CREATING A RABBITRY FOR A HIGH SCHOOL
AGRICULTURAL PROGRAM:
A Guide for the Approval Process
and Materials Required

By
Anne Marie Katuin

AGRICULTURAL EDUCATION and COMMUNICATION
DEPARTMENT
CALIFORNIA POLYTECHNIC STATE UNIVERSITY
San Luis Obispo
December 2009

Date Submitted: __
Advisor Approved: __
Department Head Approved: __
List of Diagrams

Diagram 1. Top View of Cages ...19
Diagram 2. Front View of Single Hole ..20
Diagram 3. Cage Stand ...20
Diagram 4. Floor Plan ...24
List of Figures

Figure 1. Canopy Carport ..17
Figure 2. Storage Shelves ..18
Figure 3. Watering System Hardware...21
Figure 4. Wooden Nest Boxes ...22
Figure 5. Portable Swamp Cooler..22
Abstract

The proposal for a rabbitry to be added to the campus of Liberty High School in Golden Valley Unified School District in the designated agricultural area was proposed to the agricultural teacher and site administration for the high school. A floor plan was designed to fit the needs of a small rabbit breeding operation for the use of the LHS FFA students who wished to have a breeding or meat rabbit SAE.

Guidelines and plans were created in order to help an agricultural teacher or community member go through the previously mentioned approval process if they were to want to construct a facility of this sort for the school’s agricultural education program.

The focus of this project turned more towards the process of approval as well as all materials, equipment, and finances needed to actually complete the rabbitry on the school campus.
Chapter One

Introduction

Agricultural education is made up of three components. These are commonly referred to as the “three circles” and are: classroom/laboratory instruction, leadership development through students participating in the National FFA Organization, and supervised agricultural experience (SAE) programs.

Classroom instruction includes curriculum about agriculture and natural resources as well as leadership and personal development. This component encourages students to learn about and study parts of agriculture and problems in the industry as well as the principles that will help them develop possible solutions to these problems (Phillips, Osborne, Dyer & Ball, 2008). In agricultural classrooms instruction may be formatted similar to other subjects taught in the school (Barrick et al., 1992).

Laboratory instruction is also included in this first circle. Laboratories create a critical link between the classroom instruction and hands on activities (Phipps, Osborne, Dyer & Ball, 2008). They involve teacher demonstration and student practice. The laboratory may consist of variety of environments including an agricultural mechanics lab, a green house, a research facility, or a land lab either at the school or near by school owned or donated property (Barrick, et al., 1992). Many of the land laboratories are created for livestock species, vegetable crops, orchards, aquaculture, or forestry (Phipps, Osborne, Dyer & Ball, 2008). Within these laboratory environments the lessons and activities that could take place are almost unlimited. Anything from plant propagation, tissue culture, insecticide application, plant identification, artificial insemination,
machinery repair to agriscience labs with students performing experiments and investigations can occur (Phipps, Osborne, Dyer & Ball, 2008).

The next circle of agricultural education is leadership development, implemented through participation in the National FFA Organization. According to Phipps, Osborne, Dyer, and Ball (2008),

The National FFA Organization is an educational, nonprofit, nonpolitical youth organization for students enrolled in school-based agricultural education programs. The FFA strives to develop premier leadership, personal growth, and career success in its members and is an intra-curricular (within the curriculum) element of agricultural education in the public schools. It offers challenging individual and chapter programs and activities, through which students develop excellent skills in leading and working with people of all ages. The FFA offers many different opportunities for students to achieve these goals. One opportunity is for students to become an officer at the chapter or higher level. Students can participate in Career Development Events (CDE’s) such as judging teams, public speaking, floriculture, marketing, job interview, agronomy, agricultural mechanics, and more (Career Development Events). Students can also earn awards through these events, proficiencies in projects, and different levels of FFA Degrees.

Supervised Agricultural Experience (SAE) programs make up the third circle. The formal definition to SAE is,

The actual, planned application of concepts and principles learned in agricultural education. Students are supervised by agriculture teachers in cooperation with parents/guardians, employers and other adults who assist them in the development
and achievement of their educational goals. The purpose is to help students develop skills and abilities leading towards a career (Barrick et al., 1992). This program allows students to further apply the knowledge and skills that they learn from classroom and laboratory instruction.

