample 
for this type of design. 
 
Randomized Complete Block 
The purpose of a randomized complete block design is to take out some of the error 
variance caused by a nuisance factor.  If we know what this nuisance factor is then we 
can block on this factor to decrease variability. 
 
We can find the power of this type of design in a couple of different ways using a one 
way ANOVA procedure.  If one knows, or can approximate, the proportion of error 
variance the blocks account for, then the standard deviation can be adjusted to reflect this 
smaller with group variability.  This method is easily implemented in either SAS or R. 
 
Or one can take an effect size approach.  By reducing the error variation you’re 
increasing the effect size.  Having this increased effect size will increase the power.  
However, the effect size calculation is a little different.  The blocked effect size is defined 
as, 
 

b

CR
block PV−

Δ
=Δ

1   (2.1.6) 

 
Δblock= Effect size of RCB design 
ΔCR= Effect size of the analogous completely randomized design 
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2

2

σ
σ block

blockPV =   (proportion of between block variation)                                       

  between block variance  = design error variance =2
blockσ 2σ

 
After finding this effect size using formula 2.2.6 you can then use R to find the power.   
 
You can run this analysis in either way.  Doing it the first way is simpler and you can use 
both SAS and R to find power.  The second way using formula 2.2.6 is more involved 
and you would have to use R.  They are essentially the same, but in SAS since you 
specify the means, you need to adjust the standard deviation yourself.  Since R has you 
specify effect size, you need to adjust it. 
 
 
2.2.1 Theory of Power for ANOVA Contrasts 
Not only does SAS compute power for a global F test, it also computes power for 
contrasts.  Thus we determine power for comparisons.  The null and alternative 
hypotheses for a test of subsets of means to other subsets are, 
 

 
 
k is the number of groups, {c1, ... , ck} are the contrast coefficients, and c0 is the null 
contrast value.  

This type of test assumes normal data with common group variances and requires N ≥ k 
and ni ≥ 1. 
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Power is defined as, 

 
Where,  

⎟
⎟
⎟
⎟
⎟
⎟

⎠

⎞

⎜
⎜
⎜
⎜
⎜
⎜

⎝

⎛

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

−
=

∑

∑

=

=

2
1

1

2

1
0

2
1

k

i i

i

k

i
ii

c

cc
N

ω
σ

μ
δ  

 
To find the sample size needed for a specific power you would set the power equation 
equal to the desired power and solve for N.  SAS will go through an algorithm to find an 
N that will satisfy the equation.   
 
The next section will go over the difference in an overall versus a contrast test and show 
some examples comparing both of them when finding power and n. 
 
 
2.2.2 Overall Power versus Contrast Power 
When doing an ANOVA power analysis, the results may change whether you are using 
an overall F test or testing for a specific contrast.  If sample size is held constant then 
power may increase or decrease, the same thing is true for sample size if power is held 
constant.   
 
The reason for this has to do with the effect sizes of the means being tested.  Generally, if 
there is a big effect size there will be greater power.  A small effect size yields smaller 
power. 
 
For example, suppose the group means are 5, 4, 6, 11, 12, and 9 with a standard deviation 
of 4 and group sample size of 5.  A majority of these means fall more than one standard 
deviation away from the grand mean, so when comparing them all to each other, the 
effect size would be large (the effect size is 3.02).  Since the effect size is large we can 
expect that that the power of the overall F test will be large.  Example 2.2.1 shows this 
calculation in SAS. 
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Example 2.2.1 
proc power; 
 onewayanova test=overall 
 groupmeans=(5 4 6 11 12 9 )  
 std= 4 
 npergroup= 5  
 power=.; 
run; 
                                       The POWER Procedure 
                                 Overall F Test for One-Way ANOVA 
 
                                     Fixed Scenario Elements 
 
                              Method                           Exact 
                              Group Means              5 4 6 11 12 9 
                              Standard Deviation                   4 
                              Sample Size Per Group                5 
                              Alpha                             0.05 
 
 
                                          Computed Power 
 
                                              Power 
 
                                              0.828 
 

The power that was calculated is 0.828, a high power as expected. 
 
The same principle of effect size is taken into consideration when we are testing a 
contrast.  If the contrast we are testing has bigger effect size than the one computed for 
the overall F test then the power will increase. If the contrast has a smaller effect size, 
then the power will decrease. If it is about the same, then the power will also be 
approximately the same.  Example 2.2.2 illustrates this. 
 
 
Example 2.2.2 
The hypotheses below are the null and alternative hypotheses for the contrasts defined 
below.  They are in the order as specified in the syntax. 
 
H0: µ1 = µ2 H1: µ1 ≠ µ2   

         µ2 = µ5          µ2 ≠ µ5 

         µ3 = µ4          µ3 ≠ µ4 

     
proc power; 
 onewayanova test=contrast 
 contrast = (1 -1 0 0 0 0) (0 1 0 0 -1 0) (0 0 1 -1 0 0) 
 groupmeans=(5 4 6 11 12 9)  
 std= 4 
 npergroup= 5  
 power=.; 
run; 
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                                       The POWER Procedure 
                               Single DF Contrast in One-Way ANOVA 
 
                                     Fixed Scenario Elements 
 
                              Method                           Exact 
                              Group Means              5 4 6 11 12 9 
                              Standard Deviation                   4 
                              Sample Size Per Group                5 
                              Number of Sides                      2 
                              Null Contrast Value                  0 
                              Alpha                             0.05 
 
 
                                          Computed Power 
 
                         Index    ------------Contrast------------    Power 
 
                             1     1    -1     0     0     0     0    0.067 
                             2     0     1     0     0    -1     0    0.858 
                             3     0     0     1    -1     0     0    0.475 
 
 

The first contrast (1 -1 0 0 0 0) is comparing the first two means.  We can see that these 
are very close to each other especially considering that the standard deviation is 4.  Thus, 
this would translate into a very small effect size.  Since the effect size is much smaller 
than with the overall test (the effect size is 0.5), the power should reflect this and be 
much lower.  As we can see the power is 0.067, significantly lower than 0.828. 
 
The second contrast (0 1 0 0 -1 0) is comparing the second and fifth means.  These two 
means are very different, more than a standard deviation apart.  Thus this effect size will 
be large (the effect size is 4), comparable to the effect size of the overall test of 3.02.  
Thus the two powers should be very similar, and they are 0.858 for the contrast and 0.828 
for the overall. 
 
