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Abstract The ‘LeRP’ algorithm approximates subgraph isomorphism for attributed graphs based on counts 
of Length-R Paths. The algorithm provides a good approximation to the maximal isomorphic subgraph. 
The basic approach of the LeRP algorithm differs fundamentally from other methods. When comparing 
structural similarity LeRP uses a neighborhood of nodes that varies in size dynamically. This approach 
provides sufficient evidence of similarity to permit LeRP to form a node-to-node mapping and can be 
computed with polynomial effort in the worst-case. Results from over 32,000 simulated cases are reported. 
We demonstrate that LeRP does not need a high dynamic range of node and edge coloring to perform well. 
For example, LeRP can input 50-node and 100-node graphs that contain a common 50-node subgraph, and 
then compute a matching subgraph having 49.74 +/- 0.46 nodes (mean +/- one standard deviation). This 
takes from 0.4 to 0.5 seconds. In this example, 100 trials were evaluated and graphs had discrete coloring 
for nodes and edges with a dynamic range of four. Test conditions are varied and include strongly regular 
graphs as well as Model A. 
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Introduction and Problem Definition 
 
A graph G is defined to have a set of NG nodes, gi, and Q edges, eij. We assume that graphs are not 
directed. Nodes and edges are permitted to have coloring. But, LeRP does not require this coloring, or any 
variation in degree, in order to function. We do not address multigraphs. However, this is not regarded as a 
restriction because a representation could be created to describe the existence of parallel edges via an edge-
coloring scheme. 
 
Graphs G and H (having nodes gi and hk, respectively) are isomorphic if there exists a mapping, hk = m(gi), 
that preserves the adjacency of all nodes. Any application-specific node and edge colorings must also be 
consistent under the mapping. Subgraph isomorphism is a condition of isomorphism that exists between G 
and a subgraph of H.  
 
The adjacency matrix A of graph G plays an important role in verifying isomorphism [31]. Given a node-
to-node mapping, m(), between two graphs G and H, isomorphism may be  verified by reordering the 
nodes and relocating the edges of H. The reordered adjacency matrix B’ should then equal A – if an 
isomorphism exists. This eliminates the possibility of a false-positive result. 
 
An automorphism is an isomorphic mapping of the nodes of G onto itself. Automorphisms arise due to 
symmetries in graph structures [31]. These are significant because the symmetries can result in multiple 
solutions to the isomorphism problem. In these cases two different mappings will result in identical 
adjacency matrices. We consider both to be valid, provided node and edge colorings are also in agreement. 
 
Challenge of Determining Graph and Subgraph Isomorphism 
 
The amount of effort associated with a brute force solution would typically be considered intractable, as 
there are N! possible node orders for a graph with N nodes. The subgraph isomorphism problem is even 
worse combinatorically, as the size of the matching subgraph is unknown. The complexity class for the 
graph isomorphism problem is not currently known [32], but the subgraph isomorphism problem is known 
to be NP-Complete. 
 
A factor increasing the difficulty of the isomorphism problem can be the (lack of) variation in degree. The 
degree forms a natural classification for nodes, permitting candidate node mappings to be pruned out. Note 
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however, that opportunities for this type of pruning may be limited in practice. The dynamic range of node 
and edge coloring is another important factor that affects the computational demand and the accuracy of 
matching algorithms. Higher dynamic ranges greatly reduce potential matches.  
 
Algorithm Development Goals for LeRP 
 
Our goal for this algorithm was to create an approximate technique that can identify near-maximal 
subgraphs with a polynomial bound on (the total) processing effort. It is due to the NP-Completeness of the 
subgraph isomorphism problem that an approximate solution was sought. Memory requirements of a low 
order were also regarded as important. 
 
The criteria we use to judge an acceptable algorithm is the ability to maintain a near-maximal matched 
subgraph, while requiring a low dynamic range of node and edge coloring. The low dynamic range means 
that the matching process does not rely on a high degree of distinction in node and edge coloring. In this 
situation, matching is achieved, thanks to structural comparisons. This makes for an algorithm that may 
have utility in a broad number of applications. We also strove for a technique that could operate on generic 
styles of graphs, rather than graphs with some particular structure. 
 
Horizon of Node-to-Node Comparisons – A Taxonomy 
 
We assess the structural similarity of a pair of nodes, gi and hk, during the process of evaluating candidate 
mappings. The “horizon” associated with this comparison is defined as the furthest distance away from gi 
(or from hk) that data is considered in the assessment. 
 
A shorter horizon may involve less computation for the comparison itself, but can mislead the matching 
process because comparisons are more local in nature. This can result in the need to backtrack during the 
matching process. Backtracking occurs when a pairing that seems initially acceptable is later found to be 
incorrect [9]. As a result of a limited horizon, isomorphism techniques often suffer as graphs become 
larger. So, if backtracking is to be avoided (or limited) then the comparison horizon will generally need to 
increase as N increases. 
 