The virtually endless list of possible SAE projects fall into three categories: exploratory, placement, and entrepreneurship SAE’s (Barrick et al., 1992). Exploratory experiences can consist of laboratory experience or research-based projects completed by the student (Phipps, Osborne, Dyer & Ball, 2008). Students wishing to complete a placement project could do so in either a farm or agribusiness setting (Phipps, Osborne, Dyer & Ball, 2008). Entrepreneurship projects allow students to develop the knowledge and skills needed to own and/or manage production agriculture or agribusiness enterprises by students owning their own materials and keeping records of their endeavor (Barrick et al., 1992).

Entrepreneurship SAE projects are traditionally based on livestock and crop production. However, in today’s forever expanding industry these projects have grown to include things like agriculture sales and service, marketing, forestry, agricultural mechanics, agricultural processing, hydroponics, recreational and specialty animals, and much, much more (Barrick, et al., 1992). These projects can be developed at home, on a farm or ranch, in an agricultural business, or even using school or community facilities (Barrick et al., 1992).

Statement of the Problem

Because Liberty High School has a relatively new agriculture program and FFA chapter there is a need to expand SAE project options and allow the students to have
more choices and opportunity for SAE’s. There is an increasing amount of development in the community making it harder and harder for students to house their SAE’s at their own home. With a lot of new and young members in the program that have never been around animals or agriculture students need to be able to begin with smaller scale projects and make progress towards larger projects. Many members have expressed interest in raising rabbits for meat pens to show and sell at the local county fairs. *The problem is that there is no facility available for the students at Liberty High School to take care of, breed, and raise rabbits.*

Importance

This project helps to expand a high school’s agricultural program and the choices that it can provide students to complete program requirements such as SAE’s as well more ways for experiential learning to take place.

Purpose

The purpose of this project is to help create opportunities for students at LHS to take part in more types of SAE projects, specifically rabbits. This is a way to give back to a high school and community as well as lean about starting new projects for an agriculture program before becoming a teacher in a secondary agricultural education program.

Not only will this project benefit LHS, but will benefit the agricultural education profession. Teachers looking to create new opportunities for their students and expand and create facilities on campus may use this as a guide. It also shows the importance of SAE options as well as on campus facilities.
Objectives

The objectives to accomplish the purposes of this project are as follows:

1. To create a proposal for a rabbit facility that could be utilized by LHS FFA
 a. Develop an appropriate plan for the space and caging, water system, and a cooling system

2. To present proposal and gain approval to build a rabbit facility at LHS through the Golden Valley Unified School District School Board

3. To build a rabbit facility at LHS
 a. Acquire necessary materials and equipment donated for the project

4. To have several breeder rabbits in the facility
 a. Get rabbits donated from known breeders to get the project started

5. To distribute a guide to raising and breeding rabbits to the agriculture teacher and students so that they can be successful
 a. Put together materials collected over 11 years of raising rabbits including material on care, breeding, and meat pens

Definition of Important Terms

- FFA – The National FFA Organization
- CDE – Career Development Event
- SAE – Supervised Agricultural Experience
- LHS – Liberty High School located in Madera, CA
- GVUSD – Golden Valley Unified School District, the district in which LHS is located
Summary

LHS has a young agricultural education program that is growing with the new addition of a full time teacher, agricultural classes, and more members. These members need opportunities to complete their SAE projects. Students have expressed their interest in raising rabbits for SAE projects, however there is no on site facility that allows students to participate in such a project. This project will ultimately create an on campus facility that will allow students to care for, breed, and raise rabbits.

This project will not only benefit LHS with a new facility and SAE opportunities, it will allow me to gain experience with SAE projects and facilities on my way to become an agricultural teacher by giving back to my high school. Furthermore, it will benefit the agricultural education in general as a guideline for teachers to use in their processes of creating more opportunities for their students in expanding their programs or creating new facilities.

The final outcome of this project is to have a functioning rabbitry with breeding stock to allow the LHS FFA to begin their rabbit projects.
Chapter Two

Review of Literature

SAE Participation

The National Research Council in 1988 recommended that all students in an agricultural education program participate in an SAE (Dyer & Osborn, 1995). However it has been found that there is a large amount of students that do not participate in a supervised agricultural experience project. According to various studies cited by Dyer and Osborn (1995) less that 30% of students in the state of New York participate in an SAE, up to 43% of California students do not have an SAE, over half the students in Florida did not participate in SAE’s for all four years, 31% of Louisiana students did not have SAE’s, and North Carolina has 42% of its students not participating in SAE projects.