The last contrast (0 0 1 -1 0 0) is comparing the third and fourth means.  These means are 
not that close to each other, a tiny bit over a standard deviation away.  Considering this, 
the effect size should be larger than the first contrast but smaller than the second contrast 
(the effect size is 2.5), thus the power will be below the overall test but above the power 
of the first contrast.  As you can see it is with a power of 0.475. 
 
This can also be used for finding sample sizes while holding power constant.  The same 
principles hold.  If the effect size for the overall test is larger than the effect size for the 
contrast then the sample size for the overall test will be greater than for that of the test of 
the contrast.  If the effect size for the overall test is smaller than that of the test for the 
contrast, then the sample size of the contrast will be larger.  This is shown in example 
2.2.3.  Example 2.2.3 uses the same group means and standard deviation as Example 
2.2.1 and holds power at 0.8. 
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Example 2.2.3 
proc power; 
 onewayanova test=overall 
 groupmeans=(5 4 6 11 12 9 )  
 std= 4 
 npergroup= .  
 power=.8; 
run; 
 
proc power; 
 onewayanova test=contrast 
 contrast = (1 -1 0 0 0 0) (0 1 0 0 -1 0) (0 0 1 -1 0 0) 
 groupmeans=(5 4 6 11 12 9)  
 std= 4 
 npergroup=. 
 power=.8; 
run; 
                                     Fixed Scenario Elements 
 
                               Method                        Exact 
                               Group Means           5 4 6 11 12 9 
                               Standard Deviation                4 
                               Nominal Power                   0.8 
                               Alpha                          0.05 
 
 
                                       Computed N Per Group 
 
                                         Actual    N Per 
                                          Power    Group 
 
                                          0.828        5 
 
                                     Fixed Scenario Elements 
 
                               Method                         Exact 
                               Group Means            5 4 6 11 12 9 
                               Standard Deviation                 4 
                               Nominal Power                    0.8 
                               Number of Sides                    2 
                               Null Contrast Value                0 
                               Alpha                           0.05 
 
 
                                       Computed N Per Group 
 
                                                                 Actual    N Per 
                    Index    ------------Contrast------------     Power    Group 
 
                        1     1    -1     0     0     0     0     0.801      252 
                        2     0     1     0     0    -1     0     0.858        5 
                        3     0     0     1    -1     0     0     0.822       11 
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The different tests will have different or approximately the same power or sample size 
(depending on what you’re interested in) depending on how the effect sizes compare to 
each other while holding everything constant.  Large effect sizes will have larger powers 
or sample sizes, and smaller effect sizes will have smaller powers or sample sizes.   
 
So when you are powering your study you should keep in mind what you want to 
investigate.  Are you more interested in comparing all the means or just some of them?  
The answer to the question may dramatically change the answer you get from the 
analysis. 
 
 
2.3 Theory of Power for a Chi Squared Test 
 
Chi Squared Power in R 
To calculate power for a chi squared test we first need to understand and define the 
hypotheses.  The hypotheses are defined as, 
 
H0: p01, p02, …, p0m  ∑ =

=
m

i ip
1 0 )1(

 
H1: p10, p12, …, p1m where the proportions are different than the null but also sum to 1. 
 
The chi squared test statistic is defined as, 
 

 

where, 

Oi = an observed frequency  
Ei = an expected (theoretical) frequency, asserted by the null hypothesis 
n = the number of possible outcomes of each event  

 
 
The distribution of the χ2-statistic when the null hypothesis is true, follows a central chi 
square distribution. When it’s false it follows a noncentral chi squared distribution with 
the noncentrality parameter, λ.  So essentially power is the probability that the data comes 
from a noncentral chi squared distribution. 
 
R finds power using this expression, 
Power = P(  (df, λ) ≥ (df)) (2.3.1) 2χ 2

1 αχ −

 
Figure 2.2.2 shows you what the distributions of both the hypotheses look like and will 
visually show you the power. 
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Figure 2.2.2 
 

 
χ2 = 7.81

 
 
In figure 2.2.2 the solid black curve is the distribution under the null hypothesis (this is 
arbitrarily chosen to be a chi square distribution with 3 degrees of freedom).  The dotted 
red curve is the distribution under the alternative hypothesis (same chi square with a 
noncentrality parameter of 3).  The vertical line represents the chi square value with a 
probability of 0.05 under the null hypothesis.  If we get a chi square statistic to the left of 
the line we conclude that it came from the null distribution and if it is on the right of the 
line we conclude it came from the alternative distribution.  The area under the alternative 
hypothesis curve to the right of the line represents the power of the test.  This particular 
test will have moderate power since there is a fair amount of area under the non central 
curve. 
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The noncentrality parameter, λ, is defined as, 
N2Δ=λ   (2.3.2) 

Δ = effect size 
N = total sample size 
 
where, 

∑
=

−
=Δ

m

p
pp

1

2)(

i 0i

0i1i
 

 
To find the sample size required for a specified power, R finds an N that will satisfy 
equation 2.3.1. 
 
 
Chi Square Power in SAS 
SAS computes power in a different way.  For a chi square test it only will compute the 
power for two proportions.  So the hypotheses for this test are, 
 

 
 
The chi square test statistic is defined as, 
 

   
    (2.3.3) 

 
 
Using this power is defined as, 
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For the 1-sided cases, a closed-form inversion of the power equation yield an 
approximate total sample size  
 

 
 
For the 2-sided case, the solution for N is obtained by numerically inverting the power 
equation.  
 
 
SAS goes through more complicated calculations to find power than R, and it is limited 
in what it is capable of.  SAS only calculates power for two samples while R calculates 
power for as many as we want. 
 
Examples of finding power and sample size are shown in section 3.2.4. 

 

2.4 More on Effect Size 
 
ANOVA Effect Size 
The ANOVA effect size is the degree of departure from having no effect.  Thus if there is 
no effect then all the populations means would be equal.  In a case that there is no effect f 
would equal 0.  Thus this effect size, f, can take on values from 0 to an upper limit 
defined by the nature of the problem. 
 
