
An Algorithm Using Length-R Paths to Approximate Subgraph Isomorphism

Fred DePiero* and David Krout
Cal Poly State University

Abstract The ‘LeRP’ algorithm approximates subgraph isomorphism for attributed graphs based on counts
of Length-R Paths. The algorithm provides a good approximation to the maximal isomorphic subgraph.
The basic approach of the LeRP algorithm differs fundamentally from other methods. When comparing
structural similarity LeRP uses a neighborhood of nodes that varies in size dynamically. This approach
provides sufficient evidence of similarity to permit LeRP to form a node-to-node mapping and can be
computed with polynomial effort in the worst-case. Results from over 32,000 simulated cases are reported.
We demonstrate that LeRP does not need a high dynamic range of node and edge coloring to perform well.
For example, LeRP can input 50-node and 100-node graphs that contain a common 50-node subgraph, and
then compute a matching subgraph having 49.74 +/- 0.46 nodes (mean +/- one standard deviation). This
takes from 0.4 to 0.5 seconds. In this example, 100 trials were evaluated and graphs had discrete coloring
for nodes and edges with a dynamic range of four. Test conditions are varied and include strongly regular
graphs as well as Model A.

Keywords: Approximate Graph Matching, Subgraph Isomorphism, Attributed Relational Graphs

Introduction and Problem Definition

A graph G is defined to have a set of NG nodes, gi, and Q edges, eij. We assume that graphs are not
directed. Nodes and edges are permitted to have coloring. But, LeRP does not require this coloring, or any
variation in degree, in order to function. We do not address multigraphs. However, this is not regarded as a
restriction because a representation could be created to describe the existence of parallel edges via an edge-
coloring scheme.

Graphs G and H (having nodes gi and hk, respectively) are isomorphic if there exists a mapping, hk = m(gi),
that preserves the adjacency of all nodes. Any application-specific node and edge colorings must also be
consistent under the mapping. Subgraph isomorphism is a condition of isomorphism that exists between G
and a subgraph of H.

The adjacency matrix A of graph G plays an important role in verifying isomorphism [31]. Given a node-
to-node mapping, m(), between two graphs G and H, isomorphism may be verified by reordering the
nodes and relocating the edges of H. The reordered adjacency matrix B’ should then equal A – if an
isomorphism exists. This eliminates the possibility of a false-positive result.

An automorphism is an isomorphic mapping of the nodes of G onto itself. Automorphisms arise due to
symmetries in graph structures [31]. These are significant because the symmetries can result in multiple
solutions to the isomorphism problem. In these cases two different mappings will result in identical
adjacency matrices. We consider both to be valid, provided node and edge colorings are also in agreement.

Challenge of Determining Graph and Subgraph Isomorphism

The amount of effort associated with a brute force solution would typically be considered intractable, as
there are N! possible node orders for a graph with N nodes. The subgraph isomorphism problem is even
worse combinatorically, as the size of the matching subgraph is unknown. The complexity class for the
graph isomorphism problem is not currently known [32], but the subgraph isomorphism problem is known
to be NP-Complete.

A factor increasing the difficulty of the isomorphism problem can be the (lack of) variation in degree. The
degree forms a natural classification for nodes, permitting candidate node mappings to be pruned out. Note

* Author for all correspondence.

however, that opportunities for this type of pruning may be limited in practice. The dynamic range of node
and edge coloring is another important factor that affects the computational demand and the accuracy of
matching algorithms. Higher dynamic ranges greatly reduce potential matches.

Algorithm Development Goals for LeRP

Our goal for this algorithm was to create an approximate technique that can identify near-maximal
subgraphs with a polynomial bound on (the total) processing effort. It is due to the NP-Completeness of the
subgraph isomorphism problem that an approximate solution was sought. Memory requirements of a low
order were also regarded as important.

The criteria we use to judge an acceptable algorithm is the ability to maintain a near-maximal matched
subgraph, while requiring a low dynamic range of node and edge coloring. The low dynamic range means
that the matching process does not rely on a high degree of distinction in node and edge coloring. In this
situation, matching is achieved, thanks to structural comparisons. This makes for an algorithm that may
have utility in a broad number of applications. We also strove for a technique that could operate on generic
styles of graphs, rather than graphs with some particular structure.

Horizon of Node-to-Node Comparisons – A Taxonomy

We assess the structural similarity of a pair of nodes, gi and hk, during the process of evaluating candidate
mappings. The “horizon” associated with this comparison is defined as the furthest distance away from gi
(or from hk) that data is considered in the assessment.

A shorter horizon may involve less computation for the comparison itself, but can mislead the matching
process because comparisons are more local in nature. This can result in the need to backtrack during the
matching process. Backtracking occurs when a pairing that seems initially acceptable is later found to be
incorrect [9]. As a result of a limited horizon, isomorphism techniques often suffer as graphs become
larger. So, if backtracking is to be avoided (or limited) then the comparison horizon will generally need to
increase as N increases.

Note that some limitation on the comparison horizon is necessary for the subgraph-matching problem. By
limiting the horizon, portions of the graph structure that differ won’t corrupt the description of a node that
is actually within part of a matching subgraph. Hence there is a tradeoff between overall computational
effort and the accuracy of comparisons. This tradeoff is directly tied to the comparison horizon. Due to the
impact of the horizon distance on algorithm performance, it can serve as an effective taxonomy for
comparing alternate matching techniques.