While the previous study found many states with low participation rates in SAE projects Dyer and Osborn (1995) also found statistics of areas with high participation in supervised agricultural experience programs. These include Colorado, Montana, who had two thirds of their students continue their SAE’s even after graduation, Texas with over half of their departments have 100% student participation in SAE projects, and Missouri with 86% of their agricultural students having SAE’s.

Dyer and Osborn (1995) state that participation seems to be greatest in rural areas and with white, male students. Teachers in the rural areas tend to place more emphasis on SAE projects than do urban teachers, accounting for the participation differences. Older teachers tend to embrace and promote traditional production SAE projects versus younger teachers who promote more placement projects; however specialized programs
tend to have a lower participation rate than the traditional projects (Dyer & Osborn, 1995).

While participation varies throughout areas of the country there does seem to be consensus that participation in supervised agricultural experiences are important and should be required of agricultural students. This opinion is by researchers, teachers, and administrators cited by Dyer and Osborn (1995). However, many agricultural education programs do not require students to complete and SAE. In Tennessee only 35% of the programs require SAE participation, Illinois teachers strongly encourage SAE participation but 40% of them did not require it (Dyer & Osborn, 1995). In New York 72.5% of the teachers require an SAE of their students and almost all Montana agricultural education departments require SAE participation (Dyer & Osborn, 1995).

SAE programs have changed from a production oriented project to projects encompassing a variety of scopes and agricultural focuses. Because of the changes in the direction of SAE programs there are a lot of uncertainties about how the programs should be designed and implemented causing a decline in participation by both teachers and students (Dyer & Osborn, 1995). This adds to the conclusion of Dyer and Osborn (1995) that while many teachers state that they support SAE programs and participation they do not successfully and fully put SAE programs into practice resulting in declining student participation.

Advantages

“The value of experiential learning in agricultural education has long been recognized as an important part of the educational process. Through practice and
experience students apply what they have learned in real situations, thus the material becomes understandable and usable” (Cheek, Arrington, Carter & Randell, 1994). Supervised agricultural experiences are a way of accomplishing this hands-on practice and “learn by doing” philosophy in real situations. Many educators believe that SAE programs are not only valuable in the application of theory, but they are also a valuable experiential learning tool (Dyer & Osborn, 1996). Student success in learning can be linked directly to the student’s hands-on experiences outside of the classroom (Graham & Birkenholz, 1999). Furthermore, the hands-on SAE experiences have a positive relationship with classroom learning.

Cheek, Arrington, Carter, and Randell (1994) said that student’s participation in an SAE program was a positive predictor of their level of success in agriculture education. It was also found that there was a notable positive relationship between the scope of the SAE project and the student’s achievement, especially in tenth graders (Cheek, Arrington, Carter & Randell, 1994).

Barriers

Several barriers to the supervised agricultural experience program have been identified by researchers. These include lack of motivation by students, lack of teacher time, poor record book keeping, low parent interest, limited SAE opportunities, and inadequate financial resources and facilities (Dyer & Osborn, 1996). An overwhelming consensus between researchers and articles is that there is a definite need for school site facilities for students to use in completing their SAE projects.
Dyer and Osborn (1995) cited Foster in saying that the biggest deterrent to student participation in SAE projects was the lack of facilities. They cited Lamberth as identifying that inadequate resources account for a large part of the lack of participation. Anyadoh and Barrick (1990) concluded that there was a positive relationship between the quality of an SAE project and the availability of school site facilities (Dyer & Osborn, 1996). Bingham (1969) acknowledged a need for more supervised agricultural experience facilities (Dyer & Osborn, 1996).

It is essential that there be school site facilities if teachers are going to provide a quality SAE program for their agriculture students. Teachers and administrators agree that schools should provide facilities on campus for SAE’s to take place (Dyer & Osborn, 1996). This is especially true with an increase in the urban and suburban areas that agriculture students are coming from. When schools decide to create an agriculture education program the school system should provide sufficient facilities that are both production and non-production oriented so that students may conduct valuable SAE projects (Dyer & Osborn, 1996).

Benefits to school site facilities

School facilities help students to be able to complete supervised agricultural experiences that might not otherwise be able to participate in the program due to limited space at home. School site facilities allow these students to have a variety of SAE projects depending on the facilities. According to Warner and Washburn (2007), three of the teachers interviewed housed most of their student’s SAE projects on campus. The
barn facilities made it possible for urban students to have large animal SAE’s as well as for students to have many other types of SAE’s such as small animals and plants.