As mentioned early, 
 

σ
σ μ=Δ  

and 
 

  
k

i
i∑

=

−
=

k

1

2)( μμ
σ μ  

 
The sum of the squared differences in the above equation are the departures of the 
populations means from the mean of the combined populations or the mean of the means 
for equal sample sizes.  The σ is the standard deviation within the populations.   Thus f is 
the ratio of standard deviation of population means to the standard deviation of the 
populations.  However this assumes that we have a balanced design. 
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In R an effect size is needed for the calculation, but in SAS that is not one of the options.  
In SAS the equivalent to an effect size is asking for the group means and the standard 
deviations.  This is all you need to calculate an effect size as seen in the equations above.  
Essentially SAS does the effect size calculation itself making things a little easier. 
 
Chi Square Effect Size 
For a chi square test, the effect size is a value which increases with the degree of 
discrepancy between the two distributions given by the null and the alternative 
hypotheses.  The effect size, w, measures the discrepancy between the paired proportions 
of the null and the alternative hypotheses over the cells.  As mentioned earlier, w is 
defined as, 
 

∑
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pp
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i 0i
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As defined the value of w can be 0 when all the paired proportions, in all cells are equal, 
thus meaning there is no effect and the null hypothesis is true.  And just like the ANOVA 
effect size it can have an upper limit defined by the problem. 
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3  Using SAS and R for a Power Analysis 
 
 
Finding power by hand can be quite difficult, as seen in the previous chapter.  This 
chapter will explain how to use SAS or R for a power or sample size analysis. 
 
 
3.1 Finding Power Using R 
To conduct a power or sample size analysis using R the pwr package must be installed 
and loaded.  In this package there are different functions to find power for different tests.  
For all the power calculations exactly one of the arguments (the one you want to find, 
most likely power or sample size) has to be left NULL for the calculation to be 
completed. 
 
Two Proportions With Equal Sample Sizes 
Function:  pwr.2p.test 
Arguments: h: Effect size 
  n: Number of observations in sample 
  sig.level: Significance level 
  power: Power of test 
  alternative: Character string specifying the alternative hypothesis (  
                               ‘two.sided’, ‘greater’, ‘less’) 
 
Two Proportions With Different Sample Sizes 
Function:  pwr.2p2n.test 
Arguments: h: Effect size 
  n1: Number of observations in first sample 
  n2: Number of observations in second sample 
  sig.level: Significance level 
  power: Power of test 
  alternative: Character string specifying the alternative hypothesis (  
                               ‘two.sided’, ‘greater’, ‘less’) 
 
ANOVA 
Function:  pwr.anova.test 
Arguments: k: Number of groups 
  n: Number of observations per group 
  f: Effect size 
  sig.level: Significance level 
  power: Power of test 
 
Chi Square 
Function:  pwr.chisq.test 
Arguments: w: Effect size 
  N: Total number of observations 

Page | 25  
 



 

  df: Degrees of freedom 
  sig.level: Significance level 
  power: Power of test 
 
 
General Linear Model 
Function:  pwr.f2.test 
Arguments: u: Numerator degrees of freedom 
  v: Denominator degrees of freedom 
  f2: Effect Size 
  sig.level: Significance level 
  power: Power of test 
 
Mean of a Normal Distribution 
Function:  pwr.norm.test 
Arguments: d: Effect size (d = μ-μ0) 
  n: number of observations 
  sig.level: Significance level 
  power: Power of test 
  alternative: Character string specifying the alternative hypothesis (  
                               ‘two.sided’, ‘greater’, ‘less’) 
 
One Sample Proportion Tests 
Function:  pwr.p.test 
Argumetns:  h: Effect size 
  n: Number of observations 
  sig.level: Significance level 
  power: Power of test 
  alternative: Character string specifying the alternative hypothesis (  
                               ‘two.sided’, ‘greater’, ‘less’) 
 
Correlation Test 
Function: pwr.r.test 
Arguments: n: Number of observations 
  r: Correlation coefficient 
  sig.level: Significance level 
  power: Power of test 
  alternative: Character string specifying the alternative hypothesis (  
                               ‘two.sided’, ‘greater’, ‘less’) 
 
One Sample, Two Sample, or Paired t-test 
Function: pwr.t.test 
Arguments: n: Sample size 
  d: Effect size 
  sig.level: Significance level 
  power: Power of test 
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  type: Type of t-test (‘one.sample’, ‘two.sample’, ‘paired.sample’) 
  alternative: Character string specifying the alternative hypothesis (  
                               ‘two.sided’, ‘greater’, ‘less’) 
 
 
Two Sample of Different Sizes t-test 
Function: pwr.t2n.test 
Arguments: n1: Number of observations in first sample 
  n2: Number of observations in second sample 
  d: Effect size 
  sig.level: Significance level 
  power: Power of test 
  alternative: Character string specifying the alternative hypothesis (  
                               ‘two.sided’, ‘greater’, ‘less’) 
 
 
3.2.1 Finding Power Using SAS 
In SAS there is a power procedure that can handle power and sample size calculations for 
many different tests.  This procedure is contained in proc power.  To find power or 
sample use one of the options below with a proc power statement. 
 
PROC POWER < options > ;  

MULTREG < options > ;  

ONECORR < options > ;  

ONESAMPLEFREQ < options > ;  

ONESAMPLEMEANS < options > ;  

ONEWAYANOVA < options > ;  

PAIREDFREQ < options > ;  

PAIREDMEANS < options > ;  

TWOSAMPLEFREQ < options > ;  

TWOSAMPLEMEANS < options > ;  

TWOSAMPLESURVIVAL < options > ;  

 

One or More Coefficients in Multiple Linear Regression 
Statement: MULTREG 
 
Fisher’s z Test or t Test of Correlation 
Statement: ONECORR 
 
Single Binomial Proportion 
Statement: ONESAMPLEFREQ 
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One-Sample t Test, Confidence Interval Precision, or Equivalence Test 
Statement: ONESAMPLEMEANS 
 
One-Way ANOVA Including Single-Degree-of-Freedom Contrasts 
Statement: ONEWAYANOVA 
McNemar’s test for Paired Proportions 
Statement: PAIREDFREQ 
 
Paired t Test, Confidence Interval Precision, or Equivalence Test 
Statement: PAIREDMEANS 
 
Chi-Square, Likelihood Ratio, and Fisher’s Exact Tests for Two Independent 
Proportions 
Statement: TWOSAMPLEFREQ 
 
Two Sample t Test, Confidence Interval Precision, or Equivalence Test 
Statement: TWOSAMPLEMEANS 
 
Log-Rank, Gehan, and Tarone-Ware Tests for Comparing Two Survival Curves 
Statement: TWOSAMPLESURVIVAL 
Table 3.2.1 shows a more detailed summary of the possible analyses and the options that 
can be used using proc power. 
 