Note that some limitation on the comparison horizon is necessary for the subgraph-matching problem. By 
limiting the horizon, portions of the graph structure that differ won’t corrupt the description of a node that 
is actually within part of a matching subgraph. Hence there is a tradeoff between overall computational 
effort and the accuracy of comparisons. This tradeoff is directly tied to the comparison horizon. Due to the 
impact of the horizon distance on algorithm performance, it can serve as an effective taxonomy for 
comparing alternate matching techniques. 
 
LeRP Dynamic Comparison Horizon - Contrast to Other Approaches 
 
Two broad categories of approaches have been studied in the machine vision community: exhaustive and 
approximate. Exhaustive techniques include [1] [13] [23] [19] [7] [3] and [14]. These types of methods 
typically use local comparisons of nodes (a short horizon) but then enforce consistencies from node-to-
node, in a manner that eventually yields a globally optimum solution. 
 
Exhaustive Techniques 
 
An A* search [18] can be used to build an interpretation tree [9] that will enumerate all possible mappings 
in a depth-first order, for example. In this situation, the consistency checks at each level in the tree will be 
local in nature. However, following a path from the root of the tree down to a leaf results in a global check. 
The comparison horizon is forced to extend out to maximal size in this manner. 
 
Another classic example is the search for a maximum sized clique within an association graph [1] [14]. 
Each node of the association graph describes a local comparison. The maximum clique identifies the largest 
possible subset of nodes (in the association graph) that is consistent. Here again local comparisons are used. 



Then via an iterative process, a more global consistency in graph structure is found. The iterative process 
may end with either a matched graph, or subgraph, depending on the input conditions 
 
Of course, exhaustive techniques that attempt to find globally optimal solutions suffer from the NP-
Completeness of subgraph matching. This results in a worst-case complexity that is exponential in order. 
Hence the long term interest in approximate techniques [8] [24] [16] [4], which are adequate in many 
applications, and are also commensurate with the goals of this investigation. Approximate techniques may 
be deemed appropriate, for example, when graphs are constructed from noisy sensor data. In this situation 
the input graphs contain some noise or imperfect data. Hence the possibility of an ideal match is precluded. 
 
Approximate Techniques 
 
In relaxation techniques [24] [25] [10], all locally consistent assignments are made first (short horizon 
distance). Then the horizon is effectively increased via a constraint propagation that occurs in an iterative 
fashion. Earlier relaxation techniques did not refine probability estimates as iterations progressed. More 
recent work [27-30] does not suffer from this limitation. 
 
Structural comparisons made via a graph edit distance [16] [11] make counts of missing edges or nodes via 
local comparisons. These differences are then summed over an entire graph. In relational indexing [4], 
occurrences of 2-node graphs are binned and accumulated in a voting scheme. Note the fixed comparison 
horizon. It is rigid, irrespective of the extent of any similar neighboring structure that might be present.  
 
In the work reported by Wilson and Hancock [10], a fixed substructure is also used. This consists of the 
central node under consideration, its incident edges and adjacent nodes. While this is a larger immediate 
neighborhood than most techniques, it is still rigid in structure. This is in contrast to a more dynamic 
approach used in LeRP. 
 
LeRP Dynamic Comparison Horizon 
 
In a number of cases - with both exhaustive and approximate techniques - a comparison using a local 
horizon is extended by some means. This is typically done by either iteration or search. This is 
fundamentally different than in the LeRP approach. By comparing the length-r paths, or circuits, that are 
associated with a node, the comparison neighborhood can potentially be quite large – depending on the 
value of r.  
 
Although the comparison horizon can become quite large, potentially including every node, the overall 
LeRP algorithm is still approximate in nature. There is because the length-r path counts are related to graph 
structure, but do not guarantee that identical structures are present. 
 
Comparison of LeRP with Other Methods 
 
We consider a dynamic horizon to be superior to a fixed horizon distance, set to some arbitrary value. In 
general, a dynamic horizon can include numerous ‘nearby’ nodes. This increases the evidential merit of an 
individual comparison. The dynamic nature of the horizon allows the comparison to include more nodes in 
regions of the graph that are farther away from structural differences.  
 
The horizon distance is a useful way to compare fundamental operation of various techniques. For example 
with probabilistic relaxation the horizon distance is dynamic, but it increases in an iterative fashion. In 
LeRP, a node-to-node comparison with a maximum horizon distance is possible on the first pass through 
the nodes. In fact this sort of assignment is typically made for the nodes further away from structural 
differences. It is the nodes that are closer to the differences that require additional computational effort – to 
‘fill out’ the mapping to a near maximal size. 
 
