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Abstract 

An algorithm has been developed that �nds isomorphisms between both graphs and subgraphs. The 

development is introduced in the object recognition problem domain. The method isolates matching 

subgraphs, �nds a node-to-node mapping and reorders nodes thus permitting a direct comparison to 

be made between the resultant graphs. The algorithm is of polynomial order. It yields approximate 

results, maintaining a performance level for subgraph isomorphisms at or above 95% under a wide 

variety of conditions and with varying levels of noise. The performance on the full size comparisons 

associated w i t h g r aph isomorphisms has been found to be 100/100, also under a variety of conditions. 

Performance metrics, methods of testing and results are p r esented. 

KEYWORDS: Direct Classi�cation, Graph Isomorphism, Subgraph Isomorphism, 
Graph Matching, Object Recognition. 

Introduction 

Object recognition is fundamentally a problem of subgraph isomorphism in that a model describes 

objects in their entirety� in contrast to an observed object where all features are not typically seen in 

a single view [1]. Current t e c hniques using range data for shape-based recognition of cluttered scenes 

are typically quite time consuming and can have undesirable tradeo�s between speed and accuracy. 
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Techniques are also sometimes tailored for the bin picking problem which focuses on a cluttered scene 

involving just a few di�erent kinds of objects [2]. We pursue active vision research [3] topics in the 

Computer Vision and Robotics Research Laboratory (CVRR), as well as real time ranging techniques 

involving Structured Light [ 4 ] and STG Stereo [5], for example. Given these interests, we desire a 

rapid recognition technique to help facilitate these e�orts. Approximate results are acceptable from this 

perspective as a tradeo� for speed. A more rapid technique will also aide in the processing of larger 

databases of known objects. 

Our approach i s t o e v aluate evidence describing the likelihood of a node's predicted attendance in 

another graph. The evidence is based on measures that are local to each node. A global veri�cation step 

completes the process. In this way, the algorithm performs a direct classi�cation of node attendance 

(DCA). The presence of a node in the other graph is viewed in an isomorphic sense, i.e., there is some 

node-to-node mapping under which the matched nodes appear as identical members of their graphs. A 

node's attendance in the other graph is rated on a scale 0.0 to 1.0. The evidence that describes each 

node characterizes its local structural properties and any node and edge properties that a graph may 

possess. After the best matching pairs of nodes are identi�ed, the nodes of one graph are reordered to 

allow a side by s i d e v eri�cation of the graphs' similarity. 

Attention has been focused on testing DCA under challenging, realistic conditions. Extensive exper-

iments have been run on arti�cial data sets that were generated with a relatively low distinction in the 

local character of each node. The simulation tool developed to test DCA serves as a means to carefully 

investigate performance under varying conditions. 

1.1 Goals for DCA Algorithm Development 

The goals for �nding subisomorphisms were driven by the object recognition application. First and 

foremost, it was desired to have an e�cient algorithm. Results which are approximate - either in 

terms of accuracy or the size of extracted matches - were acceptable, rather than more lengthy a n d 

potentially more complete analyses. This is consistent with trends in active vision [6][7]. We prefer a 

rapid examination of a scene followed by active exploration. Exploration can yield more information 

about a scene and can result in the availability of new viewpoints for observations. Achieving a rapid 

analysis of a scene is commensurate with this goal of active exploration. 

In object recognition it is also very helpful to provide more than just a simple yes or no answer to the 

isomorphism question. A node-to-node mapping between the scene and database graphs is a required 

�nal result. The mapping allows the adjacency matrices and other properties of the two graphs to be 

compared directly. 

Some object recognition algorithms depend on node and edge properties having a very \information 

rich" character. Requiring close matches based on these \rich" properties greatly reduces the numbe r o f 

mappings that must be considered. Too great a reliance on such c haracterizations can create problems 

due to occlusions and other noise sources. Our goal is to �nd an algorithm that relies on the dynamic 
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range of these properties as little as possible. This will provide an increased noise tolerance and broader 

applicability. 

1.2 Review of Related Studies in Machine Vision Community 

Because of the importance of object recognition in machine vision, many t ypes of techniques have been 

pursued [8] [ 9 ]. Some researchers confront the recognition problem directly from a standpoint of graph 

isomorphisms [10] [11] [ 1 2 ] although this approach is less common than other methods. These other 

techniques can be divided into three categories: maximal clique-based, relaxation labeling and tree 

search-based approaches [1] [13]. We begin with a discussion of maximal clique-based techniques. 

1.2.1 Maximal Clique-Based Approaches 

This type of technique builds an association graph which describes all possible compatible mappings 

be t ween two graphs [14] [ 1 5 ]. Compatibility can be based on node and edge properties and can include 

a v ariety of geometrical and topological relationships. The association graph is then searched for a 

maximal clique [16]. This clique represents the largest possible compatible mapping between the two 

graphs. The general problem of �nding a maximal clique is NP-complete [17]. This can result in 

extremely long analysis times as the problem size increases. Exact methods exist for �nding maximal 

cliques that are recursive and use depth-�rst search [ 1 8 ]. Here a tree that can lead to all possible cliques 

is searched. Pruning occurs when a branch in the search is found that cannot lead to a clique. 

More approximate methods for �nding maximal cliques have also been explored, via a Markov Ran-

dom Field (MRF), for example [19]. In this particular work, the low l e v el acquisition and processing of 

the sensor were to form likelihoods of observing a given object feature. These likelihoods are used as 

a compatibility measure in the association graph. The MRF determines memberships in cliques. The 

MRF operates on each edge on the association graph by either including or excluding it from a clique. 

Mutual consistency of neighboring clique entries guides the MRF convergence. 

The association graph itself can be troublesome in these approaches. Given the graphs G1 ,G2 with 

N 1 ,N 2 nodes, respectively, the association graph Ag contains a node for each compatible pair of nodes 

in G1 and G2 . This necessitates that a threshold be applied to some application-speci�c norm that 

measures the distance between the node and edge properties of G1 and G2 . The threshold is a trun-

cation of data, the e�ects of which cannot be recovered from (other than by repeating with a di�erent 

threshold). The threshold can eliminate any possibility of including a given pair of nodes in the �nal 

clique. Hence it is somewhat of a devastating operation since it is performed �rst, during the formation 

of Ag. 
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1.2.2 Relaxation Labeling Techniques 

Widespread e�ort has been focused on the method of relaxation labeling [20] [ 2 1 ]. This approach 

describes the compatibility of a given labeling using continuous values, rather than a discrete assignment. 

