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Abstract 

Structured Light (SL) sensing is a well established m e t h o d o f r ange acquisition for Com-

puter Vision. This chapter provides thorough discussions of design issues, calibration 

methodologies and implementation schemes for SL sensors. The challenges for SL sen-

sor development are described and a range of approaches are surveyed. A novel SL sensor, 

PRIME, the PRo�le Imaging ModulE has recently been developed and is used as a design 

example in the detailed discussions. 
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1 Introduction 

Machine vision as a discipline and technology owes its creation, development and growth to 

digital computers. Without computers machine vision is not possible. 

The main objective of machine vision is to extract information useful for performing some task 

from various forms of image inputs [1, 2]. Examples of machine vision tasks include, robot guid-

ance [3, 4, 5], remote sensing [6], medical diagnosis [7, 8], various types of inspection [9], document 

processing [10, 11] and many more. For many applications three dimensional (3-D) descriptors of 

the scene are required. Conventional cameras capture 2-D images and computational approaches 

are needed to infer the 3-D descriptors from one or more images. Common approaches for this 

include the use of 2 or more cameras in binocular and photometric stero [12, 13, 14, 15, 16, 17, 18]. 

Approaches using single images include various structure from \x" (x�shading, texture, shad-

ows,motion) techniques [19]. Recent a d v ances include structure from image streams [20, 21] and 

frameworks for integrating more than one technique for 3-D information extraction [22]. 

The above approaches share one very important common feature. They are all \passive" 

approaches, i.e. they do not need a special source of energy to illuminate the scene. There 

are obvious advantages of this approach: cost, simplicity of imaging hardware, compatibility 

with human visual processes, etc. On the other hand these approaches need to also overcome 

some inherent c hallenges. These challenges arise from the loss of information associated with the 

perspective mapping of a 3-D scene onto a 2-D image. This produces a fundamentally ill-posed 

problem when single images are used to �nd the 3-D descriptors. 

Additional challenges that face machine vision researchers are due to spatial and intensity 
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quantization of images and due to computational requirements. These e�ects manifest themselves 

in robustness, speed and accuracy performance metrics. In some sense, the advantages of simpler 

and low cost acquisition hardware is compensated with the need for sophisticated computational 

processing and analysis approaches. 

\Active" approaches for 3-D vision use specialized illumination sources and detectors. These 

techniques overcome the fundamental ambiguities associated with passive approaches. Some 

active t e c hniques use laser radar [23, 24], others use various forms of structured lighting [25, 26, 

27, 28, 29, 30]. In general these methods are able to eliminate the ill-posed problems associated 

with passive approaches by modeling and observing the projected illumination. In the case of 

laser radar, a spot laser beam is steered across a scene. Range measurements are made by either 

AM or FM detection schemes. Structured Light techniques model the optical paths associated 

with emission and detection to compute range data by triangulation. 

Structured Light ranging has some particularly attractive features compared to laser radar 

approaches. SL systems can be designed \from the ground, up" much more so than with a 

packaged laser radar sensor. This provides signi�cant a d v antages for customizing the acquisition 

capabilities of a sensor for a particular application. Generally speaking, SL sensors are also more 

accurate and can be made more rugged, and less expensively than laser radar devices [31]. 

This tutorial focuses on Structured Light sensing. Some critical design issues are discussed, as 

well as methods of sensor calibration and metrics for calibration models. The implementation of 

PRIME, th e PRo�le Imaging ModulE, is described in detail, including various design tradeo�s 

and sensor performance benchmarks. 
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2 Introduction to Structured Light Ranging 

Structured Light (SL) sensing is a well established technique for ranging. A great variety o f 

techniques in this general area have b e e n d e v eloped [32, 26, 24]. The common thread of all 

these approaches is the underlying use of triangulation. This ranging geometry can be seen in 

Figure 1, which depicts the optical components in PRIME. Here, the laser is projected downward 

towards objects in the scene. Laser illumination striking an object is observed by the camera to 

reveal surface pro�les which can be converted into Cartesian range data. In PRIME, the ranging 

triangle is completed by a rigid backbone between the camera and laser. 

Rigid Sensor 
Backbone 

Camera Laser Plane 

Laser 

Scanned Object 

Range 
Measurement 

Wheel 
Encoder 

Conveyer
 

Figure 1: Structured Light systems use triangulation to acquire r ange measurements. In PRIME, the 
ranging geometry is formed by a laser emission, the re�ected light observed b y t h e c amera and by a 
rigid backbone. Optical measurements capture r ange data in a plane. A conveyer produces the necessary 
motion for 3-D range data. 
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The three main challenges in developing a Structured Light system are calibration, accuracy 

and acquisition speed. Calibration models are needed to relate image to world coordinates. See 

Figure 2. Methods of calibration are critical for success, but are usually not described in su�cient 

detail in published works. Typically, procedures require examples of image coordinates to be 

generated by calibration targets, the positions of which m ust be known with high accuracy. T o 

ensure accurate ranging in the �nal system, the calibration data must be generated at distances 

from targets that span the range of stando�s that will be used during sensing. If the intended 

stando� is on the order of a few feet or less, then standard optical bench equipment can be of 

great utility during calibration. Hence, the di�culty of this task can vary with the intended 

stando� of the sensor. 

Challenges in calibration also arise from the complexity of models that are required for sensor 

kinematics. These kinematics describe the geometrical relationship between the camera and the 

laser plane. If, for example, these kinematics are �xed then the calibration procedure is much 

simpler. PRIME is such a system, which is referred to here as having a \�xed-plane geometry", 

as seen in Figure 1. An alternative t o h a ving a �xed triangular geometry is to reorient the optical 

paths while ranging. Using a \dynamic-plane geometry" in this manner [29, 33] can permit larger 

regions to be scanned more rapidly. These approaches typically reorient the laser beam using 

low inertia optical components. Beam repositioning in this manner can be achieved with high 

speed and high precision. While dynamic geometries are attractive from the point o f v i e w o f 

acquisition speed, they usually require more complex calibration models [34, 29, 30]. 