LeRP Dynamic Comparison Horizon - Contrast to Other Approaches

Two broad categories of approaches have been studied in the machine vision community: exhaustive and
approximate. Exhaustive techniques include [1] [13] [23] [19] [7] [3] and [14]. These types of methods
typically use local comparisons of nodes (a short horizon) but then enforce consistencies from node-to-
node, in a manner that eventually yields a globally optimum solution.

Exhaustive Techniques

An A* search [18] can be used to build an interpretation tree [9] that will enumerate all possible mappings
in a depth-first order, for example. In this situation, the consistency checks at each level in the tree will be
local in nature. However, following a path from the root of the tree down to a leaf results in a global check.
The comparison horizon is forced to extend out to maximal size in this manner.

Another classic example is the search for a maximum sized clique within an association graph [1] [14].
Each node of the association graph describes a local comparison. The maximum clique identifies the largest
possible subset of nodes (in the association graph) that is consistent. Here again local comparisons are used.

Then via an iterative process, a more global consistency in graph structure is found. The iterative process
may end with either a matched graph, or subgraph, depending on the input conditions

Of course, exhaustive techniques that attempt to find globally optimal solutions suffer from the NP-
Completeness of subgraph matching. This results in a worst-case complexity that is exponential in order.
Hence the long term interest in approximate techniques [8] [24] [16] [4], which are adequate in many
applications, and are also commensurate with the goals of this investigation. Approximate techniques may
be deemed appropriate, for example, when graphs are constructed from noisy sensor data. In this situation
the input graphs contain some noise or imperfect data. Hence the possibility of an ideal match is precluded.

Approximate Techniques

In relaxation techniques [24] [25] [10], all locally consistent assignments are made first (short horizon
distance). Then the horizon is effectively increased via a constraint propagation that occurs in an iterative
fashion. Earlier relaxation techniques did not refine probability estimates as iterations progressed. More
recent work [27-30] does not suffer from this limitation.

Structural comparisons made via a graph edit distance [16] [11] make counts of missing edges or nodes via
local comparisons. These differences are then summed over an entire graph. In relational indexing [4],
occurrences of 2-node graphs are binned and accumulated in a voting scheme. Note the fixed comparison
horizon. It is rigid, irrespective of the extent of any similar neighboring structure that might be present.

In the work reported by Wilson and Hancock [10], a fixed substructure is also used. This consists of the
central node under consideration, its incident edges and adjacent nodes. While this is a larger immediate
neighborhood than most techniques, it is still rigid in structure. This is in contrast to a more dynamic
approach used in LeRP.

LeRP Dynamic Comparison Horizon

In a number of cases - with both exhaustive and approximate techniques - a comparison using a local
horizon is extended by some means. This is typically done by either iteration or search. This is
fundamentally different than in the LeRP approach. By comparing the length-r paths, or circuits, that are
associated with a node, the comparison neighborhood can potentially be quite large – depending on the
value of r.

Although the comparison horizon can become quite large, potentially including every node, the overall
LeRP algorithm is still approximate in nature. There is because the length-r path counts are related to graph
structure, but do not guarantee that identical structures are present.

Comparison of LeRP with Other Methods

We consider a dynamic horizon to be superior to a fixed horizon distance, set to some arbitrary value. In
general, a dynamic horizon can include numerous ‘nearby’ nodes. This increases the evidential merit of an
individual comparison. The dynamic nature of the horizon allows the comparison to include more nodes in
regions of the graph that are farther away from structural differences.

The horizon distance is a useful way to compare fundamental operation of various techniques. For example
with probabilistic relaxation the horizon distance is dynamic, but it increases in an iterative fashion. In
LeRP, a node-to-node comparison with a maximum horizon distance is possible on the first pass through
the nodes. In fact this sort of assignment is typically made for the nodes further away from structural
differences. It is the nodes that are closer to the differences that require additional computational effort – to
‘fill out’ the mapping to a near maximal size.

In methods based on graph-edit distance [16][11] a sum of occurrences of local differences is accumulated
for the whole graph. In relational indexing [4] and in the work of Wilson and Hancock [10] graph

substructures of fixed-size are used. In each of these methods the horizon does not extend in a dynamic
fashion – based on the data – as is done in LeRP. The dynamic comparison horizon improves the accuracy
of structural comparisons for LeRP. This is a fundamental benefit to the approach.

The improved method of structural comparisons results in a relatively low dependence on the dynamic
range of node and edge coloring. Few published works provide extensive testing in this area, but the work
of Messmer and Bunke [16] is a fortunate exception. Their algorithm for error-tolerant matching was
optimized for different goals than LeRP. Nevertheless, it is interesting to note that their tests typically had a
dynamic range for coloring of 25%-50% (expressing dynamic range as a percentage of the number of
nodes). In trials where Messmer and Bunke study acceptable ranges of node coloring, they show results
becoming rapidly worse with a dynamic range below 20%. (Their tests only use node coloring, so trials of
this style have also been included, see Table 2.) We demonstrate acceptable results – maintaining above
99% of the maximum subgraph size – with a dynamic range as low as 10%, half that reported in [16].
When both node and edge coloring is used, the dynamic range can be reduced to 4%.