With on campus facilities students are given more opportunities to participate in supervised agricultural experience programs. They have the option of raising animals or conducting other projects that would otherwise not be possible for them to do. With this increase in availability for the students there will be an increase in interest and participation and thus an increase in the success that students have in their agricultural education programs.
Chapter 3

Methods

Making Contacts

In order to complete this project, several key individuals were contacted including the LHS agricultural teacher, the LHS principal, and district office personnel.

Initially, contact was made with the agricultural science teacher, Kari Torres, at Liberty High School. Torres was contacted via email in September of 2008 about the possibility of doing a project to benefit the high school and FFA program. A follow up contact was made with Torres via email the following after obtaining approval on the Cal Poly end for this project. Torres recommended contacting the site principal and that a project like this would need to be approved through her before going further.

The LHS principal is Darlea Livengood. Contact was made with Livengood through email in October after hearing back from Torres. She was grateful for the opportunity that was proposed for the high school and students and said to keep in touch with Torres about the project and as it developed.

Contact was made with of the GVUSD Board Members, Mark Toole, in January of 2009 about the project in hopes for some assistance in learning the approval process and steps that needed to be taken to get the project on the move. Toole made contact via phone and said that he forwarded the questions about board approval to someone at the district office and that Livengood had some questions about the project. Communication via email with Livengood further discussed the ideas of the project.

In the last week of April, 2009 GVUSD Assistant Superintendent, Andy Alvarado, was contacted on the phone. He asked how the project was coming along and
if the needed information and assistance had been obtained. He was informed that the materials and information had not been received and he said to email him and he would attempt to get the information gathered. Later that week, contact was made with Alvarado via email about the information that is needed in regards to the approval process for completing a project of this sort, the key people to contact, and the location of the agricultural facilities at the school site. Currently, no response has been received.

The Approval Process

In an effort to gain district approval, teachers, administrators, board members, and district employees have been contacted for necessary forms and information about the approval process for a project of this type.

Materials

Numerous materials are needed to complete this project including caging or wire, feeding and watering equipment, breeding equipment, and cooling equipment, as well as a structure to house the project. To select the most appropriate materials, research was conducted online at KWCages.com, a rabbit and cavy caging and supply company. The options of buying pre-built cages versus rolls of wire to build the cages by hand were looked at and comparisons were made on the quantity of materials and prices were recorded. This company also sells feeders, watering systems parts, and nest boxes. However, the nest boxes are another thing that could be purchased in materials and built.
If this project were to be actually built contact would be made a KW dealer in the area to see if any donations or discounts could be given to help the school obtain this facility.

Other materials needed are the actual building or cover. Further online research would be conducted to look at different options and retailers to come up with the best and most affordable structure for the rabbitry.

Finally, the rabbitry will need a cooling system. This can be done with fans and misters or a portable air conditioning or swamp cooler unit purchased from a local store.

Location

The location of this facility at LHS would be in the newly designated Ag area. There is a greenhouse in the planning stages and this rabbitry would be placed in the same general area within the fencing put up for the greenhouse for security measures. Placing the rabbitry near the greenhouse would also allow for easy access to electricity and water.
Chapter 4

Results

The results of this project are split up into four sections: approval process, housing and storage, caging and equipment, and cooling.

Approval Process

Research was conducted to obtain the approval process for constructing a project such as a rabbitry at the high school campus as part of the agricultural farm. Mr. Andy Alvarado, Assistant Superintendent at GVUSD, responded to my request for approval guidelines the first week of August, 2009 via email. According to Mr. Alvarado, GVUSD would ask that:

1. Proposal submitted to LHS Ag teacher and site administration
2. Site administration approval
3. A request would be submitted to the Asst. Superintendent of Educational Services
4. Board approval would not be necessary for this project

Any type of structural designs or construction on the facility would require Board approval. In this situation, we would forward the request to the Superintendent and then to the Board for approval via our standard Board request procedures. This would entail getting the item on a future Board agenda via the Superintendent’s office. (A. Alvarado, personal communication, August 4, 2009).