Ranging accuracy is highly dependent on calibration models. However, even the most careful 

calibration e�ort can be fruitless if the ranging geometry is unfavorable. This refers to the 
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Figure 2: The purpose of sensor calibration is to �nd a mapping between image and world coordinates. 
In PRIME, this relationship is �xed b ecause of the rigid backbone between the laser and camera. 

Figure 3: Image of laser pro�le seen by camera. The camera's optical �lter was removed for this image 
to better reveal objects in the scene. 
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sensitivity of range measurements to various system parameters, see section 6 for a sensitivity 

analysis of PRIME. 

Acquisition speed is another challenge to SL system design. Range acquisition involves locating 

the laser pro�le within camera images. This requires pixel examination and processing in order 

to precisely locate image coordinates that reside at the center of the laser pro�le. While the 

complexity of these algorithms are low, the computational requirements are relatively high. As 

seen in Figure 3, systems such as PRIME must process images with relatively low information 

density - this image has only one view of the laser line. Given the size of a standard image 

and relatively small area of pixels illuminated by the laser line (� 1%), a signi�cant amount o f 

pixel-level computational e�ort must be expended to acquire the range data associated with a 

single image. Because of this relatively low p a yo�, many researchers have e x p e r i m e n ted with 

ways to pack more laser lines into a single image [35, 28, 29]. Approach e s w i t h m ultiple laser 

images necessitate using a heuristic to determine the correspondence between image features and 

laser positions. Several methods for this are reviewed below. 

Some discussion is appropriate concerning the fundamental limitations of SL ranging. Surface 

re�ectivity is one such factor. For reliable range data, a scanned object should have surfaces 

with lambertian re�ectivity. Specular surfaces will often re�ect too much of the structured 

illumination away from the camera. This produces voids in range data. Note that the degree of 

surface re�ectivity can be counter-intuitive when dealing with near-InfaRed (IR) laser systems, 

such as PRIME, since these wavelengths are beyond the human visual range. 

Shadowing is also a fundamental problem in SL systems. This occurs when object geometries 

occlude the laser from the �eld of view of the camera. Shadowing e�ects can be reduced when 
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the camera to laser baseline distance is shortened. However, this also increases the sensitivity o f 

the system to measurement noise - see section 6. 

Ambient lighting is an important design issue. It can be a limitation to SL or other types 

of optical ranging if ambient sources are unfavorable and cannot be controlled. Monochromatic 

illumination and matched optical �lters for cameras can be used to tackle this problem, as in 

PRIME, provided the ambient l i g h ting can be setup on a di�erent w avelength. Florescent lighting 

and near-IR SL ranging make a v ery nice complementary pair. This combination provides ample 

room light without contaminating range imagery. Incandescent l i g h t i s a v ery poor choice for 

use with near-IR SL systems. 

The novelty of PRIME stems from new approaches to calibration and to pixel-level operations. 

These techniques make for a system that has real-time acquisition, is accurate, easy to calibrate 

and made entirely from commercial components. The following sections review other SL e�orts 

and then detail the approach t a k en in PRIME. 

3	 Literature Review and Highlight of Critical Design 

Issues 

The scope of this review is limited to ranging systems with the same style of laser emission as 

PRIME - a laser plane. Excellent reviews are available for a much broader scope in [24, 23]. 

The purpose of this review is to highlight design alternatives in Structured Light sensors and to 

examine the tradeo�s taken in PRIME. 

Three critical aspects SL sensor design are presented here. Backbone Geometry describes 
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the geometrical relationship between the laser(s) and camera. Correspondence and Pixel-

Level Analysis are image processing issues at the large and small scale, respectively. The 

correspondence problem deals with establishing an association between a region of an image and 

the location of the illumination source (in world coordinates). Pixel-level analysis takes over once 

the correspondence problem has been solved, to �nd the precise image location of illumination 

patterns. 

3.1 Backbone Geometry Designs 

This aspect of a SL sensor design has to do with the geometry between the camera and laser 

plane. \Fixed-Plane" geometries have a d v antages in calibration, simplicity and ruggedness due 

to the absence of any m o ving optical components. This is the approach t a k en in PRIME. This 

necessitates some other source of motion in order to acquire range data in 3-D. In [36] a �xed-

plane is used in conjunction with a rotating table. One of the �rst industrial applications of 

SL [32] used a conveyer belt, as does PRIME. 

\Dynamic-Plane" systems alter backbone geometry during the ranging process. These systems 

are generally able to scan larger areas more quickly, and do not require additional mechanisms 

to supply motion. Accuracy and calibration can become more challenging, however. Rotating 

optical components began appearing in the work of [37, 38, 39]. In [35] the imprecision associated 

with using gear trains to rotate optics is described. Other approaches have used direct-drive 

motors, some galvanometer-based, to rotate optics [34, 29]. 

The complexity of modeling the laser re�ection can vary signi�cantly, depending on the re-

quired accuracy of a system. Simple re�ection models [33, 40] assume a perfect alignment b e t ween 
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the laser line and the axis of rotation. When a front-silvered mirror is rotated about an axis 

that is o�set from the re�ecting surface, a displacement of the laser plane is introduced. This 

displacement is also sometimes ignored. In [34, 29] a more complete geometrical model is used. 

In [41, 30] a half-sphere �eld of view necessitated the use of a dynamic-plane system with 

pan and tilt units for both cameras and lasers. Emitter and detector units were also housed 

separately, requiring an in situ calibration as well as dynamic geometrical models for each u n i t . 

3.2 Approaches to SL Correspondence Problem 

It is reasonable to consider imaging multiple laser pro�les in a single camera image in order to 

achieve increased acquisition rates. More than one laser pro�le per image increases the infor-

mation content, but necessitates a scheme for establishing the correspondence between a laser 

pro�le and the associated laser plane geometry. H a ving no ancillary means to establish corre-

spondence [42] can result in a combinatorically unfavorable problem. In [25] the correspondence 

problem is addressed using relaxation labeling. 

In [35] a color camera was used to observe m ulticolored pro�les. In this approach the position 

of each colored plane was �xed and all planes were projected simultaneously. This provided 

images with a clear correspondence relationship that could be acquired in a single frame time. 

In [29] a time-lapse image of closely-spaced pro�les was collected. Here the correspondence 

problem was solved by computing a second registered image that contained position-stamp infor-

mation for each pro�le. This was accomplished using simple processing steps, allowing position-

stamping to be implemented in real-time on commercially available hardware. 