A low dependency on node and edge coloring is important for applications, as it can reduce problems with
sensor noise. These problems result when sensor noise corrupts node and edge colors, making the node-to-
node comparisons problematic. Node and edge colors may be derived from sensors having continuous
signals (or near-continuous signals). To mitigate noise problems it is helpful to sometimes form coarse bins
for the color values (‘high’, ‘medium’, or ‘low’), or to first subtract the color values and then perform a
similar quantization. In either case the dynamic range (of quantized colors) is reduced. This potentially
hinders the subgraph matching process, but does mask the sensor noise. Hence matching algorithms that
can operate with low dynamic ranges of coloring are quite useful in applications with noisy sensor data.

Another important capability for matching algorithms is deterministic processing. Generally speaking,
approximate methods trade off maximally sized subgraphs for tractable processing. This has a great benefit
for applications. However, the next area for improvement is greater determinism. This sets the course
towards an eventual goal of real-time evaluation of subgraph isomorphisms. Some techniques report
relatively fast computations [16]. Others report a low degree of iterations [8], as do Luo and Hancock [34]
with convergence in 12 iterations using the EM algorithm. However, no methods reported to date describe
fixed limits on processing and the determinism of the LeRP algorithm. For example, tests demonstrate that
LeRP can match 100-node and 50-node graphs, containing a 50 node subgraph, and with a dynamic range
of 4 for node and edge coloring, in 0.4 seconds with a standard deviation less than 0.1 seconds. This is
approaching the needs for computational speed and determinism associated with applications of real-time
machine vision.

Further Comparisons

In contrast to relaxation techniques, LeRP does not begin by first allowing all possible assignments (of
model vs. scene, for example) and then iteratively remove impossible matches. Rather, LeRP builds the
mapping from a single node-to-node assignment (a ‘mapping seed’). It then adds to this mapping,
employing a consistency check as nodes are added to the subgraph.

A number of common methods for object recognition combine the problems of recognition and pose
determination. Methods such as local-feature-focus [2], pose clustering [21], and geometric hashing [22],
for example. These methods are able to employ additional constraints, generally involving the physical
location of graph nodes, to limit potential matches. Some methods of registration also use this type of
approach [6]. While these application areas are of interest, this style of constraint was intentionally not
utilized. Rather, a more generic approach was sought. Hence in LeRP, the comparisons of structural
similarity are based purely on node adjacencies – not on the physical location of nodes.

Some methods of finding subgraph isomorphisms require a significant amount of memory [13]. We strove
to keep the memory requirements on the order N2, in order to be able to handle larger problem sizes. Also,
because of LeRP’s ability to process subgraphs directly, no padding is necessary in order to make the
number of nodes equal in the two input graphs, as in some other approaches [13] [10]. Also note that there
is a speed vs. memory tradeoff that is possible in LeRP, whereby certain precomputed values are not stored

and rather computed (repeatedly) when needed. This reduces the needed memory. See section on Memory
and Compute Bounds.

Computing the Structural Similarity of Nodes and Edges

The adjacency matrix, A, of graph G is NGxNG and plays a key role when computing the structural
similarity of nodes. A contains a 1 at location (i, j) if edge eij exists and a 0 for no edge. The (i, i) elements
of A are also set to 1 in the LeRP technique. A is symmetric because no digraphs are assumed. The (i, j)
element of Ar, aij

(r), gives the number of length-r paths between node gi and gj. The (i, i) element of Ar
gives the number of closed paths (circuits) that include node gi [31]. Because aii

(1) = 1, the number of paths
and circuits in Ar include the effect of self loops that are connected to each node.

Note that the standard definition of A uses aii

(1) = 0 [31]. While our definition of Ar does differ from the
standard, it makes the aij

(r) elements more ‘well behaved’. Specifically, the aij
(r) elements increase

monotonically with increasing r. Empirically, this appears to yield improved results in terms of the size of
the matched subgraph.

Given two nodes gi and hk from graphs G and H, the structural similarity is computed via the aij

(r) and bkl
(r)

elements of the r-power adjacency matrices Ar and Br. The similarity metric is based on the largest value of
r such that aij

(r) = bkl
(r). Note that r is limited to a peak value of R, which is a parameter that must be set for

a given application. In all the 32,000 trials reported here, R = 10. In this notation, i,j are two nodes in G,
and k,l are two nodes in H.

LeRP uses a function compare(i,j,k,l) to compute the similarity measure. See Figure 1. The function returns
a value between 0 and 1, normalized by (rmax / N)2 where rmax is the largest value of r such that that aij

(r) =
bkl

(r). Alternate forms of this function have been studied [15].

In the compare() function 1<=rmax<=R. The rmax value determines the horizon distance of a comparison.
Hence the comparison horizon varies from being strictly local (rmax=1) up to a value that could include
every node in the graph (rmax=R=N, and provided the graph is connected). This variation from local to
global provides the dynamic horizon in LeRP.

The parameter R determines the highest power of the adjacency matrices A and B that must be computed.
To reduce processing requirements, R is kept as low as possible. For the results reported herein R=10 was
adequate for graphs up through N=400. In general R needs to increase, as N increases, but it appears to be a
weak function of N. No theoretical bounds are provided at this time.

Function: compare(i,j,k,l)
1. For 1<=r<=R

a. If aij(r) != bkl(r) Then Break
2. Next r
3. Return (r/N)2

Figure 1. The compare() function described in pseudo-code. Note i,j are two nodes in G, and k,l are two
nodes in H. And, if an edge, eij, exists between i,j then aij

(1) = 1. compare() approximates a probability
value that describes similarity in graph structure.

