Abstract

Thyroid hormones (THs) regulate growth, morphological development, and migratory behaviors in teleost fish, yet little is known about the transcriptional dynamics of gene targets for THs in these taxa. Here, we characterized TH regulation of mRNAs encoding thyrotropin subunits and thyroid hormone receptors (TRs) in an adult teleost fish model, the fathead minnow (Pimephales promelas). Breeding pairs of adult minnows were fed diets containing 3,5, 3,-triiodo-L-thyronine (T3) or the goitrogen methimazole for 10 days. In males and females, dietary intake of exogenous T3 elevated circulating total T3, while methimazole depressed plasma levels of total thyroxine (T4). In both sexes, this methimazole-induced reduction in T4 led to elevated mRNA abundance for thyrotropin β-subunit (tshβ) in the pituitary gland. Fish treated with T3 had elevated transcript levels for TR isoforms α and β (trα and trβ) in the liver and brain, but reduced levels of brain mRNA for the immediate-early gene basic transcription factor-binding protein (bteb). In the ovary and testis, exogenous T3 elevated gene transcripts for tshβ, glycoprotein hormone α-subunit (gphα), and trβ, while not affecting trα; levels. Taken together, these results demonstrate negative feedback of T4 on pituitary tshβ, identify trα and trβ as T3-autoinduced genes in the brain and liver, and provide new evidence that tshβ, gphα, and trβ are THs regulated in the gonad of teleosts. Adult teleost models are increasingly used to evaluate the endocrine-disrupting effects of chemical contaminants, and our results provide a systemic assessment of TH-responsive genes during that life stage.

Disciplines

Biology

Included in

Biology Commons

Share

COinS
 

URL: https://digitalcommons.calpoly.edu/bio_fac/331