Another useful technique involves collecting a sequence of well registered images while illumi-
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nation sources are toggled on and o�. In this way, each laser pro�le can be identi�ed by analyzing 

which images in the sequence it appears [43, 44, 45, 28]. 

If multiple laser pro�les are present in an image, or if a sequence of images must be analyzed, 

then it can be necessary for objects in a scene to remain motionless during the acquisition cycle. 

These types of approaches introduce limitations in more dynamic environments. 

3.3 Methods of Pixel-Level Analysis 

Once the correspondence between a pro�le and the actual laser position are established, it is 

necessary to precisely determine image coordinates at the center of the laser pro�le. The precision 

with which these coordinates are located e�ects the overall accuracy of range measurements. 

Speed and accuracy tradeo�s exist here. 

One approach to speeding up SL acquisition is to perform the \pixel-level" analysis in the 

analog domain. An early e�ort in this area [46] made the assumption that stripes are roughly 

vertical. This approach used dedicated timing hardware to �nd the illumination on each horizon-

tal scan line. This provided image coordinates at frame rate image. More recent approaches [40] 

have used VLSI implementations that incorporate analog detection and timing operations in a 

single chip. 

In [35] a peak detection algorithm was used to �nd image coordinates at the center of the laser 

pro�les. This analysis did not provide results with subpixel accuracy. An analog implementation 

of this scheme was also proposed. 

In [41] the nominal orientation of the laser pro�le could not be assumed and pixel-level op-

erations had to be performed at di�erent orientations. Here, video images were digitized and 
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pixel-level analysis was performed in di�erent directions, using an adaptive s c heme. 

3.4 Alternate Structures for Illumination 

It is worth considering a variety of structures for illumination when at the early design stage of 

a SL system. One such approach uses a spot of laser illumination. These are sometimes referred 

to as \�ying dot" systems. 

If a video camera is used for this type of system, the approach can su�er in terms of acquisition 

speed due to the low information density per image [47]. Because of this, many approaches turn 

to 1-D detectors [48] or to custom optics [49]. 

Despite the problem of low information density, there is a signi�cant a d v antage to �ying-dot 

systems that use 2-D video images, or some other type of 2-D detector. When a directional 

vector (in R3) i s a vailable, from the detector to the �ying dot, an on-line con�dence measure 

can be computed for each range point. The ranging process in these systems can be formulated 

as an intersection calculation of two lines, one along the laser optical axis and the other along 

the camera sighting of the �ying dot. The closest point o f i n tersection between these two l i n e s 

can be used as a best estimate for a range measurement. The minimum distance between these 

two lines can then be used as an estimate of the measurement uncertainty. This con�dence 

measure is provided in an on-line, point-by-point manner. This provides great advantages for 

applications demanding high accuracy and high reliability. SL systems that image a laser line, 

as with PRIME, do not possess this type of inherent accuracy check. 

Laser optics are available that project alternate light patterns, circular projections, for exam-

ple. These may provide advantages for some situations where the structure of the light matches 
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an application-dependent measurement region. 

3.5 The PRIME Niche 

PRIME has been designed for high accuracy, ruggedness and simple calibration. To accomplish 

these goals in the most reliable manner and at the highest possible speed, it was decided to use 

a single plane of laser light. This provided ruggedness, accuracy and simple calibration, but 

did require e�ort to achieve real-time acquisition. Acquisition speeds were improved by mapping 

portions of the pixel-level operations onto dedicated commercial hardware. Because a single laser 

pro�le is imaged, and because range acquisition occurs at frame rate, PRIME is able to scan 

objects that are continuously moving. 

4 Structured Light Acquisition 

The architecture of a Structured Light sensor includes both optical components and pipelined 

processing elements. A wide variety of components can be selected for these purposes. In 

PRIME, for example, the computing components include a Motorola 68040-based single board 

computer and a Datacube MV20 image processing board. The main processor runs under a 

vxWorks environment. It is responsible for real time con�guration and control of the Datacube 

hardware, and for applying calibration models. 

4.1 Optics and Imaging 
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Figure 4: Laser (left) and camera (right) used in PRIME sensor. The laser generates a plane of light 
using a cylindrical lens. A bandpass optical �lter on the camera yields distinct imagery of the laser 
plane as it intersects objects in the scene. 

Figure 5: PRIME sensor with typical objects. 
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Figure 4 shows the optical components that comprise the SL sensor. A near-InfaRed diode laser, 

seen on the left, illuminates a scene from above. The laser emission is in the form of a plane of 

light which is generated by a cylindrical lens mounted in the laser housing. The black and white 

camera, seen to the right, is positioned so as to image the light re�ected from the laser plane as 

it strikes objects in the scene. Figure 5 includes typical scanned objects, also. 

The camera is out�tted with an optical �lter that is matched to the laser optical frequency. 

These matched optics produce very distinct imagery of the laser pro�le. The image in Figure 3 

was taken with the optical �lter removed, for presentation purposes. Figure 10 shows an image 

captured with the IR bandpass �lter installed, as is typical during ranging. Because CCD cameras 

are quite sensitive to near-IR, manufacturers typically install an IR cut �lter. Such a �lter was 

removed from the camera used in PRIME. 

Another aspect of the imaging process has to do with the use of an electronic shutter. In 

applications with objects that move continuously past the sensor, a certain degree of blurring 

would nominally occur in each camera image. Blurring increases the uncertainty with which 

image coordinates at the center of the laser pro�le can be recovered, and hence, must be limited. 

The camera's electronic shutter reduces the temporal integration period for each pixel. In this 

way the frame rate of images is unchanged, but the exposure time is reduced. This yields video 

streams which are subsampled in time, this means that shape information will be missing between 

sequential laser pro�les. This introduces an upper limit on the spatial frequency content o f s h a p e 

descriptions and can result in aliasing. 