Table 3.2.1 
Statement  Options   

Multiple linear 
regression: Type III 
F test 

MULTREG   
  

Correlation: Fisher's 
z test 

ONECORR DIST=FISHERZ 

Correlation: t test ONECORR DIST=T 

Binomial proportion: 
Exact test 

ONESAMPLEFREQ TEST=EXACT 

Binomial proportion: 
z test 

ONESAMPLEFREQ TEST=Z 

Binomial proportion: 
z test with continuity 
adjustment 

ONESAMPLEFREQ TEST=ADJZ 

One-sample t test ONESAMPLEMEANS TEST=T 

One-sample t test 
with lognormal data 

ONESAMPLEMEANS TEST=T DIST=LOGNORMAL 

One-sample 
equivalence test for 
mean of normal data 

ONESAMPLEMEANS TEST=EQUIV 
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One-sample 
equivalence test for 
mean of lognormal 
data 

ONESAMPLEMEANS TEST=EQUIV 
DIST=LOGNORMAL 

Confidence interval 
for a mean 

ONESAMPLEMEANS CI=T 

One-way ANOVA: 
One-degree-of-
freedom contrast 

ONEWAYANOVA TEST=CONTRAST 

One-way ANOVA: 
Overall F test 

ONEWAYANOVA TEST=OVERALL 

McNemar exact 
conditional test 

PAIREDFREQ   

McNemar normal 
approximation test 

PAIREDFREQ DIST=NORMAL 

Paired t test PAIREDMEANS TEST=DIFF 

Paired t test of mean 
ratio with lognormal 
data 

PAIREDMEANS TEST=RATIO 

Paired additive 
equivalence of mean 
difference with 
normal data 

PAIREDMEANS TEST=EQUIV_DIFF 

Paired multiplicative 
equivalence of mean 
ratio with lognormal 
data 

PAIREDMEANS TEST=EQUIV_RATIO 

Confidence interval 
for mean of paired 
differences 

PAIREDMEANS CI=DIFF 

Pearson chi-square 
test for two 
independent 
proportions 

TWOSAMPLEFREQ TEST=PCHI 

Fisher's exact test 
for two independent 
proportions 

TWOSAMPLEFREQ TEST=FISHER 

Likelihood ratio chi-
square test for two 
independent 
proportions 

TWOSAMPLEFREQ TEST=LRCHI 

Two-sample t test 
assuming equal 
variances 

TWOSAMPLEMEANS TEST=DIFF 
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Two-sample 
Satterthwaite t test 
assuming unequal 
variances 

TWOSAMPLEMEANS TEST=DIFF_SATT 

Two-sample pooled t 
test of mean ratio 
with lognormal data 

TWOSAMPLEMEANS TEST=RATIO 

Two-sample additive 
equivalence of mean 
difference with 
normal data 

TWOSAMPLEMEANS TEST=EQUIV_DIFF 

Two-sample 
multiplicative 
equivalence of mean 
ratio with lognormal 
data 

TWOSAMPLEMEANS TEST=EQUIV_RATIO 

Two-sample 
confidence interval 
for mean difference 

TWOSAMPLEMEANS CI=DIFF 
 
 
 

 

Log-rank test for 
comparing two 
survival curves 

TWOSAMPLESURVIVAL TEST=LOGRANK 

Gehan rank test for 
comparing two 
survival curves 

TWOSAMPLESURVIVAL TEST=GEHAN 

Tarone-Ware rank 
test for comparing 
two survival curves 

TWOSAMPLESURVIVAL TEST=TARONEWARE 

 
 
3.2.2 Details of ANOVA in SAS 
The ONEWAYANOVA statement is used for power and sample size analysis.  It can run 
analysis for one degree of freedom contrasts and for the overall F-test in a one-way 
ANOVA.  It can also handle a balanced and an unbalanced design. 
 
To specify an unbalanced design the GROUPWEIGHTS or GROUPNS can be specified.   
 
To specify a balanced design you can leave the NFRACTIONAL options null then the 
default of this will be 1 resulting in a balanced design.  Also using the NPERGROUP 
implicitly specifies a balanced design. 
 
ALPHA= 
Specifies a significance level for the statistical test (default is .05). 
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CONTRAST=  
Specifies coefficients for the different contrasts you want to test. You must have a 
coefficient for every mean in the GROUPMEANS= option.  You can specify multiple 
with additional set of coefficients or with another contrast statement. 
 
GROUPMEANS= or GMEANS= 
Specifies group sample means. 
 
GROUPNS= or GNS= 
Specifies group sample sizes. 
 
GROUPWEIGHTS= or GWEIGHTS=  
Specifies group weights for sample size allocation.  This controls how the sample size is 
divided into each of the groups.  If the NFRACTIONAL option is not used, the total 
sample size has to be equal to a multiple of the sum of the group weights and has to be 
integer values.  Also the number of groups must be the same as with the 
GROUPMEANS= option. 
 
NFRACTIONAL or NFRAC 
Allows for fractional input and output for sample sizes. 
 
NPERGROUP= or NPERG= 
Specifies a common sample size per group or requests a solution for a common sample 
per group with a missing value (NPERG=.). 
 
NTOTAL= 
Specifies the sample size or requests a solution for the sample size with a missing value 
(NTOTAL=.). 
 
NULLCONTRAST= or NULLC 
Specifies the null value of the contrast, default being 0.  This can only be used with the 
TEST=CONTRAST analysis. 
 
OUTPUTORDER= 
Controls how input and default analysis are ordered in output. 
 
POWER= 
Specifies power or requests a solution for power (POWER=.).  
 