The value returned by compare() will tend towards zero for dissimilar regions of the graph structure, and
towards one for similar regions. As such, it is used as a very rough approximation to the probability that
edges eij and ekl are equivalent, in the sense of hk = m(gi) and hl = m(gj). The monotonically increasing
property of the aij

(r) values makes for a better approximation to probability values than would be achieved
via the standard definition of the adjacency matrix, which does not possess this property.

Combining Evidence of Structural Similarity

The measure of similarity found via the compare() function is used as evidence that two given nodes, gi and
hk, could form an isomorphic pairing – leading to the mapping hk = m(gi). Three different types of
evidence are combined in LeRP, to form an overall measure of structural similarity. These three types of
evidence are referred to as ‘alpha’, ‘beta’, and ‘gamma’.

When comparing nodes gi to hk, alpha-style evidence is computed via compare(i,i,k,k). This is based on
the number of length-r circuits that include these particular nodes. Beta-style evidence involves length-r
path counts associated with edges that are incident to the gi and hk nodes. And, gamma-style evidence
involves a comparison of the number of length-r circuits for nodes that are adjacent to gi and hk.

Various methods to combine the alpha-, beta-, and gamma-evidence have been studied [5]. The most
effective found thus far appears to be Dempster-Shafer [20]. Other methods included geometric mean,
product, mean and maximum. This approach takes advantage of the very rough approximation to
probability values, as discussed above.

LeRP Algorithm

The incremental creation of a node-to-node mapping relies critically on the correctness of the initial
assignment (a ‘mapping seed’). Otherwise, some kind of backtracking [9] would typically be required. The
ability to find a good initial guess is a key feature of the LeRP approach. The large comparison horizons
(R) make this possible. The find_best_beta() function is described in Figure 2. It computes the similarity
measure used to help determine the ‘mapping seed’. It uses a best-case approach to collecting beta-type
evidence. For a given pair of nodes gi and gk, the routine finds the best possible mapping (in terms of the
compare() function) between each incident edge, eij and ekl.

Function: find_best_beta(G,H,Ar,Br)

a. For each node gi
b. For each node hk

i. For each edge eij
ii. For each edge ekl

1. beta = compare (i,j,k,l)
2. Save betapeak[i][k]=beta if maximal for nodes i,k

iii. Next l
iv. Next j

c. Next k
d. Next i
e. Return betapeak[][]

Figure 2. The find_best_beta() function described in pseudo-code. This function finds the best-case
evidence that edges in graphs G and H form an isomorphic pairing.

Input: Graph G with nodes gi, 0<=i<NG

Graph H with nodes hk, 0<=k<N H
Output: Mapping m(), that gives hk = m(gi)

The presence of either a graph or subgraph isomorphism is
also determined.

Steps:
1. Compute powers of adjacency matrices AR and BR for graphs G and H
2. betapeak[][] = find_best_beta(G,H,Ar,Br)
3. Clear nod s e-to-node mapping
4. For each L, 0<=L<minimum(NG,NH)

a. Let peak = 0
b. For each unmapped node gi
c. For each unmapped node hk

i. Verify consistency of mapping gi to hk given current m()
ii. rho = 0
iii. For each mapped edge eij

1. lookup associated edge ekl where l=m(j)
2. beta = compare(i,j,k,l)
3. gamma = compare(j,j,l,l)
4. rho = 1 – (1-rho)(1-beta)(1-gamma)

iv. Next j
v. alpha = compare(i,i,k,k)
vi. rho = 1 – (1-rho)(1- alpha)(1- betapeak[i][k])
vii. If rho>peak Then

1. gpeak=i
2. h =k peak
3. peak=rho

viii. End If
d. Next k
e. Next i
f. If peak=0 Then GoTo END
g. Let m(gpeak)=hpeak

5. Next L

6. If (L=NG) and (L=NH) Then G is ISOMORPHIC to H
7. Else a subgraph isomorphism exists between G and H.
8. END

Figure 3. Pseudo-code for the LeRP algorithm. LeRP determines whether a graph or a subgraph
isomorphism exists, and computes the associated node-to-node mapping. The comparison of (node or
edge) color is somewhat application-specific and was omitted from the algorithm description.

Referring to Figure 3, evidence of structural similarity is combined via Dempster-Shafer. This is shown in
steps 3.c.iii.4 and 3.c.vi. Dempster-Shafer is used to combine the various probability estimates, found via
the compare() function.

Steps 3-5 in the main algorithm were repeated exactly 3 times to improve the size of the matched subgraph.
On the repeated operations, an initial mapping was defined by selecting nodes from the previous matched
subgraphs. Node pairs were chosen having the highest number of circuits in agreement.

There are some opportunities to reduce the compute effort described in the simplistic presentation above.
For example, the values of gamma can be saved rather than recomputed, with only a linear cost in memory.

Memory and Compute Bounds

For the purpose of determining bounds on the needed computations and memory for LeRP, we assume the
number of nodes in both input graphs equals N. We also assume an average degree of D for both graphs. R
is a parameter, as described previously. A sparse matrix representation was used for the Ar matrices.

Computing the N2 entries of Ar (for some value of r) requires N2D effort, with a sparse matrix
representation. Hence the total effort to find AR is on the order O(N2DR). The other preliminary step, # 2,
requires on the order O(N2D2R) to find the best beta array. The deepest level of nesting in the main section
of the algorithm occurs in Step 4. This is in loops 4., 4.b, 4.c, and 4.c.iv. This section of the algorithm is
most costly, requiring on the order O(N3DR) effort.