A standard video frame is composed of two i n terlaced �elds. Each �eld is transmitted sequen-

tially. When using an electronic shutter, each �eld is exposed individually. T ypically the shutter 
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Figure 6: Block diagram of the processing steps in the PRIME sensor. 
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interval for one �eld will occur immediately before that �eld is due to be output on the compos-

ite video signal. Hence, a single camera image contains data acquired from two separate time 

instances, 1�60 second apart. This necessitates that the temporally-skewed �elds be processed 

separately when the laser pro�les in each are converted to range data. 

In PRIME, the physical thickness of the plane of laser light i s � 0:040 inches thick. The 

sensor has been designed for scanning velocities of � 1 in/sec. An electronic shutter interval of 

� 1�250 sec is well suited for this situation because the blurring of the beam is limited to � 10% 

of the thickness of the laser plane. In practice this fractional increase in the apparent thickness 

of the beam has proved to have little e�ect on range measurements. However, it is true that 

unfortunate scene geometries can generate greater degrees of blurring. For example, A sloped 

block will tend to cause the laser line to blur vertically if it is viewed while approaching the 

camera. Steeper block faces will tend to produce greater degrees of blurring. These factors are 

very much scene- and application-dependent. 

A fundamental tradeo� exists between the ability to localize the position of the laser in an 

image and the apparent brightness of the beam. The mechanism for adjusting this degree of 

freedom is the electronic shutter interval. The limiting factor in the range of this adjustment 

is the amount of optical power in the laser and the sensitivity of the camera. In PRIME, 

the Automatic Gain Control (AGC) on the camera has been engaged. Since the majority o f 

the camera image is black, the AGC sets analog gains relatively high. This causes the laser 

illumination to be ampli�ed signi�cantly. F or most of the experiments performed with PRIME, 

the intensity of pixels at the center of the laser line were saturated (256/256). 
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4.2 Image Processing Operations
 

The images used during range acquisition have an almost totally black background, with gray 

levels � 10-20 out of 256. Given the saturated pixels on the laser pro�le, this represents a SNR � 

25 db for the image data. These conditions provide considerable latitude in selecting a gray scale 

threshold used for producing binary images. These binary images are used in an intermediate 

step to roughly locate the laser line within the image. 

Image processing operations were split between the Datacube board and the main processor 

for improved pipeline throughput. In order to permit both devices to simultaneously process 

images, double bu�ering was used between these two pipeline elements. See Figure 6. The 

Datacube board provided image I/O and storage, displayed the real-time status of the ranging 

sensor, and was used to locate the rough position of the laser line within each image. 

The rough position estimates were achieved by thresholding and then run length coding [50]. 

Run length coding (RLC) generates a 1-D array h a ving indecies with a one-to-one correspon-

dence with the columns of the binary image. Each RLC array element c o n tains the height along a 

column from the bottom of an image up to the �rst illuminated pixel. The RLC data is depicted 

in the image bu�ers of Figure 6. Hence the RLC array provides a succinct description of the 

rough location of the laser line. This information greatly improves the speed of range computa-

tions because the Datacube board can provide the RLC data at frame rate. This eliminates an 

otherwise burdensome e�ort by the main processor of searching the entire image for a relatively 

small illuminated region - which could not be done in real-time. Using the run length coded 

array, the main processor can directly access the required portions of images. 

To precisely localize the center of the laser line, pixel values are examined on a cross section 
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of the laser illumination and a weighted centroid calculation is performed. Figure 7 illustrates 

typical pixel intensities, as sampled along a path roughly orthogonal to the laser line. In PRIME, 

the intensity pro�les are typically 5-7 pixels wide with a roughly Gaussian shape. The main 

processor examines gray scale pixel values in a 20x1 window, W , c e n tered at locations given by 

the RLC array. A mapping function, P (gi), is used to describe the likelihood that a pixel having 

intensity gi is a member of the laser line. The mean, �r, and variance, �2 , o f th e ro w at the center r 

of the laser line are found with 

P P 
P (gi)ri P (gi)r2 

�2 i 2 r� � � � ; r� (1)rS S 

P 
where gi is the gray le v el of the pixel in row ri, and S � P (gi). Summations are taken 

within the window, W , and all include pixels above the binary threshold. The image coordinate 

recovered,(�r� c ), is the mean row together with the column under examination. 

It was desired to make the mapping function, P (gi), a smooth curve v arying from 0:0 to 1 :0, 

corresponding to pixels in the background and on the laser pro�le, respectively. A truncated 

error function (erf) was chosen for the mapping. Values for P (gi) w ere found by i n tegrating a 

Gaussian and then normalizing so that the area under the erf curve w as unity. The shape of the 

original Gaussian was chosen so that 3 � be l o w the mean were gray l e v els clearly belonging to the 

background and 3� above the mean were levels at the center of the laser pro�le. The gray l e v els 

at these 3� po i n ts were chosen manually by examining a histogram of typical images. Previous 

experiments in camera calibration [34] have s h o wn as much a s a 1 3 % c hange in centroid location 

when weighted centroid calculations are done, versus binary methods. 
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The variance, �2 , of each ( r�� c) coordinate was checked against a threshold as a means to r 

eliminate the use of blurry portions of a laser pro�le. Blurry imagery can result from excess 

relative motion or uneven re�ectivity, for example. In these situations the reliability with which 

the center of the laser pro�le can be recovered is compromised and the generation of range points 

should be avoided in order to maintain accurate results. 
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Figure 7: Recovering image coordinates at the center of the laser line. 

4.3 Ranging Computations 

A calibration model, M , is used to convert image coordinates, (r� c), to world coordinates, (y� z).
 

The model is applied to an augmented vector of image coordinates. For example, with a second
 

order model " # 

r2 c2 rc r c 1 M � z (2) 

where z is the Z coordinate of a range point. A similar model is used to generate Y coordinates, 

see section 5. 

20
 



In PRIME, image data provides the Y and Z components of range points. The X component 

is found by monitoring the motion of a conveyer belt using a wheel encoder. See Figure 1. The 

processing of encoder readings is interrupt driven, occurring at a rate four times higher than 

the video �eld rate (60 Hz). This provides accurate position estimates (in X) for each video 

�eld, allowing the range pro�les in each to be �eld to be properly position-stamped. The main 

processor was responsible for orchestrating the image acquisition process and stamping each 

acquired pro�le with the appropriate positions along the conveyer. Having camera image data 

synchronized with conveyer position stamps allows 3-D Cartesian range data to be computed. 