In methods based on graph-edit distance [16][11] a sum of occurrences of local differences is accumulated 
for the whole graph. In relational indexing [4] and in the work of Wilson and Hancock [10] graph 



substructures of fixed-size are used. In each of these methods the horizon does not extend in a dynamic 
fashion – based on the data – as is done in LeRP. The dynamic comparison horizon improves the accuracy 
of structural comparisons for LeRP. This is a fundamental benefit to the approach. 
 
The improved method of structural comparisons results in a relatively low dependence on the dynamic 
range of node and edge coloring. Few published works provide extensive testing in this area, but the work 
of Messmer and Bunke [16] is a fortunate exception. Their algorithm for error-tolerant matching was 
optimized for different goals than LeRP. Nevertheless, it is interesting to note that their tests typically had a 
dynamic range for coloring of 25%-50% (expressing dynamic range as a percentage of the number of 
nodes). In trials where Messmer and Bunke study acceptable ranges of node coloring, they show results 
becoming rapidly worse with a dynamic range below 20%. (Their tests only use node coloring, so trials of 
this style have also been included, see Table 2.) We demonstrate acceptable results – maintaining above 
99% of the maximum subgraph size – with a dynamic range as low as 10%, half that reported in [16].  
When both node and edge coloring is used, the dynamic range can be reduced to 4%. 
 
A low dependency on node and edge coloring is important for applications, as it can reduce problems with 
sensor noise. These problems result when sensor noise corrupts node and edge colors, making the node-to-
node comparisons problematic. Node and edge colors may be derived from sensors having continuous 
signals (or near-continuous signals). To mitigate noise problems it is helpful to sometimes form coarse bins 
for the color values (‘high’, ‘medium’, or ‘low’), or to first subtract the color values and then perform a 
similar quantization. In either case the dynamic range (of quantized colors) is reduced. This potentially 
hinders the subgraph matching process, but does mask the sensor noise. Hence matching algorithms that 
can operate with low dynamic ranges of coloring are quite useful in applications with noisy sensor data. 
 
Another important capability for matching algorithms is deterministic processing. Generally speaking, 
approximate methods trade off maximally sized subgraphs for tractable processing. This has a great benefit 
for applications. However, the next area for improvement is greater determinism. This sets the course 
towards an eventual goal of real-time evaluation of subgraph isomorphisms. Some techniques report 
relatively fast computations [16]. Others report a low degree of iterations [8], as do Luo and Hancock [34] 
with convergence in 12 iterations using the EM algorithm. However, no methods reported to date describe 
fixed limits on processing and the determinism of the LeRP algorithm. For example, tests demonstrate that 
LeRP can match 100-node and 50-node graphs, containing a 50 node subgraph, and with a dynamic range 
of 4 for node and edge coloring, in 0.4 seconds with a standard deviation less than 0.1 seconds. This is 
approaching the needs for computational speed and determinism associated with applications of real-time 
machine vision. 
 
Further Comparisons 
 
In contrast to relaxation techniques, LeRP does not begin by first allowing all possible assignments (of 
model vs. scene, for example) and then iteratively remove impossible matches. Rather, LeRP builds the 
mapping from a single node-to-node assignment (a ‘mapping seed’). It then adds to this mapping, 
employing a consistency check as nodes are added to the subgraph. 
 
A number of common methods for object recognition combine the problems of recognition and pose 
determination. Methods such as local-feature-focus [2], pose clustering [21], and geometric hashing [22], 
for example. These methods are able to employ additional constraints, generally involving the physical 
location of graph nodes, to limit potential matches. Some methods of registration also use this type of 
approach [6]. While these application areas are of interest, this style of constraint was intentionally not 
utilized. Rather, a more generic approach was sought. Hence in LeRP, the comparisons of structural 
similarity are based purely on node adjacencies – not on the physical location of nodes. 
 
Some methods of finding subgraph isomorphisms require a significant amount of memory [13]. We strove 
to keep the memory requirements on the order N2, in order to be able to handle larger problem sizes. Also, 
because of LeRP’s ability to process subgraphs directly, no padding is necessary in order to make the 
number of nodes equal in the two input graphs, as in some other approaches [13] [10]. Also note that there 
is a speed vs. memory tradeoff that is possible in LeRP, whereby certain precomputed values are not stored 



and rather computed (repeatedly) when needed. This reduces the needed memory. See section on Memory 
and Compute Bounds. 
 