SIDES= 
Specifies direction of test, one tailed, two tailed, upper, lower. 
STDEV= or STD= 
Specifies the standard deviation. 
TEST=CONTRAST or TEST=OVERALL 
Specifies type of test. 
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Table 3.2.2 Summary of Options in ONEWAYANOVA 
Task  Options  

Define analysis TEST= 

Specify analysis information ALPHA= 

  CONTRAST= 

  SIDES= 

  NULLCONTRAST= 

Specify effects GROUPMEANS= 

Specify variability STDDEV= 

Specify sample size and allocation GROUPNS= 

  GROUPWEIGHTS= 

  NPERGROUP= 

  NTOTAL= 

Specify power POWER= 

Control sample size rounding NFRACTIONAL 

Control ordering in output OUTPUTORDER= 

 
 
3.2.3 Details of Chi Squared in SAS 
The TWOSAMPLEFREQ statement performs power and sample size analyses for tests 
of two independent proportions. Pearson's chi-square, Fisher's exact, and likelihood ratio 
chi-squared tests can be calculated. 
 
ALPHA=  
Specifies the level of significance of the statistical test. The default is 0.05.  

GROUPPROPORTIONS= or GPROPORTIONS=  or GROUPPS=  or GPS=  
Specifies the two independent proportions, p1 and p2.  

GROUPNS= or  GNS=  
Specifies the two group sample sizes or requests a solution for one group sample size 
given the other.  

GROUPWEIGHTS= or GWEIGHTS=  
Specifies the sample size allocation weights for the two groups, or requests a solution for 
one group weight given the other. This option controls how the total sample size is 
divided between the two groups. Each pair of values for the two groups represents 
relative allocation weights.  
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NFRACTIONAL or NFRAC  
Enables fractional input and output for sample sizes.  

NPERGROUP= or NPERG=  
Specifies the common sample size per group or requests a solution for the common 
sample size per group with a missing value (NPERGROUP=.).  

NTOTAL=  
Specifies the sample size or requests a solution for the sample size with a missing value 
(NTOTAL=.).  

NULLODDSRATIO=  or NULLOR=  
Specifies the null odds ratio. The default value is 1. This option can only be used along 
with the ODDSRATIO= option in the TEST=PCHI analysis.  

NULLPROPORTIONDIFF=  or NULLPDIFF=  
Specifies the null proportion difference. The default value is 0. This option can only be 
used along with the GROUPPROPORTIONS= or PROPORTIONDIFF= option in the 
TEST=PCHI analysis. 

NULLRELATIVERISK=  or NULLRR=  
Specifies the null relative risk. The default value is 1. This option can only be used along 
with the RELATIVERISK= option in the TEST=PCHI analysis  

ODDSRATIO= or OR=  
Specifies the odds ratio.  

OUTPUTORDER= or OUTPUTORDER= or OUTPUTORDER=  
Controls how the input and default analysis parameters are ordered in the output. 
OUTPUTORDER=INTERNAL (the default) produces output sorted respectively by  

The OUTPUTORDER=SYNTAX option arranges the parameters in the output in the 
same order that their corresponding options are specified in the TWOSAMPLEFREQ 
statement. The OUTPUTORDER=REVERSE option arranges the parameters in the 
output in the reverse of the order that their corresponding options are specified in the 
TWOSAMPLEFREQ statement.  

POWER=  
Specifies the desired power of the test or requests a solution for the power with a missing 
value (POWER=.).  

PROPORTIONDIFF=number-list or PDIFF=number-list  
Specifies the proportion difference p2 - p1.  

 

REFPROPORTION= or REFP=  
Specifies the reference proportion p1.  
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RELATIVERISK= or RR=  
Specifies the relative risk p2 / p1  

SIDES=  
specifies the number of sides (or tails) and direction of the statistical test or confidence 
interval.  

1  
1-sided with alternative hypothesis in same direction as effect  

2  
2-sided  

U  
upper 1-sided with alternative greater than null value  

L  
lower 1-sided with alternative less than null value  

The default value is 2.  

TEST=FISHER or TEST=LRCHI or TEST=PCHI  
Specifies the statistical analysis. TEST=FISHER specifies Fisher's exact test. 
TEST=LRCHI specifies the likelihood ratio chi-square test. TEST=PCHI (the default) 
specifies Pearson's chi-square test.  

 

Table 3.2.3 Summary of Options in TWOSAMPLEFREQ 

Task  Options

Define analysis TEST= 

Specify analysis information ALPHA= 

  NULLPROPORTIONDIFF=

  NULLODDSRATIO= 

  NULLRELATIVERISK= 

  SIDES= 

Specify effects GROUPPROPORTIONS= 

  ODDSRATIO= 

  PROPORTIONDIFF= 

  REFPROPORTION= 

  RELATIVERISK= 

Specify sample size and allocation GROUPNS= 

  GROUPWEIGHTS= 
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  NPERGROUP= 

  NTOTAL= 

Specify power POWER= 

Control sample size rounding NFRACTIONAL 

Control ordering in output OUTPUTORDER= 

 
3.2.4 Examples of Power Analyses for ANOVA and Chi Squared 
This section will go over examples for different types of ANOVA and Chi Square power 
analysis in both R and SAS. 
 
Example 3.2.1 Finding power of a balanced one way ANOVA 
Suppose we have, 
µ1= 59  σ = 12  k = 3 
µ2= 66  α = .05 
µ3= 42  n = 4 
 
Using this information we have: 
f = .84 
 
R Input/Output: 
> pwr.anova.test(f=.84,k=3,n=4,sig.level=0.05) 
 
     Balanced one-way analysis of variance power calculation  
 
              k = 3 
              n = 4 
              f = 0.84 
      sig.level = 0.05 
          power = 0.5848498 
 
 NOTE: n is number in each group 
 
SAS Input/Output 
proc power; 
 onewayanova e = erall t st ov
 groupmeans=59|66|42 
 std=12 
 npergroup=4 
 power=. 
 ; 
run; 
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                                       The POWER Procedure 
                                 Overall F Test for One-Way ANOVA 
 
                                     Fixed Scenario Elements 
 
                              Method                          Exact 
                              Group Means                  59 66 42 
                              Standard Deviation                 12 
                              Sample Size Per Group               4 
                              Alpha                            0.05 
 
 
                                          Computed Power 
 
                                              Power 
 
                                              0.585 

 
Example 3.2.2 Finding power of a balanced one way ANOVA 
Suppose we have, 
µ1= 2.24 σ = .3 
µ2= 2.20 α = .05 
µ3= 2.29 n = 10 
µ4= 2.34 k = 5 
µ5= 2.19  
 