The encoder on the PRIME testbed has a resolution of 4000 counts per revolution, corresponding 

to 0.003 inches of travel per encoder tick. 

The main processor uses Kalman �ltering [51] to process the raw encoder readings, for improved 

position estimates. Because of the relatively constant v elocity of the PRIME conveyer, the state 

transitions of the Kalman �lter are modeled as having a constant acceleration [52]. The process 

noise matrix has been setup accordingly [53]. The process noise parameter has been determined 

experimentally, q � 50. The measurement uncertainty �m has been set using the encoder spacing 

p
and the standard deviation associated with a uniform distribution [54], �m � 0 :003� 12 inches. 

Because of the sensor geometry, a simple X-Y grid was used to store range data. This provided 

advantages in terms of complexity and the speed of data storage. It eliminated the need for an 

octree data structure, for example. The laser plane has a near-vertical orientation. Because of 

this, multiple range points do not tend to occur that have the same lateral (X-Y) position above 

the grid. 

21
 



5 Calibration of Structured Light Sensors 

Calibration models are required in order to provide the relationship between image and world 

coordinates (see �gure 2). A distinction is made here between the problems of calibration versus 

registration of the sensor. Herein, \calibration" refers to a process in which the location of the 

world frame (S in the �gure) is de�ned locally to the sensor. Its position is established with the 

convenience of sensor calibration in mind. \Registration" refers to the process of relating the 

sensor frame, S, to some other frame that is pertinent to the application - such as a manipulator 

frame. 

In most cases, the design of two aspects of calibration are tightly coupled. These are (1) the 

process by which calibration data is collected and (2) the formulation of the calibration model. 

The solution to these two problems typically must be found in a joint manner. The approach 

taken for PRIME is described below. 

5.1 Calibration Process and Formulation of Calibration Model 

Structured Light ranging is fundamentally a process of triangulation. Calibration is sometimes 

approached as a process of isolating explicit geometrical parameters of this ranging triangle. 

In [24] range calculations are described using the law of sines together with a pin hole model of 

the camera. Note that this would necessitate two separate calibration procedures (each of which 

would contribute errors). 

A one step calibration procedure has been developed for PRIME. This process is very similar 

to the Two Planes method of camera calibration [55]. In general, any Fixed-Plane SL system 
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can be calibrated in a one step procedure because of the rigid mapping between image and world 

coordinates. One step procedures have a d v antages in terms of accuracy and simplicity. Accuracy 

is improved because models can be found via a single least norm solution. 

A model z � f(r� c ) relating height, z, to image coordinates has been found using empirical 

calibration data. This relationship has been determined by analyzing images to �nd many 

examples of the triplet � � � � � � zi � ri ci � � � : (3) 

Figures 8 and 9 illustrate the PRIME calibration jig. The jig allows a series of horizontal plates 

to be located at known heights, zi, and imaged by the camera. Figure 10 shows such an image 

containing many examples of where the laser plane is imaged at a given vertical height. The 

pixel-level operations described in section 4.2 are used to generate individual triplets. A numbe r 

of calibration plates were located across the depth of �eld of the sensor. Precision stando�s 

were used to locate these in the Z direction. When calibrating for X, a linear table was used to 

automate positioning. 

For increased image �delity during calibration, a number of images of a given calibration plate 

were averaged. This reduces the random noise in pixel values that nominally accompany t h e 

imaging process [50]. 

To �nd the calibration model, an overdetermined set of equations is formed by augmenting 

the image coordinates (ri� c i) of each triplet. A variety of forms of calibration models have b e e n 
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Optical 
Breadboard 

Precision 
Standoffs 

X 

Z 

Horizontal 
Calibration

 Plate at 
Z = Zi 

S 

CCi 

Ri 

Image of laser plane intersecting 
horizontal calibration plate 

World points
 on this line 
are at Z = Zi 

R 

Superposition of images formed with 
horizontal calibration plates 

� � � �Figure 8: A series of horizontal plates are u s e d t o g e n e r ate examples of the � zi ri ci � triplet (Eq. 3) 
for PRIME. The triplets are used to form an overdetermined set of equations from which calibration 
models may be determined. This illustrates the calibration procedure for the z � f (r� c ) model. 
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Figure 9: A series of vertical plates are u s e d to generate the data needed for the y � f (r� c ) calibration 
model in PRIME. 

Figure 10: An image used for range measurement calibration. The central horizontal line is 
produced by the intersection of the laser plane with a horizontal metal plate. 
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studied. In the case of a second order model, for example, a calibration n-tuple 

� � � � 
(4)
� � 2 2

� � :1zi r c rici ri cii i� � 

is used. These n-tuples are arranged to form 

� � � � � � � � 
2
1

2
1

� � � � 
1z1 � � r c r1c1 r1 c1� � � � � � � � � � � � � � m1 � � � � � � � � � � 

� � � � � � � � 
� � � � � � � � � 

:
 

� � � � � � � � 

:
 

� � � � � � � � � 
� � � � � � � � � � � � � � � � 

� �
 

�
 � � � (5)1 � � � � � � 2 2� � � zi r c rici ri cii i� � � 
� � �
 

2 

� � � � � � � � � � � � � � mp � � � � � 2 1
� �zn r c rncn rn cnn n� � � � 
or 

Z � FM (6) 

Where 

Z (nx1) :contains world coordinates, 

F (nxp) :contains augmented pixel coordinates, and 

M (px1) :contains model parameters. 

In this case p � 6. A series of vertical plates are used to generate the calibration triplets needed 

for the Y model. This process is depicted in Figure 9. 
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5.2 Numerical Method of Solution for Calibration Models 

Many methods of solution are possible for �nding the calibration model, M , in a least norm 

sense [56]. However, prudent selection of a solution technique can have side bene�ts in the 

calibration process. Forming the normal equations [57], for example, allow the solution to be 

found, but do not provide any additional information. Techniques that reveal the numerical 

sensitivity of the solution are much more desirable. This provides an indication of how m uch 

the solution will change due to slight perturbations in the calibration triplets. The calibration 

triplets will contain measurement noise, hence the need for an overdetermined speci�cation of 

the solution and for as low a n umerical sensitivity as possible. There is no guarantee that 

the existence of ill-conditioned calibration data will be apparent in the residual error [58] of 

the solution. The greatest care in the imaging and pixel-level operations will be fruitless if 

the solution for a calibration model su�ers numerically. The consequence for ranging is that a 

calibration model may not yield accurate results when new data is applied. 