Computing the Structural Similarity of Nodes and Edges 
 
The adjacency matrix, A, of graph G is NGxNG and plays a key role when computing the structural 
similarity of nodes. A contains a 1 at location (i, j) if edge eij exists and a 0 for no edge. The (i, i) elements 
of A are also set to 1 in the LeRP technique. A is symmetric because no digraphs are assumed. The (i, j) 
element of Ar, aij

(r), gives the number of length-r paths between node gi and gj. The (i, i) element of Ar 
gives the number of closed paths (circuits) that include node gi [31]. Because aii

(1) = 1, the number of paths 
and circuits in Ar include the effect of self loops that are connected to each node.  
 
Note that the standard definition of A uses aii

(1) = 0 [31]. While our definition of Ar does differ from the 
standard, it makes the aij

(r) elements more ‘well behaved’. Specifically, the aij
(r) elements increase 

monotonically with increasing r. Empirically, this appears to yield improved results in terms of the size of 
the matched subgraph. 
 
Given two nodes gi and hk from graphs G and H, the structural similarity is computed via the aij

(r) and bkl
(r) 

elements of the r-power adjacency matrices Ar and Br. The similarity metric is based on the largest value of 
r such that aij

(r) = bkl
(r). Note that r is limited to a peak value of R, which is a parameter that must be set for 

a given application. In all the 32,000 trials reported here, R = 10. In this notation, i,j are two nodes in G, 
and k,l are two nodes in H.  
 
LeRP uses a function compare(i,j,k,l) to compute the similarity measure. See Figure 1. The function returns 
a value between 0 and 1, normalized by (rmax / N)2 where rmax is the largest value of r such that that aij

(r) = 
bkl

(r). Alternate forms of this function have been studied [15]. 
 
In the compare() function 1<=rmax<=R. The rmax value determines the horizon distance of a comparison. 
Hence the comparison horizon varies from being strictly local (rmax=1) up to a value that could include 
every node in the graph (rmax=R=N, and provided the graph is connected). This variation from local to 
global provides the dynamic horizon in LeRP. 
 
The parameter R determines the highest power of the adjacency matrices A and B that must be computed. 
To reduce processing requirements, R is kept as low as possible. For the results reported herein R=10 was 
adequate for graphs up through N=400. In general R needs to increase, as N increases, but it appears to be a 
weak function of N. No theoretical bounds are provided at this time. 
 

Function: compare(i,j,k,l) 
1. For 1<=r<=R 

a. If aij(r) != bkl(r) Then Break 
2. Next r 
3. Return (r/N)2 

 
Figure 1. The compare() function described in pseudo-code. Note i,j are two nodes in G, and k,l are two 
nodes in H. And, if an edge, eij, exists between i,j then aij

(1) = 1. compare() approximates a probability 
value that describes similarity in graph structure. 
 
The value returned by compare() will tend towards zero for dissimilar regions of the graph structure, and 
towards one for similar regions. As such, it is used as a very rough approximation to the probability that 
edges eij and ekl are equivalent, in the sense of hk = m(gi) and hl = m(gj). The monotonically increasing 
property of the aij

(r) values makes for a better approximation to probability values than would be achieved 
via the standard definition of the adjacency matrix, which does not possess this property. 
 
 



Combining Evidence of Structural Similarity 
 
The measure of similarity found via the compare() function is used as evidence that two given nodes, gi and 
hk, could form an isomorphic pairing – leading to the mapping hk = m(gi). Three different types of 
evidence are combined in LeRP, to form an overall measure of structural similarity. These three types of 
evidence are referred to as ‘alpha’, ‘beta’, and ‘gamma’. 
 
When comparing nodes gi to hk, alpha-style evidence is computed via compare(i,i,k,k). This is based on 
the number of length-r circuits that include these particular nodes. Beta-style evidence involves length-r 
path counts associated with edges that are incident to the gi and hk nodes. And, gamma-style evidence 
involves a comparison of the number of length-r circuits for nodes that are adjacent to gi and hk.  
 
Various methods to combine the alpha-, beta-, and gamma-evidence have been studied [5]. The most 
effective found thus far appears to be Dempster-Shafer [20]. Other methods included geometric mean, 
product, mean and maximum. This approach takes advantage of the very rough approximation to 
probability values, as discussed above. 
 
LeRP Algorithm 
 
The incremental creation of a node-to-node mapping relies critically on the correctness of the initial 
assignment (a ‘mapping seed’). Otherwise, some kind of backtracking [9] would typically be required. The 
ability to find a good initial guess is a key feature of the LeRP approach. The large comparison horizons 
(R) make this possible. The find_best_beta() function is described in Figure 2. It computes the similarity 
measure used to help determine the ‘mapping seed’. It uses a best-case approach to collecting beta-type 
evidence. For a given pair of nodes gi and gk, the routine finds the best possible mapping (in terms of the 
compare() function) between each incident edge, eij and ekl. 
 