Using the above information we have: 
f = .187 
 
R Input/Output 
> pwr.anova.test(f=.187,k=5,n=10,sig.level=0.05) 
 
     Balanced one-way analysis of variance power calculation  
 
              k = 5 
              n = 10 
              f = 0.187 
      sig.level = 0.05 
          power = 0.1425926 
 
 NOTE: n is number in each group 
 
SAS Input/Output 
proc power; 
 onewayanova test=overall 
 groupmeans=2.24|2.20|2.29|2.34|2.19 
 std=.3 
 npergroup=10 
 power=. 
 ; 
run; 
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                                       The POWER Procedure 
                                 Overall F Test for One-Way ANOVA 
 
                                     Fixed Scenario Elements 
 
                         Method                                     Exact 
                         Group Means              2.24 2.2 2.29 2.34 2.19 
                         Standard Deviation                           0.3 
                         Sample Size Per Group                         10 
                         Alpha                                       0.05 
 
 
                                          Computed Power 
 
                                              Power 
 
                                              0.144 
 
Example 3.2.3 Finding n of a balanced one way ANOVA 
Suppose, 
µ1= 15  σ = 1.5  k = 3 
µ2= 14  α = .05 
µ3= 18  power = .8 
 
Using this information we have: 
f = 1.13 
 
R Input/Output: 
> pwr.anova.test(f=1.13,k=3,power=0.80,sig.level=0.05) 
 
     Balanced one-way analysis of variance power calculation  
 
              k = 3 
              n = 3.718485 
              f = 1.13 
      sig.level = 0.05 
          power = 0.8 
 
 NOTE: n is number in each group 
 
SAS Input/Output: 
proc power; 
 onewayanova test=overall 
 groupmeans=15|14|18 
 std=1.5 
 npergroup=. 
 power=.80 
 ; 
run; 
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                                       The POWER Procedure 
                                 Overall F Test for One-Way ANOVA 
 
                                     Fixed Scenario Elements 
 
                                Method                       Exact 
                                Group Means               15 14 18 
                                Standard Deviation             1.5 
                                Nominal Power                  0.8 
                                Alpha                         0.05 
 
 
                                       Computed N Per Group 
 
                                         Actual    N Per 
                                          Power    Group 
                                          0.846        4 

 
 
Example 3.2.4 Finding n of a balanced one way ANOVA 
µ1= 23  σ = 5 
µ2= 32  α = .05 
µ3= 25  power = .85 
µ4= 29  k = 5 
µ5= 26  
 
Using the above information we have: 
f = .632 
 
R Input/Output: 
> pwr.anova.test(f=.632,k=5,power=0.85,sig.level=0.05) 
 
     Balanced one-way analysis of variance power calculation  
 
              k = 5 
              n = 7.73407 
              f = 0.632 
      sig.level = 0.05 
          power = 0.85 
 
 NOTE: n is number in each group 
 
SAS Input/Output 
proc power; 
 onewayanova e = e lt st ov ra l 
 groupmeans=23|32|25|29|26 
 std=5 
 npergroup=. 
 power=.85 
 ; 
run; 
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                                       The POWER Procedure 
                                 Overall F Test for One-Way ANOVA 
 
                                     Fixed Scenario Elements 
 
                               Method                         Exact 
                               Group Means           23 32 25 29 26 
                               Standard Deviation                 5 
                               Nominal Power                   0.85 
                               Alpha                           0.05 
 
 
                                       Computed N Per Group 
 
                                         Actual    N Per 
                                          Power    Group 
 
                                          0.866        8 
 
 
As you can see in the previous four examples both SAS and R came up with the same 
results. 
 
 
Example 3.2.5 Finding n of an unbalanced one way ANOVA 
SAS Input/Output 

   proc power;  
      onewayanova test=overall  
         groupmeans = 3 | 7 | 8  
         stddev = 4  
         groupweights = (1 2 2)  
         ntotal = .  
         power = 0.8;  
   run; 

 
                                       The POWER Procedure 
                                 Overall F Test for One-Way ANOVA 
 
                                     Fixed Scenario Elements 
 
                                Method                       Exact 
                                Group Means                  3 7 8 
                                Standard Deviation               4 
                                Group Weights                1 2 2 
                                Nominal Power                  0.8 
                                Alpha                         0.05 
 
 
                                         Computed N Total 
 
                                         Actual        N 
                                          Power    Total 
 
                                          0.819       50 
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3.3 Overview of Plotting Power Curves in SAS 
Power curves are visual tools that compare power for different parameters.  For example 
a power curve can visually show the power for a variety of different sample sizes.  This 
makes it easy to see approximately how big the sample size has to be in order to obtain a 
specified power.  It can also do the same thing using standard deviations and so on. 
 
SAS has the capability of producing these curves and can make them several different 
ways.  In order to produce these curves using SAS, all that needs to be done is an addition 
of a plot statement at the end of the code where the power analysis is ran.  This can be 
done for all the different tests SAS offers.  Details and examples of plotting power for 
ANOVA and chi square are shown in the next sections.   
 
There are many different options you can choose when using a plot statement.  These 
options are discussed in section 3.4. 
 
ANOVA Power Curves 
To produce a power curve for an ANOVA test comparing sample size versus power all 
that is needed is the code specified in section 3.2.2 and a plot statement.  However the 
only difference is that in the npergroup statement one needs to specify more than one 
number for it to be possible to create a curve.  The more sample sizes that are specified 
the better the fit of the curve. 
 
Example 3.3.1 shows you a power curve of sample size versus power.  If you want to 
switch the axis all you would need to do is use the y= option.  Example 3.3.2 shows you 
this. 
 
SAS can also plot power and sample size for different standard deviations.  All you 
would need to do is in addition to specifying multiple sample sizes is to specify different 
standard deviations.  This is shown in Example 3.3.3.  
 
One thing SAS does not plot for the ANOVA power curves is the effect size.  However it 
will produce curves for different group means.  So the imputed group means must be 
used to compute the effect sizes.  Example 3.3.4 shows this in addition to the different 
standard deviations. 
 
It is also possible to produce these curves for different contrasts by specifying the 
contrasts you want to test.  Like the overall test, SAS can also do this using different 
standard deviations and different means.  Example 3.3.5 is a simple example of power 
using contrasts with just one standard deviation and one set of group means. 
 