A common reason for the matrix F of Eq. 6 to become ill-conditioned occurs due to a poor 

distribution of the input data points. As seen in Eq. 5, the right hand column of entries in F 

are all 1. The columns of F must be linearly independent [57]. Hence if all calibration triplets 

possess the same row or column then F will become ill-conditioned. 

One technique for improving numerical performance when �nding M involves scaling the image 

coordinates of the calibration triplets. By normalizing the image coordinates to the range (0� 1), 

the span of entries in F can be reduced. This improves the condition of F [56]. If it is assum ed 

that coordinates vary from 5 to 90% of the image then the normalized and unnormalized coor-

dinates cover the ranges (0:05� 0:95) and (25� 485), respectively. The span of largest to smallest 
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Table 1: Demands on numerical precision for normalized and unnormalized c alibration models. 
Order Span of Entries in F Span of Entries in F Cost Ratio Integer Precision 

Unnormalized Normalized of Spans of Cost (bits) 

1st 4851 �1 1�0:051 2:4 10 1 5 
2nd 4852 �1 1�0:052 5:8 10 2 10 
3rd 4853 �1 1�0:053 1:4 10 4 14 

4th 4854 �1 1�0:054 3:5 10 5 19 

entries in F is used as a measure of demand on numerical precision. See Table 1. The ratio 

of the span of entries in F for the normalized vs. unnormalized cases is given as \Cost Ratio 

of Spans". This gives a measure for the reduction in precision that is achieved by normalizing. 

This reduction is then expressed as a number of bits. 

The table shows that a signi�cantly larger number of bits can be required to represent the ratios 

for the unnormalized entries. This unnecessary cost in precision is re�ected in poorer conditions 

for F , reaching 6 orders of magnitude! (See Tables 2 and 3). PRIME has been calibrated to an 

accuracy of 1 part in 1500 (see Section 5.3). This necessitates � 11 bits of precision for ranging, 

nominally. The burden of using non-normalized formulations is additive. Note that these costs 

in precision have been expressed as a numb e r o f b i t s i n i n teger format. The actual numerical 

e�ects are more complicated, as these involve �oating point operations. 

A Singular Value Decomposition (SVD) [56] exposes the singular values of F , which can be 

used to compute the condition number [57]. This provides an excellent measure of the numerical 

sensitivity of the solution. The SVD approach decomposes F 

TF � UDV (7) 

where U and V are orthonormal and D is diagonal, containing the singular values of F . The 
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technique also permits \repairs" to be made to D, ensuring its invertibility [58]. This allows the 

calibration model 

;1UT FM � V D (8) 

and the condition numbe r 

� � dmax�dmin (9) 

to be easily computed. Here, dmax and dmin are the largest and smallest diagonal elements 

of D. F is considered to be ill-conditioned if 1�� approaches the precision of �oating point 

computations, for example, no less than 10;12 for double precision [58]. 

5.3 Evaluation of Calibration Model 

Selecting an appropriate form for a calibration model e�ects important tradeo�s in acquisition 

speed and ranging accuracy. This selection process is closely related to that associated with the 

Two-Planes method of camera calibration [55]. These problems are quite similar because each 

involve a mapping from image coordinates to a plane of world coordinates. 

Recommendations for appropriate forms of camera models [59] serve as a guide, as well as 

several metrics for model evaluation [29, 60] which h a ve been incorporated and extended for 

PRIME. The metrics used for PRIME involve the computational burden during on-line evaluation 

and various measures of the quality of the model solution. These are: 

1) Compute burden 

2) Condition numbe r 

3) Span of residual errors 
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4) Autocorrelation of residual errors 

5) Goodness-of-�t, based on chi-squared. 

The compute burden is a direct result of the number of terms in the model. The condition 

number is found from Eq. 9. The residual error of the solution is computed by comparing the 

�tted height of the ith triplet, zi 
0 � f(r� c )i to the original height. Ideally zi ; zi 

0 ! 0, but in 

practice random measurement noise and higher order lens aberrations keep these from vanishing. 

Although low residual errors do not guarantee an accurate model, these values are still useful 

to examine, as a low magnitude is a necessary condition for accuracy. The span of the residual 

errors is described by computing the maximum, mean and standard deviation of the absolute 

residuals. 

The purpose of calibration is to characterize the distortions in a mapping between two planes. 

Hence, a proper mapping and proper calibration procedure should result in a set of residual 

errors with a very low spatial dependence. That is, any uniform pattern or trend in the spatial 

arrangement of residuals should be very minimal. The residuals should appear as random entries. 

This random character can be described using the autocorrelation of the residuals. 

As a �nal metric, a goodness-of-�t measure has been computed involving chi-squared and the 

degrees of freedom in the system of equations [58]. This involves the use of an estimate of the 

accuracy of zi, w hich is noted in the tables. T he �t quality, Q, should ideally be Q � 0:1 to 

consider a mapping as valid. In some cases values in the range Q � 0:001 are also deemed 

acceptable [58]. 

Tables 2 and 3 summarize the metrics found when calibrating PRIME. Table 4 gives the form 

of each model that was considered. When �nding the Z model, 280 calibration triplets were used 
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Table 2: Metrics for Z calibration model for PRIME. A total of 280 calibration triplets were u s e d. 
A value of 0.005 inches was used for the accuracy of zi. 

Type Normalized Mean Standard Deviation Maximum Fit Quality Autocorrelation Condition 
Residual (in.) of Residual (in.) Residual (in.) (1 shift) Numbe r 

1 yes 0.071 0.038 0.137 0.00 0.9 101 

2 yes 0.007 0.004 0.022 0.00 0.9 102 

3 yes 0.003 0.003 0.015 0.99 0.7 103 

4 yes 0.002 0.002 0.013 1.00 0.5 103 

1 no 0.071 0.038 0.137 0.00 0.9 103 

2 no 0.007 0.004 0.022 0.00 0.9 106 

3 no 0.003 0.003 0.015 0.99 0.7 109 

4 no 0.002 0.002 0.013 1.00 0.5 109 

Table 3: Metrics for X calibration model for PRIME. A total of 98 calibration triplets were u s e d. 
A value of 0.010 inches was used for the accuracy of xi. 