 
Function: find_best_beta(G,H,Ar,Br) 
 

a. For each node gi 
b.   For each node hk 

i. For each edge eij 
ii.   For each edge ekl 

1. beta = compare (i,j,k,l) 
2. Save betapeak[i][k]=beta if maximal for nodes i,k 

iii.   Next l 
iv. Next j 

c.   Next k 
d. Next i 
e. Return betapeak[][] 

 
 
Figure 2. The find_best_beta() function described in pseudo-code. This function finds the best-case 
evidence that edges in graphs G and H form an isomorphic pairing. 
 



 
Input: Graph G with nodes gi, 0<=i<NG 

Graph H with nodes hk, 0<=k<N  H
Output:  Mapping m(), that gives hk = m(gi) 

The presence of either a graph or subgraph isomorphism is 
also determined. 

 
Steps: 
1. Compute powers of adjacency matrices AR and BR for graphs G and H 
2. betapeak[][] = find_best_beta(G,H,Ar,Br) 
3. Clear nod s e-to-node mapping
4. For each L, 0<=L<minimum(NG,NH) 

a. Let peak = 0 
b. For each unmapped node gi 
c.   For each unmapped node hk 

i. Verify consistency of mapping gi to hk given current m() 
ii. rho = 0 
iii. For each mapped edge eij 

1. lookup associated edge ekl where l=m(j) 
2. beta = compare(i,j,k,l) 
3. gamma = compare(j,j,l,l) 
4. rho = 1 – (1-rho)(1-beta)(1-gamma) 

iv. Next j 
v. alpha = compare(i,i,k,k) 
vi. rho = 1 – (1-rho)(1- alpha)(1- betapeak[i][k]) 
vii. If rho>peak Then 

1. gpeak=i 
2. h  =k peak
3. peak=rho 

viii. End If 
d.   Next k 
e. Next i 
f. If peak=0 Then GoTo END 
g. Let m(gpeak)=hpeak 

5. Next L 
 
6. If (L=NG) and (L=NH) Then G is ISOMORPHIC to H 
7. Else a subgraph isomorphism exists between G and H. 
8. END 

 
 
Figure 3. Pseudo-code for the LeRP algorithm. LeRP determines whether a graph or a subgraph 
isomorphism exists, and computes the associated node-to-node mapping. The comparison of (node or 
edge) color is somewhat application-specific and was omitted from the algorithm description. 
 
Referring to Figure 3, evidence of structural similarity is combined via Dempster-Shafer. This is shown in 
steps 3.c.iii.4 and 3.c.vi. Dempster-Shafer is used to combine the various probability estimates, found via 
the compare() function. 
 
Steps 3-5 in the main algorithm were repeated exactly 3 times to improve the size of the matched subgraph. 
On the repeated operations, an initial mapping was defined by selecting nodes from the previous matched 
subgraphs. Node pairs were chosen having the highest number of circuits in agreement.  
 
There are some opportunities to reduce the compute effort described in the simplistic presentation above. 
For example, the values of gamma can be saved rather than recomputed, with only a linear cost in memory.  



Memory and Compute Bounds 
 
For the purpose of determining bounds on the needed computations and memory for LeRP, we assume the 
number of nodes in both input graphs equals N. We also assume an average degree of D for both graphs. R 
is a parameter, as described previously. A sparse matrix representation was used for the Ar matrices. 
 
Computing the N2 entries of Ar (for some value of r) requires N2D effort, with a sparse matrix 
representation. Hence the total effort to find AR is on the order O(N2DR). The other preliminary step, # 2, 
requires on the order O(N2D2R) to find the best beta array. The deepest level of nesting in the main section 
of the algorithm occurs in Step 4. This is in loops 4., 4.b, 4.c, and 4.c.iv. This section of the algorithm is 
most costly, requiring on the order O(N3DR) effort.  
 
The memory for the best-beta array is more costly than other data structures, requiring O(N2). The A1, A2, 
A3 … AR arrays can be stored with O(NDR) memory, provided a sparse representation is used. Also, a 
tradeoff between speed and memory is possible in LeRP. Precomputation of the best-beta array can be 
skipped, and the associated values simply recomputed when needed. This reduces the memory 
requirements to O(NDR). 
 
Testing Methodology for Simulated Trials 
 
The goal of testing was not only to verify correct operation, but also to demonstrate robustness and 
computational speed under various input conditions. In particular the gradual degradation in the (mean) 
number of nodes in matched subgraphs will be demonstrated.  
 
Style of Graphs 
Test cases were generated randomly. Graphs were created using Model A in some tests. Strongly regular 
(random) graphs were created for other trials. In Model A, the existence of each edge is based on an 
independent random variable. Model A is common in theoretical studies [26] and in reported algorithms 
[8][16]. All node and edge coloring was discrete in nature. The effect on performance due to the dynamic 
range of (randomly generated) colors was studied extensively. Dynamic ranges of color varied from one 
(no variation) to six. These colors might represent different types of circuit elements, different types of 
atoms in a molecule, or the output of a shape classifier, for example. 
 