Compatibility is based on the expected occurence of a given label and on the consistency of neighboring 

labels. A cost function is de�ned that describes the support for a given labeling arrangement. The 

labeling assignment is iteratively optimized to �nd a local maximum of the mean compatibility o f 

all assignments. The local nature of the optimization can be a limitation, as it introduces a strong 

dependence on a good initial guess. 

This approach can be implemented in a manner that avoids the construction of an association graph. 

This is an advantage over clique-based approaches. It is approximate, however, in that the �nal labeling 

assignments may not be unambiguous and may not correspond to a maximal clique [1]. 

1.2.3 Tree Search T echniques 

These types of approaches match scene features to database features, starting with the most similar 

elements [22] [ 8 ]. Node and edge properties are typically employed here, as well as local comparisons of 

node connectivity. This is an incremental process that improves the estimate of an object's pose with 

each step down the search tree. Kalman �lters and other methods can be used to re�ne the estimate of 

the object's pose [1]. 

Typically a small set of local features will be matched to the model at each s t e p d o wn the search tree. 

This local feature set (LFS) is formed such that the locations of its members completely determine 

the pose between the the model and scene. A complete speci�cation of the object's transform is 

advantageous because it allows the expected location of the next LFS to be computed without ambiguity. 

This allows incorrect object models or improper object-to-scene matches to be rejected at relatively high 

levels in the search tree. However, this does place a constraint on the selection of features when forming 

the LFSs, in that the features must be grouped during the matching process. This grouping may n o t 

always yield the optimal ordering for recognition purposes. 

1.3 Review of Related Studies from Mathematics Community 

A graph G: (N,Np,E,Ep) is de�ned to have the typical nodes (N) and edges (E) as well as both node 

properties (Np) and edge properties (Ep). Let G1 and G2 be t wo graphs with N 1 and N 2 nodes, 

respectively. G1 and G2 are said to be isomorphic if there exists a mapping which is both one-to-one 

and onto that associates the nodes of G1 to G2 . The mapping also must maintain all adjacencies so that 

any pair of adjacent nodes in G1 are also adjacent i n G2 under the mapping [16]. For object recognition 

it is also required that both node and edge properties be maintained by the mapping. The similarity 

of these properties must be determined by norms or other measures that are application dependent. 

DCA �nds a match b e t ween a given graph (a \scene") and a set of known graphs (a \database"). The 
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reported match is found using the above norms and DCA's measure of topological similarity. 

Subgraph isomorphism is a condition of isomorphism that exists between two subgraphs. Object 

recognition is fundamentally a problem of subgraph isomorphism [1] in that a database describes its 

objects in their entirety� in contrast to an observed object where all features are not typically seen in 

a single view. Real scenes also include clutter resulting in a scene graph that contains extra nodes and 

edges, beyond a simple subset of database graphs. 

The class of di�culty for the isomorphism problem is not known [16]. A brute force approach requires 

e�ort O(N!) for a graph of N nodes. This is reduced somewhat in cases where automorphisms of a given 

graph make certain sets of nodes interchangeable without a�ecting the graph's topology [23]. Note 

that in the object recognition scenario this notion of automorphism must be extended to include the 

similarity of both node and edge properties. 

The subgraph isomorphism problem is proven to be NP-complete [16]. This class of problems re-

quire a worst-case amount of e�ort that is of exponential order O(aN ) and are considered to be in-

tractable for many applications. The number of possible solutions is reduced by a n y automorphisms 

that may exist in the subgraphs. E�cient isomorphism algorithms do exist for certain special types of 

graphs [17] [24] [ 2 5 ] [ 2 6 ] [ 2 7 ] [ 2 8 ]. Unfortunately these won't apply well to object recognition problems 

because of the restricted nature of the graph topologies that are addressed therein. 

E�cient solutions have also been developed in the random graph community [ 2 9 ] [ 3 0 ] [ 2 3 ]. The latter 

techniques are able to handle nearly all possible random graphs. The small fraction of graphs which 

must be rejected tends to zero as N increases in each of the methods. A problem limiting the application 

of these techniques to object recognition is the assumption of a purely random graph structure. Two 

methods are typically used to create graphs, Models A and B. Model A uses a given probability (often 

0.5) to determine the existence of an edge in each e n try of the adjacency matrix [23]. Model B starts with 

a given number of edges and places these randomly between nodes. If polygonal objects are assumed, 

for example, then neither Model A or B is the best choice. In this case the mean numb e r o f s i d e s o f 

the polygonal surfaces will determine the mean number of edges that are incident t o e a c h node. This 

implies that the number of edges per node in a database graph should be roughly constant - it should 

not be a function of the number of nodes - as is the case with Models A and B. Graphs of this type are 

known as strongly-regular. This is a signi�cant factor because these types of graphs produce the most 

challenging inputs to isomorphism routines [24] [ 3 1 ]. 

The techniques of [29] [ 3 0 ] use Model A. In [29], for example, it is observed that random graphs of 

su�cient size will tend to have a subset of nodes that each h a ve a unique degree. These nodes are used 

to form a \foundation" for their node classi�cation scheme. The remaining nodes are characterized by 

their connectivity i n to this \foundation". Hence, this style of approach w i l l h a ve limited application 

to object recognition because of the Model A assumption and the requirement for a subset of nodes to 

have unique degrees. 

The above techniques focus strictly on full-sized isomorphism problems, not on the subgraph isomor-
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phism case, which is combinatorially much w orse. A subisomorphism algorithm presented by [31] i s 

more e�cient than a complete enumeration and is noteworthy because it does not take a d v antage of the 

additional constraints that node and edge properties o�er. It operates on graphs based on a connectivity 

analysis alone using a tree search approach with judicious pruning. Unfortunately [31] does not estimate 

the e�ort required for the algorithm's subisomorphism version. They abandoned their approach at the 

level of (Ns,Nd) � (10,15) describing this size of problem as being \uncomfortably large". 

1.4 Object Representation 

It is believed that the DCA approach to �nding graph subisomorphisms can have applicability b e y ond 

object recognition as in [32], but here, the algorithm will be presented in this context. To aide this 

presentation, a speci�c sty l e o f o b j e c t r e p r e s e n tation will be used in the discussion. The representation 

assumed herein will be a 2 1/2-D relational surface patch model [12]. In general these graphs have 

surface shape parameters associated with their nodes. Edges are used to describe the relative orientation 

be t ween adjacent surfaces. See Fig. 1 for an example of this type of representation. 