The memory for the best-beta array is more costly than other data structures, requiring O(N2). The A1, A2,
A3 … AR arrays can be stored with O(NDR) memory, provided a sparse representation is used. Also, a
tradeoff between speed and memory is possible in LeRP. Precomputation of the best-beta array can be
skipped, and the associated values simply recomputed when needed. This reduces the memory
requirements to O(NDR).

Testing Methodology for Simulated Trials

The goal of testing was not only to verify correct operation, but also to demonstrate robustness and
computational speed under various input conditions. In particular the gradual degradation in the (mean)
number of nodes in matched subgraphs will be demonstrated.

Style of Graphs
Test cases were generated randomly. Graphs were created using Model A in some tests. Strongly regular
(random) graphs were created for other trials. In Model A, the existence of each edge is based on an
independent random variable. Model A is common in theoretical studies [26] and in reported algorithms
[8][16]. All node and edge coloring was discrete in nature. The effect on performance due to the dynamic
range of (randomly generated) colors was studied extensively. Dynamic ranges of color varied from one
(no variation) to six. These colors might represent different types of circuit elements, different types of
atoms in a molecule, or the output of a shape classifier, for example.

Style of Structural Errors
Two kinds of structural errors (or ‘structural differences’) were studied: errors in edges, and errors in
nodes. Toggling the adjacency state of a randomly selected pair of nodes created errors in edges. When an
error in a node was introduced, the entire row (and column) of the adjacency matrix was cleared. In other
words the node, together with all of its edges, was eliminated.

Random structural errors can, inadvertently, result in a node having zero degree. When this occurred, the
associated test trial was dropped. This is because LeRP does not process nodes with zero degree, as these
have virtually no chance of being correctly matched. Hence these cases were eliminated. These cases were
rare, but did occasionally happen in all the 32,000 reported trials.

Testing and Verification Procedure
Table 1 describes the test and verification procedure. The verification in step 7 is done by verifying that
each entry of aij

(1) was identical to bkl
(1) under the mapping k=m(i) and l=m(j). This checks both edges and

non-edges. Checking the similarity of the adjacency matrices eliminates the possibility of a false-positive
result. Note that the mapping will not always contain N nodes, in the case of subgraph matches, for
example.

Step Procedure

1 Randomly generate graph G with N nodes using Model A (or other method).
2 Randomly generate colors for G using a given dynamic range.
3 Copy G to form an initial version of H.
4 Perform 2N random interchanges of node vertices in H.
5 Introduce errors in H, either in color or structure.
6 Run the LeRP algorithm on G and H, yielding the mapping m().
7 Verify the mapping m() preserves adjacencies.

Table 1. Test and verification procedure. Over 32,000 test trials were processed in all. A single trial
consisted of the above steps. This procedure automated testing, permitting a large number of trials to be
generated, and enabled the study of different parameters and performance metrics. Verification in step 7
ensured that the reordered versions of the adjacency matrices were identical.

An algorithm by McKay [17] was also used to verify node-to-node mappings from LeRP. Mappings were
found to be identical in [15]. This was done in a separate test procedure (not as in Table 1) and it was
performed for the graph-matching case only. In other words, these tests were performed on trials with no
structural errors. The goal of using McKay’s algorithm was simply to verify the fundamental operation of
LeRP, via an independent check.

Testing Results for Simulated Trials
An important objective in testing was to quantify how quickly matching subgraphs could be computed, and
to determine the dynamic range of coloring needed to yield an acceptable number of nodes in a matched
subgraph. These two metrics can help quantify the utility of LeRP for an application.

Measuring Tolerance to Structural Errors
The tolerance to structural differences in input graphs (or ‘structural errors’) was studied for two different
cases: errors in nodes and errors in edges. Performance is quantified by the percentage of nodes appearing
in the matched subgraph. The effect of coloring is also included in this study.

Figure 4 demonstrates tolerance to structural errors in nodes. The plot contains contour lines that show the
(mean) percentage of nodes in the matched subgraph. The horizontal axis gives the percentage of nodes that
were removed from one of the two input graphs (along with incident edges). The vertical axis indicates the
dynamic range of discrete color values that were randomly generated for nodes and edges.

Figure 4. Contour lines indicate the percentage of nodes that remain in matched subgraphs when
structural errors are added to nodes. Results are near maximal with a very modest dynamic range of
node and edge coloring (four). Plot summarizes 9600 trials involving 100 node graphs. Color values are
discrete. Model A graphs were used with a 10% probability of an edge.

Referring to Figure 4, the '90' contour line is an example of an ideal result. This shows that when 10% of
the nodes were dropped, 90% remained in the match. Because the line is completely vertical, it means that
node and edge coloring was not necessary in order to maintain the 90% match.

When 20% of the nodes are removed, some coloring is needed to aide the matching process in achieving
maximal results. In this case a dynamic range of only two was required to produce an ideal result for the
average case. In trials with 30%-50% corruption a dynamic range of approximately three was needed.

The above results are considered to be quite good. These indicate that very little dynamic range in node and
edge coloring is needed in order to obtain near-maximal matching performance. Similar results follow in
the case for structural errors in edges. Here, the adjacency state was randomly toggled.

Figure 5. Contour lines indicate the percentage of nodes that remain in matched subgraphs when
structural errors are added to edges. Plot summarizes 9600 trials involving 100 node graphs. Color
values are discrete. Model A graphs were used with a 10% probability of an edge. The plot indicates that
this type of error can be tolerated with a low dynamic range of node and edge coloring (four).