Type Normalized Mean Standard Deviation Maximum Fit Quality Autocorrelation Condition 
Residual (in.) of Residual (in.) Residual (in.) (1 shift) Numbe r 

1 yes 0.093 0.059 0.240 0.00 0.8 101 

2 yes 0.010 0.008 0.033 0.00 0.8 102 

3 yes 0.009 0.007 0.031 0.03 0.8 103 

4 yes 0.004 0.002 0.009 1.00 0.8 103 

1 no 0.093 0.059 0.240 0.00 0.8 103 

2 no 0.010 0.008 0.033 0.00 0.8 106 

3 no 0.009 0.007 0.031 0.03 0.8 109 

4 no 0.004 0.002 0.009 1.00 0.8 109 

and the accuracy of the true heights, zi, w as estimated at 0.005 inches. For Y, 98 triplets and 

an accuracy of 0.010 inches for xi were used. 

In addition to the tabular summaries, images have also been generated that depict the residual 

errors. These provide a visualization of any spatial correlation in the errors and of the location 

of all the calibration triplets, in a single image. Figures 11 through 14 show images that depict 

Table 4: Form of calibration models. 
Type Coe�cients 

1 1 r c 
2 1 r c r c rc2 2 

3 1 r c r c rc2 2 r3 3c

4 1 r c r2 2c rc r2 c rc r c2 3 3 
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Figure 11: Residual error of a 1st order (type 1 ) Z c alibration model. Mean � 0.071 in. Gray 
levels of each block are s c aled t o s p an the extremes of the residual errors in this model (maximum 
� 0.137 in). 

residual errors for types 1 and 4 of the Z and X models, respectively. The images contain a 

series of small gray blocks, each o f w h i c h coincides to the location of a calibration triplet and 

the corresponding residual error. The gray l e v el of the block is scaled so that the data point 

possessing a minimum residual error is the darkest and the one possessing the largest error is 

the lightest. Note that a di�erent g r a y scale mapping is used for each image. 

As seen in Table 5, the mean acquisition time did not vary signi�cantly between model types. 

This is primarily due to the compute burden associated with managing the datacube hardware 

and with �nding the nominal position of the laser pro�le. Because of this, model selection was 

based primarily on accuracy and condition number. The normalized form of model type 4 was 

chosen for both X and Z. 
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Figure 12: Residual error of a 3rd o r der (type 4 ) Z c alibration model. Mean � 0.002 in. Gray 
levels of each block are s c aled t o s p an the extremes of the residual errors in this model (maximum 
� 0.013 in). 

Figure 13: Residual error of a 1st order (type 1 ) X c alibration model. Mean � 0.093 in. Gray 
levels of each block are s c aled t o s p an the extremes of the residual errors in this model (maximum 
� 0.240 in). 
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Figure 14: Residual error of a 3rd o r der (type 4 ) Z c alibration model. Mean � 0.004 in. Gray 
levels of each block are s c aled t o s p an the extremes of the residual errors in this model (maximum 
� 0.009 in). 

Sensitivity Analysis of Structured Light Sensors 

The question of sensitivity is concerned with the relationship between the accuracy of range 

measurements to sources of error in the acquisition process. The geometry of the optical paths 

involved in ranging plays an important role in determining how errors during acquisition are 

ampli�ed in range measurements. 

A Monte Carlo analysis [61] can be used to perform a thorough study of measurement errors. 

This would involve simulations of the measurement process with representative l e v els of noise 

being introduced at each stage. This type of approach is particularly desirable when analyzing 

a SL sensor with dynamic geometry, as it can be used to study accuracies across the entire 

measurement space. For PRIME, a simpler approach has been taken. 

Referring to Figure 15, variations in image coordinates, d�, produce a displacement o f dw 
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at the stando� of the sensor. Because the laser pro�le is assumed to be roughly horizontal in 

each camera image and each column is analyzed individually during pixel-level processing, only 

the sensitivity of height v ariations to vertical image displacements is considered. (Actually in 

the center of the image dy � dw for lateral image displacements.) The angle between the laser 

emission and the camera sighting determines the sensitivity of height errors. As seen in the 

�gure, the amplifying factor is 

dz 1 
dw 

� 
sin � 

(10) 

where � is the angle between the laser emission and camera sighting. This is related to changes 

in height b y sin �. 

In Fixed-Plane SL sensors this sensitivity factor varies in a continuous fashion across the laser 

plane because � varies somewhat across the laser pro�le (with motion in and out of the paper in 

dzFigure 15). For PRIME, the sensitivity v aries 1:5 �� �� 1 :6. Being near 1, these values are 
dw 

relatively low. As sensitivity i m p r o ves the degree of shadowing increases. The ranging geometry 

for PRIME was chosen to somewhat favor sensitivity v ersus shadowing. Freedom to increase 

shadowing was deemed acceptable because mostly convex objects with relatively slow rates of 

curvature were targeted for use with PRIME. 

Performance Benchmarks and Ranging Experiments 

Performance benchmarks are very important during sensor research. These give measures of 

speed and accuracy that are vital for both automated and manual interpretation of data. Ex-

ample range data and scenes are presented in Figures 17 and 16, respectively. Images of the 
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Camera 

dø 

dw 

Laser 

dz 

dw 
dz 1= dz 
dw sin 

Figure 15: The sensitivity dz�dw of a Fixed-Plane SL system is determined by the angle, �, b etween 
the laser emission and the camera sighting. This describes the e�ect of the change in image coordinates 
with respect to changes in height. 
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scenes were captured by the PRIME video camera with the IR bandpass �lter removed. The 

laser appears as a bright line near the bottom of each i  m a g e . 

(a) (b) (c) (d) 

Figure 16: Gray scale images captured f  r om the video c  amera during the ranging process. The optical 
�lter normally used during acquisition was removed for these images, to better illustrate the interaction 
between the laser plane and object surfaces. The laser appears as a bright line near the bottom of each 
image. 