In general there are tradeo�s between the overall size of an object's graph and the �neness of the 

representation. An example of a �ner representation than above is a winged-edge graph [33]. These 

include nodes for each surface, surface-edge and corner. Edges in the graph would have to be rede�ned 

accordingly. This has the advantage of providing a more redundant description of an object and hence, 

improving noise tolerance. However this type of representation will also produce larger graphs which 

could be computationally prohibitive. These types of tradeo�s are being examined using randomly 

generated test cases. 

2	 Direct Classi�cation of Node Attendance: Algorithm and Perfor-

mance Metrics 

The novelty and practical utility of the direct-classi�cation of node attendance (DCA) approach i s 

derived from an integration of both application-speci�c data and a topological description as a means 

for node consistency checks. If the graphs G1 and G2 are under scrutiny and node n1 
i of G

1 and n2 
k of G

2 

are being compared, then the application-speci�c data includes an examination of the node properties 

of n1 
i and	 n2 

k to n1 
i and n2 

k, the properties of those edges incident as w ell as the similarity o f n o d e,
 

to n1 
i and n2 

kproperties for all nodes that are adjacent .
 See Fig. 2. 

The connectivity signature describes the local topology of the graph. The extent of the signature 

is variable and DCA's performance has been studied as function of this parameter. If too restricted, 

not enough connectivity information is included for any bene�t. If too broad, then problems occur 

because of mismatches in the connectivity signatures of the scene and database graphs that are due to 

the absence of unobserved nodes in the scene graph. 

The extent of the connectivity signature must be tuned for an application. It is largely determined by 
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Figure 1: Example of the 2 1/2-D relational surface p atch representation. Scene on the left contains a cube with 
3 visible surfaces, si 

. N o de properties on the right are u s e d to describe these surfaces. Edge properties describe 
the relative orientations of the surface normals using a dot product. 
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the expected observability of objects that is associated with a given sensor. The connectivity signature 

is computed by forming Am for 0 � m � V max, where A is the adjacency matrix. An element aij m of 

Am, describes the number of paths from node i to node j of length m [16]. Vmax determines the extent 

of the signature. These powers of A are used to form a data structure called the \Am cube" which 

consists of layers of the matrices Am . A1 forms the lowest layer, followed by A2 , A3, and so on, up to 

AVmax . After each Am layer is formed, its values are normalized by dividing through by the smallest 

nonzero element i n t h e l a yer. In this way an element aij m describes the relative degree of connectivity 

from node i to j, when compared against all other paths of length m. 

j , i 

element of the original adjacency matrix (aij 1), denoted by 

1 

� � � � aij Vmax 
� � � � � . � . � . � 

1The connectivity signature for n and n 6� j, i ertical column in the Am cube above each s a vi 

aij � : (1)� �
 
2

1 

�
 �
 �
� aij � �
 �
 � aij 
�
 �
 

In this case n1 
i and n1 

j were distinct. A connectivity signature has also been de�ned for a single node. 
1 
i . These are denoted by aii.This describes the closed paths of various lengths that include n

The general approach of DCA is to compare nodes by c o m bining local comparisons of node and edge 

properties with the aij signatures. All node pairs n1 
i and n2 

j are compared in this fashion to form a total 

of N 1N 2 attendance ratings. Peak attendance values are identi�ed. Currently this is done by a simple 

approach that passes over the attendance ratings to �nd a peak, records this node-to-node mapping, 

and repeats until a mapping is found for all node pairs. Matching subgraphs of the scene and database 

entry are formed, each of size K � min(N 1� N 2). The nodes of the scene subgraph are reordered using 

the attendance peaks so that n1
1
and n2

1
are associated with a peak, as are n1

2
and n2

2
and so on. 

1 
i and n2 

i can be directly compared and a veri�cation step is At this stage all the properties of n

performed. Thresholds are applied to the di�erence in node and edge properties and to di�erences in 

the adjacency matrix. All subgraph nodes are examined in this manner and the worst matching node 

is removed. This process is repeated (at most K times) until either a null graph exists or until all 

properties match suitably well. Any remaining nodes with zero degree are then removed. Note that 

if this is compared to a hypothesis-and-test approach to object recognition, then here only a single 

hypothesis and a single test are performed for each database entry. 

Good performance of the algorithm was achieved with Vmax � N� , w here N � min(N 1� N 2), � � 

0:25. Values of Vmax in this range are necessary due to the limited observability of an object that is 

possible from a given viewpoint. Vmax is related to N� because path lengths used in the connectivity 

signature need to be limited in order to provide the best possible match b e t ween the database and 

expected scene conditions. Note that when forming connectivity signatures for the database, Vmax 
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could be set to N . H o wever, if this same value of Vmax were used for the scene, then the resulting 

signatures would be dissimilar because the subgraph in the scene won't contain all the paths in the 

database entry. F or this reason the value of Vmax must be limited when the database is analyzed so as 

to match the expected scene conditions as best as possible. When DCA is applied to an isomorphism 

problem, the Vmax parameter can vary over a broader range with little e�ect on performance. 

2.1 DCA Algorithm 

Subgraph Formation Stage 
Compare each pair of nodes in each graph 

1 11)For each node of n of G :
i 

22)For each node of n of G2:
k 

Compare edges incident to current n o d e s 
1 13)For each edge e incident t o n :
j i 

2 24)For each edge e incident t o n : 
l k 

1 24a)Compare connectivity o f a with a
ij kl 

1 24b)Compare adjacent nodes' connectivity o f a with a
jj ll 

1 24c)Compare edge properties of e with e
j l 

1 24d)Compare adjacent nodes' properties of n with n
j l 

4e)Combine results of (4a) to (4d) via IOP
 
3a)Save comparison of best matching edges and adjacent n o d e s
 

Compare current n o d e s 
1 22a)Compare connectivity o f a with a
ii kk 

1 22b)Compare node properties of n with n
i k 

Find similarity of current n o d e s 
1 22c)Combine (3a) (2a) and (2b) to form attendance rating of n to n
i k 

Form matching subgraphs 
1 25) Find peaks of attendance ratings to de�ne mapping from all n to n
i k 

1 2 1 26) Form subgraphs g and g using node pairs n and n with attendance ratings above threshold T 
i k 
1 1 2 1 27) Use node-to-node mapping to reorder nodes in g such that n maps to n1, n maps to n , etc 1 2 2 

Subgraph Veri�cation Stage 
8) Eliminate nodes with poorly matching Np 
9) Eliminate nodes with poorly matching Ep 

10) Eliminate nodes with poorly matching A1 

In step (6) the subgraphs g1 and g2 of G1 and G2 respectively, are formed by applying the threshold 

T to the attendance ratings in order to �nd \signi�cant" node pairs. A value of 0.5 was used for T in 

all the tests reported herein. 