Figure 5 demonstrates the tolerance of LeRP to random structural errors in edges. Mean sizes reported in
the figure are better than the case for errors in nodes. This is to be expected. Consider that in some cases
two randomly added edges will be adjacent to the same node. So, if that one node were eliminated from the
output subgraph, then so would both of the extra edges. Hence, eliminating one node from the subgraph
mapping can take care of two (or more) structural errors. This is why (referring to Figure 5) a corruption
level of 10% can result in a match size that is slightly higher than 90%, on average.

To further illustrate performance in terms of subgraph size, Figures 6-8 show results for a dynamic range of
1, 2 and 4 colors individually. These plots also include the standard deviation for each set of 100 trials.

Figures 6-8. Mean and standard deviation of the percentage of nodes remaining in matched subgraphs
when structural errors are added to nodes. Results indicate near maximal performance with up to 50%
corruption and a dynamic range of 4 colors. Near maximal results are possible with up to 25%
corruption if two colors are present. Each error bar describes the standard deviation a set of 100 trials.

Figure 9 demonstrated the improved performance that can be realized with increased coloring (dynamic
ranges of 1,2, 3, and 4).

Figure 9. Effect of reduced input size on (mean) size of matched subgraph for 1,2,3 and 4 colors.
Structural errors were added to nodes. Results show near maximal performance as the dynamic range of
color increases. This is indicated by the asymptotic approach of the curves to a line with slope of
negative one. A total of 6400 trials are summarized in the plot.

Figure 9 shows the mean number of nodes in the output subgraph. Note the asymptotic approach to a line
with slope of negative one, as the dynamic range of color increases. This line represents the maximal
subgraph case where removing a single node from the input results in a single node being eliminated from
the output. This result is considered to be quite good, as it indicates a very gradual degradation in the size
of the computed subgraph, with minimal dynamic range of node and edge color.

Measuring Tolerance to Coloring Errors

Next we document the effect of errors in graph coloring on the number of nodes in matched subgraphs. In
Figure 10, errors are introduced into both node and edge colors, randomly.

Figure 10. Effect of coloring errors on (mean) size of matched subgraph for 1,2,3 and 4 colors. Coloring
errors were added to both nodes and edges. Results are slightly above a line with slope –2, indicating a
good result for these two types of noise. A total of 6400 trials are summarized in the plot.

Figure 10 demonstrates relatively consistent performance, irrespective of the dynamic range of color. The
mean subgraph size tapers off at a rate that is steeper than the slope of –1 seen previously (the above is
between –1 and –2 in slope). This is because the effect of corrupting both nodes and edges is accumulative.
Poisoning node colors tends to eliminate nodes on a one-for-one basis (as described previously). However,
random errors in edge colors have a more subtle effect on the output size (as was also seen with the
structural errors in edges).

Benchmarks of Execution Time
LeRP processing time is shown in Figure 11, on a log scale. The processing time includes all the time
needed to process the pair of input graphs – but not the time needed to generate the random graphs. Results
are shown for graphs containing no coloring and no structural errors. Tests were run on a Sun EnterpriseTM
450 server with 400-MHz UltraSPARCTM-II processors, and 1GB RAM, running Solaris 2.7. Note, tests on
a Windows ® PC with 550 MHz DuronTM processor and 256 MB RAM required very nearly the same
processing time.

Figure 11. Mean processing time for graphs of varying size with no coloring. No structural errors were
introduced. The 400 node graphs required a mean processing time of 3 minutes, with a standard
deviation of 5 seconds (3%). The error bars were dropped, as they would not have been visible on the log
plot with such low standard deviation. Graphs with 100 nodes took approximately 1.5 seconds. Coloring
improves speed, for example 100 node graphs with a dynamic range of four colors require ~0.4 seconds.

Effect of Reduced Dynamic Range of Node Color
Table 2 summarizes tests that approximate conditions reported by Messmer and Bunke [16]. These tests
examine the effect of the dynamic range of node color on the size of the matched subgraph. Edges had no
coloring in these tests.

We use Model A to generate graphs, with probability 0.15 for edges, to approximate the density of edges
reported in [16]. Results indicate that LeRP can maintain a near maximal size for the matched subgraph,
provided the dynamic range of (discrete) node coloring stays at or above 10% of the number of nodes. As
described previously, Messmer and Bunke [16] report degraded results with dynamic a range below 20%.

Dynamic Range
Of Node Color

Size of Matched Subgraph
(Mean +/- Standard Deviation)

20 50 +/- 0.1
15 50 +/- 0.1
10 50 +/- 0.2
7 49 +/- 5.2
5 47 +/- 9.3

Table 2. Effect of dynamic range of node color on size of matched subgraph. Edges had no coloring in
these tests. Trials used graphs with 100 nodes, and eliminated 50 nodes from one of the inputs, making
the ideal size of the matched subgraph, above, equal to 50 nodes. Each trial (row) consisted of 100
randomly generated tests. Model A was used to generate graphs with a probability = 0.15. Results show
that LeRP can maintain near maximal matches, provided the node coloring stays above 10% of the
number of nodes.

Effect of Increased Density of Edges
Table 3 summarizes tests that examine the effect of an increased density of edges on the size of the
matched subgraph. Results show that denser graphs are more challenging for LeRP, but can be
accommodated given a slight increase in the dynamic range of node and edge coloring.

