Abstract

The functional and possible adaptive significance of non-avian reptiles’ dual aortic arch system and the ability of all non-avian reptiles to perform central vascular cardiac shunts have been of great interest to comparative physiologists. The unique cardiac anatomy of crocodilians – a four-chambered heart with the dual aortic arch system – allows for only right-to-left (R–L; pulmonary bypass) cardiac shunt and for surgical elimination of this shunt. Surgical removal of the R–L shunt, by occluding the left aorta (LAo) upstream and downstream of the foramen of Panizza, results in a crocodilian with an obligatory, avian/mammalian central circulation. In this study, R–L cardiac shunt was eliminated in age-matched, female American alligators (Alligator mississippiensis; 5–7 months of age). We tested the hypothesis that surgical elimination of R–L cardiac shunt would impair growth (a readily measured proxy for fitness) compared with sham-operated, age-matched controls, especially in animals subjected to exhaustive exercise. While regular exercise caused a decrease in size (snout-to-vent length, head length and body mass), elimination of the capacity for R–L cardiac shunt did not greatly reduce animal growth, despite a chronic ventricular enlargement in surgically altered juvenile alligators. We speculate that, despite being slightly smaller, alligators with an occluded LAo would have reached sexual maturity in the same breeding season as control alligators. This study suggests that crocodilian R–L cardiac shunt does not provide an adaptive advantage for juvenile alligator growth and supports the logic that cardiac shunts persist in crocodilians because they have not been selected against.

Disciplines

Biology

Eme2010_Gator_shunt_growth_sup1.pdf (155 kB)
Shunt Growth Supplement 1

Eme2010_Gator_shunt_growth_sup2.pdf (68 kB)
Shunt Growth Supplement 2

Included in

Biology Commons

Share

COinS
 

URL: https://digitalcommons.calpoly.edu/bio_fac/233