Style of Structural Errors 
Two kinds of structural errors (or ‘structural differences’) were studied: errors in edges, and errors in 
nodes. Toggling the adjacency state of a randomly selected pair of nodes created errors in edges. When an 
error in a node was introduced, the entire row (and column) of the adjacency matrix was cleared. In other 
words the node, together with all of its edges, was eliminated. 
 
Random structural errors can, inadvertently, result in a node having zero degree. When this occurred, the 
associated test trial was dropped. This is because LeRP does not process nodes with zero degree, as these 
have virtually no chance of being correctly matched. Hence these cases were eliminated. These cases were 
rare, but did occasionally happen in all the 32,000 reported trials. 
 
Testing and Verification Procedure 
Table 1 describes the test and verification procedure. The verification in step 7 is done by verifying that 
each entry of aij

(1) was identical to bkl
(1) under the mapping k=m(i) and l=m(j). This checks both edges and 

non-edges. Checking the similarity of the adjacency matrices eliminates the possibility of a false-positive 
result. Note that the mapping will not always contain N nodes, in the case of subgraph matches, for 
example. 



 
Step Procedure 

1 Randomly generate graph G with N nodes using Model A (or other method). 
2 Randomly generate colors for G using a given dynamic range. 
3 Copy G to form an initial version of H. 
4 Perform 2N random interchanges of node vertices in H. 
5 Introduce errors in H, either in color or structure. 
6 Run the LeRP algorithm on G and H, yielding the mapping m(). 
7 Verify the mapping m() preserves adjacencies. 

 
Table 1. Test and verification procedure. Over 32,000 test trials were processed in all. A single trial 
consisted of the above steps. This procedure automated testing, permitting a large number of trials to be 
generated, and enabled the study of different parameters and performance metrics. Verification in step 7 
ensured that the reordered versions of the adjacency matrices were identical. 
 
An algorithm by McKay [17] was also used to verify node-to-node mappings from LeRP. Mappings were 
found to be identical in [15]. This was done in a separate test procedure (not as in Table 1) and it was 
performed for the graph-matching case only. In other words, these tests were performed on trials with no 
structural errors. The goal of using McKay’s algorithm was simply to verify the fundamental operation of 
LeRP, via an independent check. 
 
Testing Results for Simulated Trials 
An important objective in testing was to quantify how quickly matching subgraphs could be computed, and 
to determine the dynamic range of coloring needed to yield an acceptable number of nodes in a matched 
subgraph. These two metrics can help quantify the utility of LeRP for an application. 
 
Measuring Tolerance to Structural Errors 
The tolerance to structural differences in input graphs (or ‘structural errors’) was studied for two different 
cases: errors in nodes and errors in edges. Performance is quantified by the percentage of nodes appearing 
in the matched subgraph. The effect of coloring is also included in this study. 
 
Figure 4 demonstrates tolerance to structural errors in nodes. The plot contains contour lines that show the 
(mean) percentage of nodes in the matched subgraph. The horizontal axis gives the percentage of nodes that 
were removed from one of the two input graphs (along with incident edges). The vertical axis indicates the 
dynamic range of discrete color values that were randomly generated for nodes and edges. 
 

 
Figure 4. Contour lines indicate the percentage of nodes that remain in matched subgraphs when 
structural errors are added to nodes. Results are near maximal with a very modest dynamic range of 
node and edge coloring (four). Plot summarizes 9600 trials involving 100 node graphs. Color values are 
discrete. Model A graphs were used with a 10% probability of an edge.  
 



Referring to Figure 4, the '90' contour line is an example of an ideal result. This shows that when 10% of 
the nodes were dropped, 90% remained in the match. Because the line is completely vertical, it means that 
node and edge coloring was not necessary in order to maintain the 90% match.  
 
When 20% of the nodes are removed, some coloring is needed to aide the matching process in achieving 
maximal results. In this case a dynamic range of only two was required to produce an ideal result for the 
average case. In trials with 30%-50% corruption a dynamic range of approximately three was needed. 
 
The above results are considered to be quite good. These indicate that very little dynamic range in node and 
edge coloring is needed in order to obtain near-maximal matching performance. Similar results follow in 
the case for structural errors in edges. Here, the adjacency state was randomly toggled. 

 
Figure 5. Contour lines indicate the percentage of nodes that remain in matched subgraphs when 
structural errors are added to edges. Plot summarizes 9600 trials involving 100 node graphs. Color 
values are discrete. Model A graphs were used with a 10% probability of an edge. The plot indicates that 
this type of error can be tolerated with a low dynamic range of node and edge coloring (four). 
 