Not only does SAS produce these curves, in the output it produces a table of all the 
powers for the different combinations of the parameters specified.  Table 3.3.1 shows a 
partial table for the combinations of standard deviations, group means, and sample sizes 
using the specifications of example 3.3.4. 
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Example 3.3.1 
proc power; 
 onewayanova test=overall 
 groupmeans=59|66|42 
 std=12 
 npergroup=2 5 7 10 15 20 
 power=.; 
 plot; 
run;  
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Example 3.3.2 
proc power; 
 onewayanova test=overall 
 groupmeans=59|66|42 
 std=12 
 npergroup= 2 5 7 10 15 20 
 power=.; 
 plot y=n; 
run; 
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Example 3.3.3 
proc power; 
 onewayanova test=overall 
 group 59 66|42 means= |
 std= 5 8 10 12 
 npergroup= 3 4 5 6 7 8 9 10 
 power=.; 
 plot y=n; 
run; 
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Example 3.3.4 
proc power; 
 onewayanova test=overall 
 group s 59 66 42) (55 64 49)  mean =(
 std= 8 10 12 
 npergroup= 3 4 5 6 7 8 9 10 
 power=.; 
 plot y=n; 
run; 
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Example 3.3.5 
proc power; 
 onewayanova test=contrast 
 contrast = (1 1 2 (1 0 -1)   - ) 
 groupmeans=(59 66 42)  
 std= 12 
 npergroup= 3 4 5 6 7 8 9 10 
 power=.; 
 plot y=n; 
run; 
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Table 3.3.1 Power For Different Combinations of Arguments For ANOVA 
 
    Computed Power 
 
                                                       Std    N Per 
                         Index    ------Means------    Dev    Group    Power 
 
                             1     59     66     42      8        3    0.737 
                             2     59     66     42      8        4    0.914 
                             3     59     66     42      8        5    0.976 
                             4     59     66     42      8        6    0.994 
                             5     59     66     42      8        7    0.998 
                             6     59     66     42      8        8    >.999 
                             7     59     66     42      8        9    >.999 
                             8     59     66     42      8       10    >.999 
                             9     59     66     42     10        3    0.541 
                            10     59     66     42     10        4    0.750 
                            11     59     66     42     10        5    0.875 
                            12     59     66     42     10        6    0.941 
                            13     59     66     42     10        7    0.974 
                            14     59     66     42     10        8    0.989 
                            15     59     66     42     10        9    0.995 
                            16     59     66     42     10       10    0.998 
                            17     59     66     42     12        3    0.400 
                            18     59     66     42     12        4    0.585 
                            19     59     66     42     12        5    0.727 
                            20     59     66     42     12        6    0.828 
                            21     59     66     42     12        7    0.895 
                            22     59     66     42     12        8    0.938 
                            23     59     66     42     12        9    0.964 
                            24     59     66     42     12       10    0.980 
                            25     55     64     49      8        3    0.345 
                            26     55     64     49      8        4    0.510 
                            27     55     64     49      8        5    0.648 
                            28     55     64     49      8        6    0.756 
                            29     55     64     49      8        7    0.835 
                            30     55     64     49      8        8    0.891 
                            31     55     64     49      8        9    0.930 
                            32     55     64     49      8       10    0.955 
                            33     55     64     49     10        3    0.235 
                            34     55     64     49     10        4    0.347 
                            35     55     64     49     10        5    0.454 
                            36     55     64     49     10        6    0.552 
                            37     55     64     49     10        7    0.638 
                            38     55     64     49     10        8    0.711 
                            39     55     64     49     10        9    0.772 
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Chi Square Power Curves 
Just like plotting power curves using ANOVA, chi squared power curves can be plotted 
in the same way, by using the plot statement. 
 
Example 3.3.6 plots group sample size versus power.  Again one needs to specify more 
than one group sample size to produce a curve, however the more sample sizes that are 
used the better the curve will fit. 
 
For a Pearson’s chi square test SAS is not able to produce a power curve using effect 
size, to get around this you can specify different group proportions and calculate the 
effect size by hand.  Example 3.3.7 shows this.  
 
One can also specify different null hypothesis proportions in addition to different group 
means proportions.  This is shown in Example 3.3.8. 
 
Just like the ANOVA test, tables for power of the different combinations of the 
parameters will be produced in the output.  An example table is shown in Table 3.3.2 for 
example 3.3.8. 
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Example 3.3.6 
proc power;  
      twosamplefreq test=pchi  
      groupproportions = (.6 .4)  
      nullproportiondiff = 0 
      npergroup = 25 50 75 100 200 
      power = .; 
   plot; 
 run; 
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Example 3.3.7 
proc power;  
      twosamplefreq test=pchi  
      groupproportions = (.6 .4) (.7 .3) (.55 .45) (.49 .51)  
      nullproportiondiff = 0 
      npergroup = 25 50 75 100 200 
      power = .; 
   plot; 
 run; 
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Example 3.3.8 
proc power;  
      twosamplefreq test=pchi  
      groupproportions = (.6 .4  (.7 .3)  )
      nullproportiondiff = 0 .05 
      npergroup = 25 50 75 100 200 
      power = .; 
   plot; 
 run; 
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Table 3.3.2 Power For Different Combinations of Arguments For Chi Square 
 
                                          Computed Power 
 
                                Null 
                          Proportion                                  N Per 
                 Index          Diff    Proportion1    Proportion2    Group    Power 
 
                     1          0.00            0.6            0.4       25    0.289 
                     2          0.00            0.6            0.4       50    0.516 
                     3          0.00            0.6            0.4       75    0.691 
                     4          0.00            0.6            0.4      100    0.812 
                     5          0.00            0.6            0.4      200    0.981 
                     6          0.00            0.7            0.3       25    0.828 
                     7          0.00            0.7            0.3       50    0.987 
                     8          0.00            0.7            0.3       75    >.999 
                     9          0.00            0.7            0.3      100    >.999 
                    10          0.00            0.7            0.3      200    >.999 
                    11          0.05            0.6            0.4       25    0.422 
                    12          0.05            0.6            0.4       50    0.709 
                    13          0.05            0.6            0.4       75    0.870 
                    14          0.05            0.6            0.4      100    0.946 
                    15          0.05            0.6            0.4      200    >.999 
                    16          0.05            0.7            0.3       25    0.909 
                    17          0.05            0.7            0.3       50    0.997 
                    18          0.05            0.7            0.3       75    >.999 
                    19          0.05            0.7            0.3      100    >.999 
                    20          0.05            0.7            0.3      200    >.999 
 
 

 
3.4 Plot Options in SAS 
You can specify the following plot options in the PLOT statement. 
 
INTERPOL=JOIN or INTERPOL=NONE  
Specifies the type of curve to draw through the computed points.  