In this case the LHS agricultural teacher to submit the first proposal to would be Mrs. Wilterding (formally Ms. Torres) and the new site principal for the 2009-2010 school year is Mrs. Kuljeet Mann. After site approval then the request would be submitted to Mr. Alvarado at the district office. Since there would be structural design and construction on the site Board approval would be necessary. The request would be forwarded from Mr. Alvarado to the Superintendent, Sarah Koligian who would then be able to forward the request to the Board’s agenda.
Housing and Storage

Online research at retail sites was done to look at options for the structure to house the rabbitry. One option looked at was a wooden storage unit. A product was found through Lowe’s Home Improvement Store that would meet the size and ventilation requirements. This structure was 12 feet wide by 20 feet long (12’X20’) in size with windows along the side walls and a double door on one end. The cost of this unit was 3,199.00 dollars ($3,199.00) before tax and delivery/installation if desired.

Another option to house the rabbitry is with a canopy carport. See Figure 1. Sam’s Club sells these units in the desired ten feet wide by 20 feet long (10’X20’) size. The structure is made of 20 gauge two inch powder coated steel piping and the tarps are made of 12 millimeter polyethylene. It comes with the frame, a roof, two side walls, one solid end wall, and one end wall with a zipper. This unit sells for 198.83 dollars ($198.83) before tax. This unit would work quite well and the end wall with the zipper would be ideal to have the gate located and easily allow entry as well as the capability of rolling up the end for extra ventilation when needed.

Figure 1 Canopy Carport
A storage shelving unit would be well utilized in this space to hold nest boxes, extra feeders, tools, grooming supplies, and other miscellaneous equipment. Lowe’s Home Improvement Store carries a variety of garage storage equipment. A shelving unit that is strong would be best. The example found is made of a heavy duty steel frame with wood shelves and a 5,000 pound capacity. It is 72 inches tall, 36 inches wide, and 18 inches deep with four shelves plus the top which could be utilized as a fifth shelf. See Figure 2.

Figure 2 Storage Shelves

![Storage Shelves](image)

The housing would also need to be secured from unauthorized people entering as well as predators such as dogs or coyotes. In order to obtain this a fence, such as a chain link or non-climb, should be put up around the outside perimeter of the structure.

Caging and Equipment

KW Cages was the source used for research done on caging systems. There was a variety of caging options available. The space being designed is a ten foot wide by 20 foot long (10’X20’) space and so cages were looked at and evaluated accordingly. The
The best fit for this situation would be to purchase six modular wire double hole cages with each hole measuring 24 inches wide, 3 inches long, and 18 inches high. Placing these modular cages three side by side and making two back to back rows would create a caging unit measuring 4 feet wide, 15 feet long and 1.5 feet tall. See Diagram 1. Each modular double hole unit costs 52.05 dollars ($52.05) when purchasing six or more units. Purchasing six of these would be a cost of 312.30 dollars ($312.30).

<table>
<thead>
<tr>
<th>30”</th>
<th>Diagram 1 Top View of Cages</th>
</tr>
</thead>
<tbody>
<tr>
<td>24”</td>
<td></td>
</tr>
</tbody>
</table>

These cages are made with wire on the outside walls that are one inch wide by two inch long (1”X2”) spaces with a baby saving feature that creates smaller wholes towards the bottom of the cage to keep young kits from falling from the cage. The floors and inside dividers are made of one inch wide by one-half inch long (1”X1/2”) spaces. In the front of each cage a whole would be cut to allow a feeder to be attached to the cage. Cages for bucks would have a two inch wide by four inch long (2”X4”) hole cut and cages designated for does and litters would have a two inch wide by eight inch long spaces.
(2”X8”) hole cut for a longer feeder to accommodate more rabbits feeding. See Diagram 2.

Diagram 2 Front View of Single Hole

In order to hold the cages above the ground stands would be built out of lumber. The legs for the stand would be made of four inch wide by our inch thick (4”X4”) pieces and the framing edges are made of two inch wide by four inch thick (2”X4”) pieces. They are then fitted and nailed or screwed together. See Diagram 3.
constructed from PVC piping that would run through the center of the two back to back rows of cages. Each cage would have a nipple going into it for the rabbits to drink from.

The brass nipples can be purchased from KW cages for 3.35 dollars ($3.35) each and the PVC pipe saddle for the nipples are 75 cents ($0.75) each or a tee to hold the nipple are 83 cents ($0.83) each. These are standard one-half inch (1/2”) PVC pieces that can be easily assembled using PVC glue. Pipe support clips to keep the water pipe from bowing and to keep it attached to the cage are 27 cents ($0.27) each. See Figure 3. A pressure regulator would also be essential for the watering system.