Model A

Probability
Dynamic Range of

Node and Edge Color
Size of Matched Subgraph

(Mean +/- Standard Deviation)
0.1 4 50 +/- 0.5
0.2 4 50 +/- 3.6
0.3 4 46 +/- 11
0.4 4 44 +/- 15
0.5 4 38 +/- 19
0.1 5 50 +/- 0.5
0.2 5 50 +/- 0.0
0.3 5 50 +/- 3.1
0.4 5 49 +/- 6.0
0.5 5 49 +/- 6.8

Table 3. Effect of increased density of edges on size of matched subgraph. Model A was used in each
case. The dynamic range of node and edge coloring is also shown. Test conditions were similar to Table
2. Results indicate that a slight increase in the dynamic range of coloring can accommodate the denser
graphs.

Tests with Strongly Regular Graphs
Table 4 summarizes tests involving strongly regular graphs. Here, the size of the matched subgraph was
examined as the degree of the graphs was increased. This style of testing was included because regular
graphs are the most challenging type for isomorphism algorithms [33]. This makes for a difficult matching
problem for the subgraph case. Here, the local comparisons (r=1) yield little distinction due to the near
identical degree. Furthermore, the more distance comparisons (r~N) tend to be corrupted by structural
errors. This makes for a challenging style of graph for the structural comparisons.

Test conditions are similar to Tables 2 and 3, in that the maximal subgraph had 50 nodes. Because the input
graphs were random in nature, the degree was not exactly the same for every node. The actual mean degree
is reported in the test results.

Results demonstrate that an increasing degree does become more challenging for LeRP. However, as with
the increased density of Table 3, this can be accommodated with a modest increase in the dynamic range of
node and edge coloring.

Target
Degree

Actual Mean
Degree

Dynamic Range of
Node and Edge Color

Size of Matched Subgraph
(Mean +/- Standard Deviation)

10 9.9 4 50 +/- 0.2
20 19.9 4 50 +/- 0.0
30 29.6 4 44 +/- 15
10 9.9 5 50 +/- 0.2
20 19.9 5 50 +/- 0.0
30 29.7 5 50 +/- 0.0

Table 4. Size of matched subgraph for strongly regular graphs. Increasing the degree makes matching
more challenging for the LeRP algorithm. But, as with the denser graphs in Table 3, the drop in
performance can be recovered with only a slight increase in the dynamic range of node and edge
coloring. Test conditions were similar to Table 2, but with the strongly regular graphs.

Conclusion and Areas for Further Investigation
The objective of this study was to develop an approximate subgraph isomorphism algorithm that could
work well in a variety of applications. LeRP is successful in this regard, with worst-case computational
requirements on the order O(N3D2R), where N is the number of nodes, D is the mean degree, and R is the
highest power of the adjacency matrix used in processing. The algorithm has demonstrated a high tolerance
to structural and coloring errors, and also has reasonable memory requirements. We have also demonstrated
that LeRP has a low dependence on the dynamic range of coloring. The key to the success of the LeRP
algorithm is a dynamic comparison horizon for measuring structural similarity. This permits a mapping to
be determined via a deterministic amount of processing.

LeRP is an improvement on previous work by DePiero [5]. Compared to the previous work, LeRP is
greatly simplified and significantly more efficient. For example, previous tests were limited to graphs with
40 nodes, where tests here ran up to 400 nodes, with reasonable execution times. Future studies with LeRP
include applications in the areas of range image registration, and electronic circuit comparisons. Studies
involving the necessary limits on the parameter R, alternate methods of computing node similarity, and of
combining evidence, are also under consideration.

References
1. H.G. Barrow, R.M. Burstall, Subgraph Isomorphism, Matching relational structures and maximal

cliques, Information Processing Letters, 4 (1976) 83-84.
2. R.C. Bolles, R.A. Cain, Recognizing and locating partially visible objects: the local-feature-focus

method, Int. J. of Robotics Research, 1 (3) (1982) 1236-1253
3. H. Bunke, G. Allerman, Inexact graph matching for structural pattern recognition, Pattern Rec. Letters, 1

(4) (1983) 245-253
4. M.S. Costa, L.G. Shapiro, Scene analysis using appearance-based models and relational indexing, IEEE

Symposium on Computer Vision, Coral Gables, FL, Nov. 1995, 103-108.
5. F. W. DePiero, M. M. Trivedi, S. Serbin, Graph Matching Using a Direct Classification of Node

Attendance, Pattern Recognition Journal, vol. 29, no. 6, pp. 1031-1048, 1996.
6. A.D.J. Cross, E.R. Hancock, Graph matching with a dual-step EM algorithm, IEEE Trans. Pattern

Analysis and Machine Intelligence, 20 (11) (1998) 1236-1253
7. M.A. Eshera, K.S. Fu, A graph distance measure for image analysis, IEEE Trans. Systems, Man and

Cybernetics, 14 (3) (1984) 398-408.
8. S. Gold, A Rangarajan, A graduated assignment algorithm for graph matching, IEEE Trans. Pattern

Analysis and Machine Intelligence, 18 (4) (1996) 377-388.
9. W.E.L. Grimson, Object recognition by computer, MIT Press, 1990
10. R.C. Wilson, E.R. Hancock, Structural matching by discrete relaxation, IEEE Trans. Pattern Analysis

and Machine Intelligence, 19 (6) (1997) 634-648.

11. R. Myers, R.C. Wilson, E.R. Hancock, Bayesian graph edit distance, IEEE Trans. Pattern Analysis and
Machine Intelligence, 22 (6) (2000) 628-635.