In steps (4c), (4d) and (2b) node and edge properties are compared. These methods of comparison 

are application-dependent. In these tests, node and edge properties were all scalars. A pair of scalar 

properties (a,b) were compared using the ad hoc relationship 

1:0�(1:0+ ja ; bj) (2) 

where jj denotes absolute value. Connectivity signatures are compared in (4a), (4b) and (2a). Two 

signatures (c,d) are compared in a similar means using 

X1:0 Vmax 
v1:0�(1:0+ jc ; dv j): (3)

Vmax v�1 
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Figure 3: Steps involved i n n o de classi�cation. Unlabeled a r r ows describe data �ows of attendance r atings. 
Circles indicate operations where attendance r atings are c ombined via either the Theory of Evidence (TE), or by 
an Independent Opinion Pole (IOP). 
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The selection of the methods used to combine evidence in (4e) and (2c) is critical to achieving good 

performance with DCA. See Fig. 3. No optimal means for combining evidence is claimed to have been 

found. Experiments have been performed using various methods, such as the Independent Opinion 

Pole (IOP), Linear Opinion Pole, Harmonic Opinion Pole [34] and Theory of Evidence (TE) [35]. 

Combinations of these techniques have also been attempted. Bayesian classi�ers [36] w ere used to 

combine the results of multiple techniques, however this did not appreciably impact �nal results. 

When analyzing subgraphs, the method that appeared to work best used TE 

sds � 1 :0 ; (1:0 ; s1)(1:0 ; s2) (4) 

where s1 and s2 are attendance ratings and sds is a combined value. When analyzing full-sized graphs 

in an isomorphism problem, IOP 

siop � s1s2 (5) 

worked well. This mode switch w as required at step (2c) when combining the evidence associated with 

neighboring nodes with the current nodes. The two modes of operation are indicated in Fig. 3 by the 

split circle. The unlabeled arrows in the �gure represent data �ows of attendance ratings. The circles 

indicate an operation taking place that combines attendance values. 

2.2 Performance Metrics for DCA 

Several performance measures have been established for DCA that allow test conditions to be evaluated 

and parameters to be adjusted. Fig. 4 shows a histogram of attendance ratings for nodes that were 

members of present and absent subgraphs. Dual data sets are plotted with pairs of light and dark bars 

on the same scale. This \dual histogram" has left (darker) entries that describe the attendance of nodes 

belonging to database graphs that were absent from the scene. The right (lighter) entries describe the 

attendance of nodes that belonged to database graphs that were present in a scene. Nodes of these two 

categories are referred to as \present" and \absent" nodes. 

As seen in the histogram, absent nodes tend to rank lower and present nodes rank higher on the 

scale. The segmentation of nodes is not perfect in the case of subisomorphisms. Note the subset of 

absent nodes that rank high on the scale. It is believed that this is somewhat unavoidable because these 

entries represent single node subisomorphisms, which seem to occur relatively often. The veri�cation 

step that completes DCA processing eliminates these nodes from the �nal subgraph by comparing the 

reordered adjacency matricies. This enforces a global connectivity c heck which i s a b o ve and beyond the 

requirement of matching local properties. 

Examining the dual histograms is not always a certain indication of DCA's ability to recognize 

objects. It can give a rough indication. In full-size isomorphism problems, the segmentation is very 

good - see Fig. 5 - and recognition success rates have b e e n b e n c hmarked at 100 out of 100 cases. Also 

note that this test case had a dynamic range of zero for the node and edge properties, and was run on 
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Figure 4: Dual histogram of attendance r atings recorded in a subisomorphism problem. Entries for present nodes 
are given by the lighter (right) bars. Entries associated with absent nodes are indicated with the darker (left) bars. 
Present and absent nodes are s e gmented using the attendance r ating. Dichotimization is su�cient given such a 
distribution, provided t h e g l o b al veri�cation step is performed t o c omplete DCA processing. 
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Figure 5: Dual histogram of the attendance r atings in an isomorphism problem. Note the dichotimization is 
signi�cantly improved over the subisomorphism case. These data were r ecorded f r om a test with node and edge 
properties having a zero dynamic range and with strongly-regular graphs. 

14
 



strongly-regular graphs. The matching in these tests was achieved solely via the connectivity signatures. 
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Figure 6: Histogram of subgraph size. This test involved d a t a b ase graphs with 30 nodes and a single scene graph 
having 15 nodes. This subisomorphism problem had a mean � standard deviation of 10:7 � 2:3 nodes. 

Another benchmark of DCA's performance is the size of matched subgraphs. Fig. 6 shows a histogram 

of these sizes on tests involving database graphs with 30 nodes and a single scene graph having 15 nodes. 

These 100 trials had a mean subgraph size of 10.7 and standard deviation of 2.3 nodes. A metric is 

needed to determine the best match b e t ween the scene contents and database entries. Subgraph size 

has been weighted by a norm measuring the closeness of node and edge properties for this �nal quality 

measure. 

During testing each n o d e o f e a c h graph in the database was assigned a unique name tag for use as 
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a � n a l c heck of correctness. The percentage of correct name tags was also tallied as a performance 

measure. Unfortunately random subgraph automorphisms do exist in this type of testing, and the name 

tags �ag automorphisms as an error, despite perfectly matching topologies and all other properties. 

Fig. 7 shows a histogram of the fraction of correct labels in the case described above. The mean � 

standard deviation of this metric in the test case cited above w as 98 � 5%. 
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Figure 7: Fraction of correct labels. This test involved d a t a b ase graphs with 30 nodes and a single scene graph 
having 15 nodes. The mean � standard deviation of correct labels was 98 � 5%. 
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2.3 Computational and Memory Requirements for DCA 

The e�ort required for each database examination is O(N 3) for graphs with N nodes. Loops (1) and 

(2) in the algorithm have an upper limit of Ns and Nd. Loops (3) and (4) have a limit determined by 

the shape complexity of objects, which is not a function of Nd because of the strongly-regular graphs. 

Hence, the limit on loops (3) and (4) is determined by the mean degree of the nodes. Comparing the 

connectivity signatures requires e�ort O(Vmax). Overall this yields an O(Ns Nd Vmax) which is O ( N 3). 

The Am Cube must also be generated for each scene. This is an O(N 4) operation, but is only done 

once, prior to the database examinations. DCA requires O(N 3) memory for the Am Cubes. 