Figure 5 demonstrates the tolerance of LeRP to random structural errors in edges. Mean sizes reported in 
the figure are better than the case for errors in nodes. This is to be expected. Consider that in some cases 
two randomly added edges will be adjacent to the same node. So, if that one node were eliminated from the 
output subgraph, then so would both of the extra edges. Hence, eliminating one node from the subgraph 
mapping can take care of two (or more) structural errors. This is why (referring to Figure 5) a corruption 
level of 10% can result in a match size that is slightly higher than 90%, on average. 
 
To further illustrate performance in terms of subgraph size, Figures 6-8 show results for a dynamic range of 
1, 2 and 4 colors individually. These plots also include the standard deviation for each set of 100 trials. 
 

  



 
Figures 6-8. Mean and standard deviation of the percentage of nodes remaining in matched subgraphs 
when structural errors are added to nodes. Results indicate near maximal performance with up to 50% 
corruption and a dynamic range of 4 colors. Near maximal results are possible with up to 25% 
corruption if two colors are present. Each error bar describes the standard deviation a set of 100 trials. 
 
Figure 9 demonstrated the improved performance that can be realized with increased coloring (dynamic 
ranges of 1,2, 3, and 4).  

 
Figure 9. Effect of reduced input size on (mean) size of matched subgraph for 1,2,3 and 4 colors. 
Structural errors were added to nodes. Results show near maximal performance as the dynamic range of 
color increases. This is indicated by the asymptotic approach of the curves to a line with slope of 
negative one. A total of 6400 trials are summarized in the plot. 
 
Figure 9 shows the mean number of nodes in the output subgraph. Note the asymptotic approach to a line 
with slope of negative one, as the dynamic range of color increases. This line represents the maximal 
subgraph case where removing a single node from the input results in a single node being eliminated from 
the output. This result is considered to be quite good, as it indicates a very gradual degradation in the size 
of the computed subgraph, with minimal dynamic range of node and edge color. 
 
Measuring Tolerance to Coloring Errors 
 
Next we document the effect of errors in graph coloring on the number of nodes in matched subgraphs. In 
Figure 10, errors are introduced into both node and edge colors, randomly. 



 
Figure 10. Effect of coloring errors on (mean) size of matched subgraph for 1,2,3 and 4 colors. Coloring 
errors were added to both nodes and edges. Results are slightly above a line with slope –2, indicating a 
good result for these two types of noise. A total of 6400 trials are summarized in the plot. 
 
Figure 10 demonstrates relatively consistent performance, irrespective of the dynamic range of color. The 
mean subgraph size tapers off at a rate that is steeper than the slope of –1 seen previously (the above is 
between –1 and –2 in slope). This is because the effect of corrupting both nodes and edges is accumulative. 
Poisoning node colors tends to eliminate nodes on a one-for-one basis (as described previously). However, 
random errors in edge colors have a more subtle effect on the output size (as was also seen with the 
structural errors in edges).  
 
Benchmarks of Execution Time 
LeRP processing time is shown in Figure 11, on a log scale. The processing time includes all the time 
needed to process the pair of input graphs – but not the time needed to generate the random graphs. Results 
are shown for graphs containing no coloring and no structural errors. Tests were run on a Sun EnterpriseTM 
450 server with 400-MHz UltraSPARCTM-II processors, and 1GB RAM, running Solaris 2.7. Note, tests on 
a Windows ® PC with 550 MHz DuronTM processor and 256 MB RAM required very nearly the same 
processing time. 

 
Figure 11. Mean processing time for graphs of varying size with no coloring. No structural errors were 
introduced. The 400 node graphs required a mean processing time of 3 minutes, with a standard 
deviation of 5 seconds (3%). The error bars were dropped, as they would not have been visible on the log 
plot with such low standard deviation. Graphs with 100 nodes took approximately 1.5 seconds. Coloring 
improves speed, for example 100 node graphs with a dynamic range of four colors require ~0.4 seconds. 
 
Effect of Reduced Dynamic Range of Node Color 
Table 2 summarizes tests that approximate conditions reported by Messmer and Bunke [16]. These tests 
examine the effect of the dynamic range of node color on the size of the matched subgraph. Edges had no 
coloring in these tests. 



 
We use Model A to generate graphs, with probability 0.15 for edges, to approximate the density of edges 
reported in [16]. Results indicate that LeRP can maintain a near maximal size for the matched subgraph, 
provided the dynamic range of (discrete) node coloring stays at or above 10% of the number of nodes. As 
described previously, Messmer and Bunke [16] report degraded results with dynamic a range below 20%. 