KEY= BYCURVE or KEY= BYFEATURE or KEY= ONCURVES  
Specifies the style of key for the plot. The default is KEY=BYFEATURE. Each entry 
shows the mapping between a value of the feature and the value(s) of the analysis 
parameter(s) linked to that feature 

MARKERS=ANALYSIS or MARKERS=COMPUTED or MARKERS=NICE or 
MARKERS=NONE  
Specifies the locations for plotting symbols.  

MAX= 
Specifies the maximum of the range of values for the parameter associated with the 
"argument" axis (the axis that is not representing the parameter being solved for).  
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MIN= 
Specifies the minimum of the range of values for the parameter associated with the 
"argument" axis (the axis that is not representing the parameter being solved for).  

NPOINTS=  or NPTS= 
Specifies the number of values for the parameter associated with the "argument" axis. 
You cannot use the NPOINTS= and STEP= options simultaneously.  

STEP= 
Specifies the increment between values of the parameter associated with the "argument" 
axis. You cannot use the STEP= and NPOINTS= options simultaneously.  

VARY ( feature < BY parameter-list > ... feature < BY parameter-list > )  
Specifies how plot features should be linked to varying analysis parameters. Available 
plot features are COLOR, LINESTYLE, PANEL, and SYMBOL. A "panel" refers to a 
separate plot with a heading identifying the subset of values represented in the plot.  

X=EFFECT or X=N or X=POWER  
Specifies a plot with the requested type of parameter on the x-axis and the parameter 
being solved for on the y-axis. When X=EFFECT, the parameter assigned to the x-axis is 
the one most representative of "effect size." When X=N, the parameter assigned to the x-
axis is the sample size. When X=POWER, the parameter assigned to the x-axis is the one 
most representative of "power” You cannot use the X= and Y= options simultaneously.  
 
You can only use the X=N option when a scalar sample size parameter is used as input in 
the analysis. For example, X=N can be used with total sample size or sample size per 
group, or with two group sample sizes when one is being solved for.  

 

 
3.5 Advantages and Disadvantages of SAS and R 
SAS and R both have their advantages and disadvantages when it comes to computing 
power.  They both have different inputs and what they can do for different tests.  Thus 
it’s an issue of the right software for the right problem.  What one wants to do and what 
information one knows will guide the decision of what to use, SAS or R. 
 
One Way ANOVA Power Analysis 
R is limited in what it can do when doing this kinds of power analyis.  The only type of 
design that R can find power for is a balanced one way ANOVA design.  It cannot handle 
an unbalanced design which is a big limitation in what it can do.  It also only computes 
power for an overall F test.  Another thing that can be good or bad with R is that one of 
its inputs is the effect size, Δ.  This means that in order to calculate power you first must 
calculate the effect size.  This computation can be a difficult to do especially when you 
have a lot of groups to deal with.  An alternative is to use what Cohen defines as a small, 
medium, or large effect size (.10, .25, .40 respectively), in his book Statistical Power for 
the Behavioral Sciences.  This is a good option to use the group means are not known, 
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but when they are, it does not make sense to not calculate the effect size.  One can also go 
by the convention of effect size defined in the field of the experiment. 
 
When doing this same analysis in SAS, it has a lot more flexibility in what can be done.  
It can handle both a balanced and unbalanced design.  To specify an unbalanced design 
the options GROUPWEIGHTS or GROUPN can be used.  Not only can SAS handle both 
these designs, it can also test the overall F and it can test different contrasts, whereas R 
only tests the overall F.  This gives SAS more flexibility and more options than R. 
 
So overall using SAS would be a better choice.  It can do a power analysis for a balanced 
and unbalanced design and it can handle both an overall F and different contrasts.  The 
only time R has an advantage is when the group means are not known and the only option 
is to use a general effect.  Otherwise I would use SAS in computing power for a one way 
ANOVA. 
 
 
Chi Square Power Analysis 
Both R and SAS are capable in doing a power analysis for a chi square test.  However 
SAS has more options in which to choose from to do a variety of different things that R 
cannot.  In SAS one is able to choose what kind of chi square test they want to run, 
Pearson, Fisher’s exact test for two proportions, or a likelihood ratio chi square test.  Also 
it allows for testing for different things like proportions, proportion differences, odds 
ratios, and relative risks.  In R you are limited to a Pearson test and testing for a 
proportion.  But there is a disadvantage in using SAS for these types of calculations; it 
only handles two proportions which limits its capabilities. 
 
The advantage in using R is that it can handle two, three, five, or as many proportions as 
needed, whereas SAS only does two.  However it does not have as many options as SAS 
does as mentioned earlier.  R only deals with proportions, not odds ratios or relative risks 
and you can’t use Fisher’s exact test or a likelihood ratio test.  Also effect size must be 
one of the inputs.  But included in the pwr pakage are functions that will calculate this 
effect size.  ES.w1 and ES.w2 are the functions that will calculate the effect size.  This 
adds an extra step into the calculation but it is much easier to use these functions than to 
calculate them by hand.  If one does not want to go through this step but want to use R 
then Cohen’s suggestion of a small, medium, and large effect size (.10,  .30, .50 
respectively) can be used depending on what one wants to find from the study.  One can 
also use the convention of effect size determined from the field one is in. 
 
Therefore if one wants to test more than two proportions use R.  If one is only testing two 
proportions and wants more flexibility SAS should be used. 
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Graphing Capabilities 
An advantage of using SAS is that it is very easy to create a power curve.  All it takes is 
an addition of a plot statement and the power curve will be created.  If one is using R they 
have to create the graph themselves by using the results of the power analysis that was 
ran.  This is a little more difficult and more labor intensive than SAS. 
 
However there is more flexibility and control in how the graph looks in R.  One can 
control the colors, the plotting symbols, location of the legend, and other things of that 
nature.  In SAS these things are already predetermined by the software. 
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