2.4 Pose Determination 

Once DCA has isolated and reordered the best matching subgraphs of a scene and database, an object's 

pose can be determined. This portion of the DCA approach has not been implemented to date. However, 

the pose determination step will be a straight f o r w ard process employing established techniques. Given 

two matching subgraphs, the coordinates of physical features in the scene and database can be used 

to �nd the needed transformation. This can be accomplished via a closed-form solution [37]. If some 

nodes have been improperly mapped during the matching process then these errors will be revealed by 

examining the residual error of the transformed data points. Removing these outliers and re�tting the 

transform will serve as a �nal veri�cation step. 

Once the transform of a core subgraph is found, it should be possible to gather additional scene 

nodes into the segmented object. This could be accomplished either by t r a versing the database entry 

and examining the scene for consistent n o d e s , o r b y a search outward from the scene's subgraph looking 

for new scene nodes that can be included in the object. By whatever means chosen to generate new 

scene nodes for consideration, the new nodes will have to agree with the object's topology and the 

established transformation. This agglomerative process will be similar to the latter stages of a tree 

search technique. DCA has the advantage of providing a good starting point for the search. This can 

be seen in the results documenting the �nal subgraph size. 

2.5 Justi�cation of DCA 

An ideal solution to the graph isomorphism problem would be to �nd a node classi�cation scheme that 

uniquely characterizes all nodes in any case. No such classi�cation is known to exist for this general 

problem [23] [24] [16]. Of course, if the dynamic range of node or edge properties becomes large enough 

then this classi�cation becomes trivial. In the more general case it is necessary to form a classi�cation 

scheme that involves a node's topological relationship to the rest of the graph. The added challenge 

of �nding a general classi�cation for subgraphs can be appreciated by considering that by de�nition, 

subgraphs are missing portions of their structure. Hence any topologically-oriented metric will tend 

to be a�ected during subgraph formation. The extent of the connectivity signature is limited to help 
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mitigate this tendency. 

The connectivity measure has the e�ect of extending the characterization of nodes and edges. This 

increases the richness of the local description by using information that is independent o f n o d e a n d 

edge properties. Note that the connectivity signature is not unique. This is the underlying factor 

in the approximate nature of the results obtained by D C A . F uture e�orts will include a theoretical 

performance evaluation based on randomly generated, strongly-regular graphs. Simulations will then 

be run for comparison against the theoretical limits. Herein only this intuitive justi�cation is presented. 

The mode switch b e t ween IOP and TE in step (2c) of the algorithm can be appreciated by considering 

the fundamental di�erence between the nature of the matching that occurs in subgraphs vs. full-sized 

graphs. In a full-size isomorphism problem, all nodes need to be matched somewhere. This situation is 

more consistent with Bayesian reasoning in that good local matches imply that a node-to-node mapping 

is correct, and poor local matches imply the mapping is not correct. IOP is a Bayesian means to 

combine evidence. In the subgraph case, poor local matches don't necessarily imply that a node should 

be mapped elsewhere - it may mean that the node should not be included in the matching subgraph 

at all. Poo r m a t c hes in subgraphs do not provide any evidence to help establish the disposition of a 

node's attendance. This is consistent with the reasoning in the Theory of Evidence [35]. It is this 

fundamental di�erence in the conclusions which can be drawn from the attendance rating that causes 

the mode switch in D C A . 

3 Object Recognition Using DCA: Testing Methodology 

Test parameters have been designed to re�ect conditions in an object recognition scenario as closely as 

possible, while still permitting the use of randomly generated cases that could be run in large numbe r s . 

This section discusses how the test conditions were derived and presents the testing procedure in a 

step-by-step manner. 

3.1 Relation of Test Conditions to an Object Recognition Scenario 

One test parameter is the fraction of a database graph that is observable in a scene. Consider a 

rectangular solid for example, most viewpoints reveal 1/2 of its surfaces. Certain views can restrict the 

fraction down to 1/6. Hence most tests were performed with randomly generated subgraphs that were 

half the size of their original database versions. 

The amount o f i n terconnectivity in a graph was an important test parameter. As discussed above, 

strongly-regular graphs are the most appropriate for object representation. All tests were performed 

with this type of graph. Note that a graph which has precisely the same number of edges incident t o 

each node can not exist in all arbitrary cases [16]. Hence an algorithm was written to generate graphs 

that are strongly-regular (or almost regular) by simply adding edges randomly between any nodes that 

are below a given degree. This generated graphs rapidly and maintained the near regular condition. 
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Figure 8: An example of a randomly generated d a t a b ase entry. This graph is strongly-regular, each node has 
degree � 4. 

The graph in Fig. 8 was generated using this method. 

Another important parameter that a�ects the applicability of the test results is the dynamic range 

of node and edge properties. In some applications node properties can be made quite rich i n volving 

various shape parameters, texture or color, and so forth [8]. This sort of node property w ould likely be 

a v ector quantity. Only scalar integer quantities were considered here. This was in an attempt to keep 

the tests challenging. In most tests a dynamic range of 4 was used for both node and edge properties. 

This can be thought of as a set of objects having surfaces with 4 distinct shapes, for example. This 

includes all possible colorations, textures, shapes and sizes. The dynamic range of edge properties 

c a n b e e n visioned as 4 discrete relative o r i e n tations between adjacent surfaces. In a 2-D application 

involving the matching of features between two images [38], edge properties could be used to describe 

the North, South, East or West relative locations. These values were selected with the assumption that 

most machine vision applications would have properties with at least this much dynamic range. 

The noise level added to each node and edge property during the simulated sensing process was also 

varied. Flat noise with zero mean was added to each node and edge property. A noise peak of 0.25 was 

typically used. This corresponded to a +/-12.5% peak variation away from the ideal values stored in 

the database. 

3.2 Testing Procedure 

The individual steps in the testing process are described in Fig. 9. Each trial consists of 100 cases, 

beginning with the generation of a database of objects. A numb e r o f d a t a b a s e e n tries were randomly 

selected to be scene contributors. A subgraph was formed for each of these by randomly dropping 

nodes. The node ordering was then randomly perturbed and a scene constructed using all contributors. 
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Topological noise was added by placing random interconnecting edges between the scene contributors 

and by adding spurious nodes. DCA then compared the scene against each database entry. T h e b e s t 

matching database entry was retained as the �nal selection. 

Fig. 10 shows a scene constructed from a single object's subgraph. Four additional noise nodes were 

added to the scene to represent the e�ect of background clutter. The topological noise can be seen in the 

4 edges that connect the central nodes to the 4 peripheral (noise) nodes. Fig. 11 has two contributing 

subgraphs, 8 outlying nodes, and 4 interconnecting edges between the database contributors. In both 

of these scenes, subgraphs had 1/2 the number of nodes of their original database versions. 