(a) (b) (c) (d) 

Figure 17: Measurements captured by PRIME for objects with a variety of surface textures. 

A performance metric for active range sensors has been introduced by [24].
 

)1�3
1 (DxDyDz
M � (11)

T 1�2 )1�3(�x�y�z

where T is the point d  w ell time (sec/point), Dl is the depth of �eld in the l direction, and �l is 

the measurement uncertainty, also in the l direction. M is the rating. In [24] the dimensionality 
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of contributors, (x� y� z), to this expression is reduced for sensors that generate indexed arrays 

of range data. This is the case for PRIME in the X direction. Also with PRIME, the depth of 

�eld in the direction along the conveyer is somewhat arbitrary, as the conveyer is often run at 

varying speeds depending on application needs. As in [24], the rating has been reduced to 

Dz
M � p : (12)

�z T 

To determine the accuracy of height measurements, a horizontal plate was scanned at a height 

other than those used during calibration. This plate and the ones used during calibration have a 

quoted �atness of 0:002 inch v ariation per foot. At m o s t 6 i n c hes of such a plate are used during 

calibration and testing. The mean absolute variation of height measurements taken from this 

type of plate is given by �z in Table 5. 

To determine the point dw ell time, a numbe r of scans w ere made and the mean numbe r of 

po i n ts per video frame was computed. Each t ype of calibration model was tested. The size 

of processed imagery was adjusted to maximize the amount of range data, while maintaining 

frame-rate throughput for each calibration model. The results of these performance benchmarks 

is given in Table 5. These benchmarks were also used in the model selection process. The T 

values in the table are somewhat conservative and are subject to several percent error, due to 

empirical nature with which t h e y w ere determined. 

These ratings compare well with those given in [24]. It should be noted that the speed bench-

marks quoted here include the application of calibration models. Also, PRIME has been built 

from commercially available components. This makes for a system that is generally less expensive 
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Table 5: PRIME performance m e asures as a function of the type o f c alibration model. Perfor-
mance of the normalized v s . unnormalized forms was essentially identical, normalized m o dels 
were u s e d herein. 

Type �z T M 

1 0.005 0.24 51,500 
2 0.004 0.25 70,200 
3 0.004 0.25 70,200 
4 0.003 0.25 83,900 

and more easily maintained than a custom implementation. 

8 Related Research and Concluding Remarks 

Across the diverse spectrum of Machine Vision applications, the main objective is often the same: 

to extract useful information from image inputs. For tasks requiring 3-D information, Machine 

Vision techniques may be grouped into passive o r a c t i v e approaches. Active approaches, such 

as Structured Light, use specialized illumination sources to overcome the ambiguities associated 

with passive methods. 

Despite the longevity of research in Structured Light sensing, a limited amount of published 

works focus on fundamental design and calibration issues. This chapter has included an introduc-

tion to the ranging process, discussions of design tradeo�s, calibration methods, and performance 

be n c hmarks. Structured Light ranging has some particularly interesting advantages that allow 

sensors to be customized for the speci�c requirements of an application. These sensors can be 

built \from the ground, up" to yield rugged and inexpensive ranging systems. 

PRIME is a Structured Light sensor that has been designed to scan continuously moving 

objects. PRIME uses a plane of laser light t h a t i s m o u n ted in a �xed geometry. The laser 
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illuminates scenes, allowing vertical pro�les of range data to be acquired in real time. 

Range sensors can be used to form the foundations of larger, end-to-end Machine Vision 

systems. This involves a number of processing steps. Figure 18 illustrates the components of 

a recognition system involving range data and graph-matching techniques. Many v ersions of 

similar diagrams have been reported [1, 2]. 

Acquire Scene Range Points 

Cartesian Range Data 

Group 
Range Points 

Compute 
Shape 

Descriptions 

Match Scene 
to Database 

Graphs 

Consistent Regions 

Scene Graph 

Compute 
Object Position 
and Orientation 

Scene-to-Database Mapping 

Recognized
 
Objects and Pose
 

Figure 18: Processing steps involved in an end-to-end object recognition system. 
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\Acquire Range Points" generates Cartesian range points, as is the purpose of PRIME. Many 

range sensors are reviewed in [23, 24]. Range points have no inherent high-level meaning, they 

are simply individual, 3-D measurements in space. The �rst step in higher-level interpretation 

is to \Group Range Points" into consistent regions. This process is commonly referred to as 

segmentation and has been an active area of research for over 15 years [62, 63, 64]. Reviews are 

available in [65, 66]. A novel and real-time approach t  o r  a n g e s e g m e n tation has been developed 

for use with PRIME [67, 68, 69]. Results from this process are illustrated in Figure 19. 

(a) (b) (c) (d) 

Figure 19: Results of segmentation of range measurements take by PRIME. Each consistent region of 
range data is shown with a surface p  atch of a di�erent gray tone. Both �at and curved p  atches are 
illustrated. 

After \Consistent Regions" have been formed, models are typically used to form a param-

eterized description of each region. Various types of generalized geometric models are com-

mon [70, 71, 72] as are approaches based on CAD models [73, 74]. Surveys may b  e f  o  u  n  d  

in [75, 76, 77]. This remains a very active area of research. 

Graphs are typically used to describe the adjacency relationships of scene elements. Graph-

based descriptions also provide a framework for matching schemes used to recognize objects [78, 

79, 3]. An immense amount of research has also been pursued in the areas of recognition and ob-

ject localization. In Figure 18 these are presented as two steps. Some implementations keep these 
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operations distinct [80, 81, 82, 83], in many other approaches recognition and pose calculations 

are accomplished in a coupled process [84, 85, 86, 48, 38]. 

A relatively low n umber of end-to-end recognition systems have been reported, compared 

to the very large amount of e�ort on system components. Complete systems can be found 

in [71, 86, 48, 38, 73, 77]. PRIME is being integrated into an end-to-end recognition system. 

This includes the novel range segmentation strategy in [67, 69] and a recognition strategy based 

on	 graph-matching [87]. Applications in the Active Vision discipline [17, 88, 20, 3] and in 

geographically-distributed real-time manufacturing are being targetted with this system. 
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