12. R.M Haralick, L.G. Shapiro, The consistent labeling problem I, IEEE Trans. Pattern Analysis and
Machine Intelligence, 1 (1979) 173-184.

 13. L.G. Shapiro, R.M Haralick, Structural descriptions and inexact matching, IEEE Trans. Pattern
Analysis and Machine Intelligence, 3 (5) (1981) 504-519.

14. L.G. Shapiro, R.M Haralick, A metric for comparing relational descriptions, IEEE Trans. Pattern
Analysis and Machine Intelligence, 7 (1985) 90-94.

15. D.W. Krout, LeRP: An Algorithm for Finding Subgraph Isomorphisms with Applications to VLSI,
Master’s Thesis, Cal Poly State University, San Luis Obispo, CA, 2001.

16. B. T. Messmer, H. Bunke, A new algorithm for error-tolerant subgraph isomorphism detection, IEEE
Trans. Pattern Analysis and Machine Intelligence, 20 (5) (1998) 493-504.

17. B. McKay. Practical Graph Isomorphism, Congressus Numerantium, 30 (1981) 45-87.
18. N.J. Nillson, Principles of Artificial Intelligence, Tioga, Palo Alto, CA, 1980.
19. A. Sanfeliu, K.S. Fu, A distance measure between attributed relational graphs for pattern recognition,

IEEE Trans. Systems, Man and Cybernetics, 13 (1983) 353-363.
20. G. Shafer, A Mathematical Theory of Evidence, Princeton University Press, Princeton, New Jersey,

1976.
21. G. Stockman, Object recognition and localization via pose clustering, Computer Vision, Graphics and

Image Processing, 40 (1987) 361-387.
22. Y. Lamden, H. Wolfson, Geometric hashing: a general and efficient model-based recognition scheme,

Proc. 2nd Int. Conf. On Computer Vision, Tarpon Springs, FL (Nov. 1988) 238-249.
23. E.K. Wong, Three-dimensional object recognition by attributed graphs, H. Bunke and A. Sanfeliu, eds,

Syntactic and Structural Pattern Recognition – Theory and Applications, World Scientific (1990) 381-
414.

24. A. Rosenfeld, R. Hummel, S. Zucker, Scene labeling by relaxation operators, IEEE Trans. Systems,
Man and Cybernetics, 6 (1976) 420-453.

25. R. Hummel, S. Zucker, On the foundations of relaxation labeling processes, IEEE Trans. Pattern
Analysis and Machine Intelligence, 5 (1983) 267-287.

26. E. M. Palmer, Graphical Evolution – An Introduction to the Theory of Random Graphs, Wiley-
Interscience, 1985.

27. W J Christmas, J Kittler and M Petrou, 1995. ``Structural matching in Computer Vision using
Probabilistic Relaxation''. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-17,
pp 749--764.

28. W J Christmas, J Kittler and M Petrou, 1996. ``Probabilistic feature-labeling schemes: modeling
compatibility coefficient distributions''. Image and Vision Computing, Vol 14, pp 617- 625.

28. W J Christmas, J Kittler and M Petrou, 1996. ``Labeling 2-D geometric primitives using probabilistic
relaxation: reducing the computational requirements''. Electronic Letters, Vol 32(4), pp 312--314.

30. J Kittler, M Petrou and W J Christmas, 1998. ``Non-iterative contextual correspondence matching''.
Pattern Recognition Journal, Vol 31, No 10, pp 1455--1468.

31. L.R. Foulds, Graph Theory Applications, Springer-Verlag, New York, 1992.
32. D.B. West, Introduction to Graph Theory, 2nd ed., Prentice-Hall, Upper Saddle River, New Jersey,

2001.
33. R. C. Read and D. G. Corneil, The graph isomorphism disease, Journal of Graph Theory, 1 (1) 339-363
(1977).
34. B. Luo, E. R. Hancock, Structural Graph Matching Using the EM Algorithm and Singular Value

Decomposition, IEEE Trans. Pattern Analysis and Machine Intelligence, 23 (10) 1120-1136.

	Fred DePiero� and David Krout
	Cal Poly State University
	Abstract The ‘LeRP’ algorithm approximates subgra
	Introduction and Problem Definition
	Challenge of Determining Graph and Subgraph Isomorphism
	Algorithm Development Goals for LeRP
	Horizon of Node-to-Node Comparisons – A Taxonomy
	LeRP Dynamic Comparison Horizon - Contrast to Other Approaches
	
	
	
	Exhaustive Techniques
	Approximate Techniques
	LeRP Dynamic Comparison Horizon
	Comparison of LeRP with Other Methods

	Further Comparisons
	Computing the Structural Similarity of Nodes and Edges
	Combining Evidence of Structural Similarity
	LeRP Algorithm
	Function: find_best_beta(G,H,Ar,Br)

	Memory and Compute Bounds
	Testing Methodology for Simulated Trials
	
	
	
	Style of Graphs
	Style of Structural Errors
	Testing and Verification Procedure

	Testing Results for Simulated Trials
	
	
	
	Measuring Tolerance to Structural Errors
	Measuring Tolerance to Coloring Errors
	Benchmarks of Execution Time
	Effect of Reduced Dynamic Range of Node Color

	Dynamic Range
	
	Of Node Color
	
	Effect of Increased Density of Edges
	Tests with Strongly Regular Graphs
	Conclusion and Areas for Further Investigation

	References