Experimental Veri�cation: Results and Implications 

Extensive simulations of the recognition process have been completed and results follow. These tests 

have been performed in an abstract graphical domain. Hence, the physical location and orientation of 

object features were not part of the testing process. For this reason tests on pose determination have 

not been completed. All tests were run on a Silicon Graphics Indy2 workstation that had a 100 MHz 

R4000 RISC processor with an R4010 �oating point unit. Tests were run at normal priorities and in a 

multi-user environment. 

Tables are used to present the test conditions and performance measures below. An explanation of 

the table headings follows. 

�	 \D/S Number of Graphs" in the �rst column designates to the number of graphs in the database 

and scene, respectively. 

�	 \D/S Size of Graphs" gives the size of graphs in the database followed by the size of each subgraph 

contributor to the scene. 

�	 \Excess N/E in Scene" are the number of extra nodes added to each s c e n e a n d n umber of extra 

interconnecting edges added between each subgraph contributor. 

�	 The \Rate Hz" is the average rate at which e a c h database entry was examined in Hertz. Note that 

some preliminary processing was necessary for the scene graph. This was only performed once 

for each scene. For graphs of these sizes this required less than one second and is not included in 

these �gures. 

�	 \% Correct Selection" is the percentage of trials in which correct database contributors were 

selected. All tests were performed with 100 trials. 

�	 \Subgraph Size" gives the mean � standard deviation of the size of the extracted subgraphs. 

These subgraphs were reduced in size until all properties and topologies of the scene and database 

matched within speci�ed tolerances. 
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Figure 9: DCA testing procedure. Typically 100 trials were run for each set of test conditions. Each trial 
involved the random generation of databases and scenes. Both topological and property noise were t h e n a d d e d. 
Three p erformance metrics were u s e d for benchmarking. 
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Figure 10: A s c ene graph generated f r om randomly selected database contributors. This scene is composed o f a 
single subgraph with some added topological noise that can be s e en in the 4 edges that connect the central nodes 
to the 4 peripheral nodes. 

Figure 11: A s c ene graph formed f r om 2 database contributors. Excess nodes and edges are p r esent. 
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Table 1: Summary of test results when matching full-size graphs. The graphs in these tests had no node 
or edge properties, no property noise and no topological noise. Al l g r aphs were strongly-regular with 
degree � 4. Performance was maintained a t n e arly 100%, provided the graph size was above � 10. 

D/S Numbe r D/S Size Excess N/E Range, Noise Rate % Correct Subgraph Size % Correct Tag 
of Graphs of Graphs in Scene N/E, N/E Hz Selections Mean � Std.Dev. Mean � Std.Dev.
 

8/1 10/10 0/0 0/0, .0/.0 34.3 97 10.0 �0.0 75.6 � 26.1
 
8/1 16/16 0/0 0/0, .0/.0 9.5 100 16.0 � 0.0 99.5 � 3.0
 
8/1 20/20 0/0 0/0, .0/.0 2.6 100 20.0 � 0.0 99.8 � 1.4
 
8/1 24/24 0/0 0/0, .0/.0 2.7 100 24.0 � 0.0 99.7 � 1.6
 
8/1 30/30 0/0 0/0, .0/.0 1.3 100 30.0 � 0.0 100.0 � 0.0
 
8/1 40/40 0/0 0/0, .0/.0 0.4 100 40.0 � 0.0 99.9 � 0.7
 

�	 \% Correct Tag" is the percentage of correct name tags present in the matched subgraphs. The 

name tags uniquely identify each n o d e o f e a c h graph in the database. This performance measure 

is also given in mean � standard deviation form. 

4.1 Tests Using DCA to Find Full-Sized Isomorphisms 

DCA's yielded the best performance on full-sized isomorphism problems. To emphasize this a series of 

tests were run having a zero dynamic range for node and edge properties. Here, only the connectivity 

signatures were available as a means to determine node attendance. Table 1 show a correct database 

selection rate of 100/100 and a full sized matching subgraph in all tests. The percentage of correct 

name tags was not totally perfect. This is due in part to automorphisms which are more prevalent 

under these test conditions because the lack of node and edge properties makes nodes less distinctive. 

In all tests Vmax � Ns�2:0 and IOP was used to combine evidence. The number of nodes ranged from 

10 to 40 in these tests. 

4.2 Tests Using DCA to Find Subisomorphisms 

DCA's performance on subisomorphisms has been tested under a variety of conditions. These are 

grouped into two categories for clarity. The �rst examines size-related parameters and the second looks 

at e�ects associated with node and edge properties and with noise. 

4.2.1 Problem Size E�ects 

Graph size and the number of graphs are important factors a�ecting performance. In general graphs 

need to be su�ciently large before the connectivity signature attains a su�cient c haracter to help 

distinguish nodes. This can be seen in Tables 2 and 3, as well as in the tests on full-sized isomorphisms 

above. The fraction of nodes present in a scene subgraph was varied in Table 2. Changes in this fraction 

correspond to varying occlusion leve l s o r t o v arying sensor capabilities. 

All tests were run with 8 database graphs and 1 subgraph in each scene. The size of graphs in the 

database was �xed at 30 nodes. In all cases Vmax was set using the ceiling function Vmax � ceil(Ns�4:0). 
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Table 2: Summary of test results examining e�ect of subgraph size. These results indicate that at least 
half of the graph should be r etained given these size and noise conditions. 

D/S Numbe r D/S Size Excess N/E Range, Noise Rate % Correct Subgraph Size % Correct Tag 
of Graphs of Graphs in Scene N/E, N/E Hz Selections Mean � Std.Dev. Mean � Std.Dev.
 

8/1 30/10 4/4 4/4, .25/.25 11.9 64 4.3 � 1.9 91.4 � 18.3
 
8/1 30/15 4/4 4/4, .25/.25 6.8 99 11.2 � 2.3 96.9 � 5.6
 
8/1 30/20 4/4 4/4, .25/.25 4.6 100 17.7 � 1.6 98.9 � 3.1
 
8/1 30/25 4/4 4/4, .25/.25 2.9 100 22.7 � 1.4 99.9 � 1.1
 

TE was used to combine evidence describing the node attendance. These results indicate that at least 

half of the graph should be retained under these conditions. 

The e�ect of graph size is examined in Table 3. This e�ect is important because of its implications to 

object representation and on overall computational e�ort. Given these test conditions, it appears that 

a winged-edge graph may be appropriate for applications that involve relatively simple objects. In this 

representation a cube has 26 nodes. Vmax and TE were used as above. 