Figure 3 Watering System Hardware

Nest boxes would be a vital part of a breeding project. KW Cages also sells a variety of sizes of nest boxes. However, these nest boxes are steel and I would not recommend using steel boxes in the hot climate of Madera. Nest boxes can also be hand made out of one inch thick sheets of lumber with a double wire floor to for bedding and absorption as well as keeping kits warm and safe. See Figure 4.
Cooling

A cooling system is a must in the summer climate of the area. Ideally swamp cooler would be utilized. These are portable coolers that run on electricity and have a hose attached to them. See Figure 5. Also, fans would be used to create more air circulation and as a sole cooling system on the days that the swamp coolers are not needed. A swamp cooler from Lowe’s Home Improvement Store that is rated for 175 square feet is sold for 199.00 dollars ($199.00). A fan can be hung at each end of the barn. A simple box fan works very well and they are relatively inexpensive when bought at the beginning of the summer from a home improvement store such as Lowe’s Home Improvement Store or a store such as Wal-Mart.
Summary of Results

A proposal for the project needs to be approved by the agricultural teacher, site administration, and assistant superintendent. Then, for structure and construction approval the proposal would move to the superintendent and to the Board for final approval.

Supplies would be broken down into expenses as follows:

- Canopy Structure $198.83
- Cages $312.20
- Watering System Parts $53.40
- Swamp Cooler $199.00
- Subtotal $762.90

There would also be other variable costs such as lumber for the stands and nest boxes, wire for the nest boxes, box fans to complete the cooling system, PVC pipe to run the length of the cages, water pressure regulator, and hoses to run the water system and swamp cooler.

For an example floor plan of the rabbitry see Diagram 4.

Discussion

The approval process for projects completed on a school campus such as this addition to a school agricultural farm seems to be relatively straight forward. However, it may not be as simple as it sounds and would take a good amount of time for the proposal to make its way through each level and then through the Board’s discussion and
Diagram 4. Floor Plan

- Work Table
- Fan
- Cooler
- Electricity
- Water
- Supply Shelves/Cabinet
- Gate/Door
decision process. A presentation to the Board may be beneficial to help members understand the importance and advantages to having such facilities readily available for students to use.

In times of budget restrictions and lack of funding it would be crucial to gain support for a project like this from individuals or businesses within the community. Also, it would be beneficial to contact dealers of KW Cage supplies for possible discounts or donations for this project because it will be at a high school and be used by agricultural students, allowing them to gain experiences and learn about raising rabbits. Also, letters could be taken to other stores that supplies are purchased from to see if any donations or discounts are available.

Once completed, breeders could be contacted to see if any breeding stock would be able to be donated to the students to begin their project. It has been found that breeders tend to be very supportive of youth projects and are very willing to help new breeders get started.

The undertaking of building a rabbitry like this would take time and patience; however it would be well worth it when students were able to successfully use it. It would also need to be taken into consideration how the rabbitry would be maintained through school holidays.
Chapter 5

Conclusions

Based on the results, the conclusions of this study are:

1. Working with a school district can be very difficult because of issues with budgets, administrative approvals, and administrative changes.

2. It is understandable that someone external to the district would encounter greater difficulties in constructing animal facilities on a high school campus. A teacher employed at the school site would probably have an easier time of getting through the approval process.

3. Building a rabbitry on a high school campus is practical and economical. Developing a small animal facility would help to increase participation of agricultural students in SAE projects.

Recommendations

Recommendations to readers and those thinking about completing a similar project are:

1. It is important to take into account the many people that must approve a proposal before any work can begin. This, along with administrative changes within the school during the time frame of the project, makes communicating with the school and district offices difficult.

2. Anyone proposing to build a rabbitry should allow ample time to get all approvals needed. Also, have a specific plan ready at the start of the approval process. This may ease concerns of administration and have answers ready for any questions they may have about the project. Remember that not all administrators may
understand the agricultural education program, or more specifically, a rabbit
breeding operation and all that it entails.

3. It would be helpful to have project plans and a bill of materials already created to
make the approval process flow much smoother. This would also help when
getting materials and donations.

4. Further investigation is suggested on processes and procedures for constructing
animal facilities on a high school campus. Issues, such as providing electricity and
water to the facility, are potential problems. Also, careful consideration must be
taken when constructing a permanent versus a temporary facility.
References