 
Dynamic Range 
Of Node Color 

Size of Matched Subgraph 
(Mean +/- Standard Deviation) 

20 50 +/- 0.1 
15 50 +/- 0.1 
10 50 +/- 0.2 
7 49 +/- 5.2 
5 47 +/- 9.3 

 
Table 2. Effect of dynamic range of node color on size of matched subgraph. Edges had no coloring in 
these tests. Trials used graphs with 100 nodes, and eliminated 50 nodes from one of the inputs, making 
the ideal size of the matched subgraph, above, equal to 50 nodes. Each trial (row) consisted of 100 
randomly generated tests. Model A was used to generate graphs with a probability = 0.15. Results show 
that LeRP can maintain near maximal matches, provided the node coloring stays above 10% of the 
number of nodes. 
 
Effect of Increased Density of Edges 
Table 3 summarizes tests that examine the effect of an increased density of edges on the size of the 
matched subgraph. Results show that denser graphs are more challenging for LeRP, but can be 
accommodated given a slight increase in the dynamic range of node and edge coloring.  

 
Model A 

Probability 
Dynamic Range of 

Node and Edge Color 
Size of Matched Subgraph 

(Mean +/- Standard Deviation) 
0.1 4  50 +/- 0.5 
0.2 4 50 +/- 3.6 
0.3 4 46 +/- 11 
0.4 4 44 +/- 15 
0.5 4 38 +/- 19 
0.1 5 50 +/- 0.5 
0.2 5 50 +/- 0.0 
0.3 5 50 +/- 3.1 
0.4 5 49 +/- 6.0 
0.5 5 49 +/- 6.8 

 
Table 3. Effect of increased density of edges on size of matched subgraph. Model A was used in each 
case. The dynamic range of node and edge coloring is also shown. Test conditions were similar to Table 
2. Results indicate that a slight increase in the dynamic range of coloring can accommodate the denser 
graphs. 
 
Tests with Strongly Regular Graphs 
Table 4 summarizes tests involving strongly regular graphs. Here, the size of the matched subgraph was 
examined as the degree of the graphs was increased. This style of testing was included because regular 
graphs are the most challenging type for isomorphism algorithms [33]. This makes for a difficult matching 
problem for the subgraph case. Here, the local comparisons (r=1) yield little distinction due to the near 
identical degree. Furthermore, the more distance comparisons (r~N) tend to be corrupted by structural 
errors. This makes for a challenging style of graph for the structural comparisons. 
 
Test conditions are similar to Tables 2 and 3, in that the maximal subgraph had 50 nodes. Because the input 
graphs were random in nature, the degree was not exactly the same for every node. The actual mean degree 
is reported in the test results. 



 
Results demonstrate that an increasing degree does become more challenging for LeRP. However, as with 
the increased density of Table 3, this can be accommodated with a modest increase in the dynamic range of 
node and edge coloring. 

 
Target  
Degree 

Actual Mean 
Degree 

Dynamic Range of 
Node and Edge Color 

Size of Matched Subgraph 
(Mean +/- Standard Deviation) 

10 9.9 4  50 +/- 0.2 
20 19.9 4 50 +/- 0.0 
30 29.6 4 44 +/- 15 
10 9.9 5 50 +/- 0.2 
20 19.9 5 50 +/- 0.0 
30 29.7 5 50 +/- 0.0 

 
Table 4. Size of matched subgraph for strongly regular graphs. Increasing the degree makes matching 
more challenging for the LeRP algorithm. But, as with the denser graphs in Table 3, the drop in 
performance can be recovered with only a slight increase in the dynamic range of node and edge 
coloring. Test conditions were similar to Table 2, but with the strongly regular graphs. 
 
Conclusion and Areas for Further Investigation 
The objective of this study was to develop an approximate subgraph isomorphism algorithm that could 
work well in a variety of applications. LeRP is successful in this regard, with worst-case computational 
requirements on the order O(N3D2R), where N is the number of nodes, D is the mean degree, and R is the 
highest power of the adjacency matrix used in processing. The algorithm has demonstrated a high tolerance 
to structural and coloring errors, and also has reasonable memory requirements. We have also demonstrated 
that LeRP has a low dependence on the dynamic range of coloring. The key to the success of the LeRP 
algorithm is a dynamic comparison horizon for measuring structural similarity. This permits a mapping to 
be determined via a deterministic amount of processing. 
 
LeRP is an improvement on previous work by DePiero [5]. Compared to the previous work, LeRP is 
greatly simplified and significantly more efficient. For example, previous tests were limited to graphs with 
40 nodes, where tests here ran up to 400 nodes, with reasonable execution times. Future studies with LeRP 
include applications in the areas of range image registration, and electronic circuit comparisons. Studies 
involving the necessary limits on the parameter R, alternate methods of computing node similarity, and of 
combining evidence, are also under consideration. 
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