When a large number of graphs are present in the database the recognition process becomes more 

challenging because of the additional potential matching subgraphs that are available. Results in Ta-

ble 4 indicate that most performance measures remain fairly constant except for percentage of correct 

database selections which dropped slightly to 90% when 64 database entries are present. These tests 

begin to give a feeling for the discriminatory ability of DCA. An application requiring many dozens of 

database objects may need to have an increased dynamic range for iits node and edge properties, than 

the ranges used here. 

The optimal choice for the Vmax parameter is related to size, so these tests have been included here. 

Vmax parameter determines the extent of the connectivity signature. As seen in Table 5, performance 

peaks in the range 4 � Vmax � 6. 

The best choice of Vmax and other parameters will be largely application-dependent. The relative 

importance of subgraph size vs. correct database selection, vs. correct node mappings will vary between 

applications. In all other tests reported herein Vmax � ceil(Ns�4:0). 

Another size-related issue is the number of subgraph contributors to each scene. In Table 6 perfor-

mance metrics remain reasonably consistent, except for the percentage of correct name tags. This had 

a rather serious drop o�, down to � 75% for scenes with 4 subgraphs. It should be possible to mitigate 

some of the e�ects of this degredation during the pose determination stage. At this point the residual 

error of each node's physical location can be computed and outliers can then be removed. 

4.2.2 Evaluation of Dynamic Range and Noise E�ects on DCA Performance 

The dynamic range of node and edge properties has a very direct impact on performance because of its 

ability to improve the local characterization of nodes. Various combinations of node and edge ranges 

are presented in Table 7. Albeit, this is a tiny sampling of the span of all possible cases, it appears that 
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Table 3: Summary of test results examining e�ect of graph size. Perfomance d e grades as the graph size 
decreases due to the reduced information present in the connectivity signature. 

D/S Numbe r D/S Size Excess N/E Range, Noise Rate % Correct Subgraph Size % Correct Tag 
of Graphs of Graphs in Scene N/E, N/E Hz Selections Mean � Std.Dev. Mean � Std.Dev. 

8/1 20/10 4/4 4/4, .25/.25 15.0 95 7.2 � 1.7 95.3 � 12.0 
8/1 24/12 4/4 4/4, .25/.25 11.7 98 9.0 � 2.0 94.5 � 10.0 
8/1 36/18 4/4 4/4, .25/.25 4.2 99 13.8 � 2.6 97.7 � 5.0 
8/1 40/20 4/4 4/4, .25/.25 3.3 99 14.7 � 2.8 96.0 � 6.5 

Table 4: Summary of test results examining e�ect of the number of database elements. Most performance 
measures remain fairly constant except for the percentage of correct database selections. 

D/S Numbe r D/S Size Excess N/E Range, Noise Rate % Correct Subgraph Size % Correct Tag 
of Graphs of Graphs in Scene N/E, N/E Hz Selections Mean � Std.Dev. Mean � Std.Dev. 

4/1 30/15 4/4 4/4, .25/.25 7.0 99 10.9 � 2.3 96.4 � 6.4 
8/1 30/15 4/4 4/4, .25/.25 6.2 99 11.2 � 2.3 96.9 � 5.6 
16/1 30/15 4/4 4/4, .25/.25 6.8 96 11.4 � 2.0 95.7 � 7.2 
32/1 30/15 4/4 4/4, .25/.25 7.2 93 11.3 � 2.1 96.1 � 7.3 
64/1 30/15 4/4 4/4, .25/.25 7.3 90 11.8 � 2.0 97.5 � 6.4 

Table 5: Summary of test results examining e�ect of Vmax. V alues for the Vmax parameter are given 
in the second column. A value of 1 is trivial in the sense that no additional information is included i n 
the connectivity signatures beyond that of the original Adjacency matrix. The need for the connectivity 
signature c an be s e en by the jump in correct database selections that accompanys nontrivial Vmax extents. 
In all other testing Vmax � ceil(Ns�4:0). 

D/S Numbe r D/S Size Excess N/E Range, Noise Rate % Correct Subgraph Size % Correct Tag 
of Graphs and Vmax in Scene N/E, N/E Hz Selections Mean � Std.Dev. Mean � Std.Dev. 

8/1 30/15,1 4/4 4/4, .25/.25 8.9 8 2.0 � 0.0 56.2 � 46.4 
8/1 30/15,2 4/4 4/4, .25/.25 8.1 96 11.6 � 2.6 97.6 � 6.1 
8/1 30/15,3 4/4 4/4, .25/.25 7.3 96 11.8 � 2.4 95.8 � 8.3 
8/1 30/15,4 4/4 4/4, .25/.25 7.0 99 11.2 � 2.3 96.9 � 5.6 
8/1 30/15,5 4/4 4/4, .25/.25 6.4 100 10.7 � 2.3 98.0 � 4.9 
8/1 30/15,6 4/4 4/4, .25/.25 6.0 100 9.0 � 2.6 98.6 � 6.7 
8/1 30/15,7 4/4 4/4, .25/.25 5.6 99 7.0 � 2.6 99.5 � 3.0 
8/1 30/15,8 4/4 4/4, .25/.25 5.1 89 4.7 � 2.1 99.8 � 1.5 

Table 6: Summary of results examining e�ect of the number of subgraphs pre s e n t i n s c ene. The per-
centage of correct name tags su�ered a s i g n i � c ant drop o� here. These incorrectly matched n o des would 
have to be identi�ed a n d r emoved during the pose determination process. 

D/S Numbe r D/S Size Excess N/E Range, Noise Rate % Correct Subgraph Size % Correct Tag 
of Graphs of Graphs in Scene N/E, N/E Hz Selections Mean � Std.Dev. Mean � Std.Dev. 

8/1 30/15 4/4 4/4, .25/.25 6.8 99 11.2 � 2.3 96.9 � 5.6 
8/2 30/15 4/4 4/4, .25/.25 3.1 98 10.1 � 1.9 87.1 � 12.5 
8/3 30/15 4/4 4/4, .25/.25 1.8 94 10.0 � 2.0 78.2 � 16.6 
8/4 30/15 4/4 4/4, .25/.25 1.2 98 9.9 � 1.7 74.4 � 16.8 
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Table 7: Summary of test results examining dynamic range of node and edge properties. Results indicate 
the importance of the dynamic ra n g e o f e dges. 

D/S Numbe r D/S Size Excess N/E Range, Noise Rate % Correct Subgraph Size % Correct Tag 
of Graphs of Graphs in Scene N/E, N/E Hz Selections Mean � Std.Dev. Mean � Std.Dev. 

8/2 30/15 4/4 4/2, .25/.25 3.0 78 10.2 � 1.9 75.6 � 18.6 
8/2 30/15 4/4 4/4, .25/.25 2.5 98 10.1 � 1.9 87.1 � 12.5 
8/2 30/15 4/4 8/0, .25/.0 3.3 91 18.7 � 2.4 46.5 � 14.6 
8/2 30/15 4/4 8/2, .25/.25 3.3 97 11.1 � 1.8 87.2 � 13.1 
8/2 30/15 4/4 8/4, .25/.25 3.3 99 11.5 � 1.9 95.2 � 9.0 
8/2 30/15 4/4 16/0, .25/.0 3.3 94 15.5 � 2.2 70.8 � 12.6 
8/2 30/15 4/4 16/2, .25/.25 3.2 100 12.2 � 1.6 94.6 � 7.9 
8/2 30/15 4/4 16/4, .25/.25 3.2 100 12.2 � 1.4 98.1 � 4.5 
8/2 30/15 4/4 16/8, .25/.25 3.1 100 12.2 � 1.3 98.7 � 4.0 

Table 8: Summary of test results examining noise in node and edge properties. Results are fairly 
consistent across the span of noise intensities, except in the extreme cases. 

D/S Numbe r D/S Size Excess N/E Range, Noise Rate % Correct Subgraph Size % Correct Tag 
of Graphs of Graphs in Scene N/E, N/E Hz Selections Mean � Std.Dev. Mean � Std.Dev. 

8/1 30/15 4/4 4/4, .0/.0 7.0 16 2.8 � 1.0 57.9 � 41.9 
8/1 30/15 4/4 4/4, .05/.05 6.8 95 7.3 � 2.6 97.9 � 6.4 
8/1 30/15 4/4 4/4, .10/.10 6.8 94 11.9 � 2.3 96.8 � 5.3 
8/1 30/15 4/4 4/4, .15/.15 6.8 95 11.9 � 2.2 96.4 � 5.8 
8/1 30/15 4/4 4/4, .20/.20 6.9 99 11.6 � 2.3 96.8 � 5.6 
8/1 30/15 4/4 4/4, .25/.25 7.0 99 11.2 � 2.3 96.9 � 5.6 
8/1 30/15 4/4 4/4, .30/.30 7.0 100 10.6 � 2.5 96.9 � 6.7 
8/1 30/15 4/4 4/4, .35/.35 6.9 99 9.9 � 2.7 97.1 � 7.1 
8/1 30/15 4/4 4/4, .40/.40 6.9 97 9.4 � 2.8 96.6 � 8.4 
8/1 30/15 4/4 4/4, .45/.45 6.7 97 8.3 � 2.9 97.7 � 6.0 

the range of edge properties needs to be � 4 u n til the range of node properties becomes � 16. Note the 

poor results when the edge range drops to 0. Here also, the subgraph size increases above the true size 

of the contributor. This is consistent with the poor percentage of label matches in these cases. 

The results of tests adding noise to node and edge properties were interesting. A gradual decline 

in performance can be seen in Table 8 as the noise took on larger values, as expected. The low noise 

cases were suprising. Note the severe drop o� in performance with zero noise. In applications with 

very low property noise, a weighting scheme may h a ve t o b e i n troduced to reduce the e�ect of property 

comparisons when forming the attendance ratings. 

The e�ects of topological noise shown in Table 9 were not as severe as the cases presented in Table 6 

where additional scene graphs were added. Increasing the number of scene graphs has a much greater 

in�uence on the scene's topology than the noise introduced here. 

Table 9: Summary of tests examining addition of topological noise. The topological disturbances associ-
ated with multiple scene graphs is more s e v e r e than the noise in these tests. 

D/S Numbe r D/S Size Excess N/E Range, Noise Rate % Correct Subgraph Size % Correct Tag 
of Graphs of Graphs in Scene N/E, N/E Hz Selections Mean � Std.Dev. Mean � Std.Dev. 

8/1 30/15 0/0 4/4, .25/.25 9.0 98 9.5 � 2.7 97.8 � 6.9 
8/1 30/15 2/2 4/4, .25/.25 8.3 98 10.5 � 2.3 97.6 � 6.3 
8/1 30/15 4/4 4/4, .25/.25 7.2 99 11.2 � 2.3 96.9 � 5.6 
8/1 30/15 6/6 4/4, .25/.25 6.7 98 11.3 � 2.2 95.8 � 9.5 
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5 Concluding Remarks 

The objective of the research reported in this paper was to develop a subgraph isomorphism algorithm 

that will work well in object recognition applications. Current t e c hniques for shape-based recognition 

are typically quite time consuming and can have undesirable tradeo�s in speed vs. accuracy. DCA can 

meet the computational bounds associated with an active sensing paradigm. 

The DCA approach e v aluates evidence describing the likelihood of a node's attendance in another 

graph. The evidence is based on node and edge properties and on a local connectivity signature. Peak 

attendance values are identi�ed to form a node-to-node mapping and a global veri�cation step completes 

the process. After the best matching pairs of nodes are identi�ed, the nodes of one graph are reordered 

to allow a side by s i d e v eri�cation of the graphs' similarity. 

Attention has been focused on testing DCA under challenging conditions. Test cases included both 

topological and feature noise. DCA produced good results in over 95% of test cases and under a 

wide variety of conditions. These results indicate that DCA has potential in a variety of applications, 

particularly due to the low reliance on the dynamic range of node and edge properties. 

The research reported in this paper is part of a larger e�ort being pursued in the CVRR laboratory 

directed towards realization of an integrated Machine Vision system that will also include range data 

acquisition, surface modeling and graph formation. The Structured Light testbed in our laboratory 

generates range data at frame rates. The system uses a laser line projector that produces a plane of 

light. A CCD camera captures images of the laser plane as it intersects objects in the scene. Objects 

are moved under the sensor using a conveyer belt. This eliminates the need for any m o ving optical 

components. An encoder monitors the motion of the conveyer belt. Our current w ork focus is on rapid 

methods of range segmentation and surface �tting. This will serve as the front end process to generate 

input data for DCA. 

In addition to the Structured Light-based system, we i n tend to explore use of the DCA algorithm 

with other 3-D scene characterization activities pursued in our laboratory [5][39][40]. Good performance 

of DCA in cases with a dynamic range of 4 for edge properties suggests suitability with applications 

involving North-South-East-West relative positions, such as stereo matching [38], for example. 
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