Abstract

Diver visibility analyses and predictions, and water transparency in general, are of significant military and commercial interest. This is especially true in our current state, where ports and harbors are vulnerable to terrorist attacks from a variety of platforms both on and below the water (swimmers, divers, AUVs, ships, submarines, etc.). Aircraft hyperspectral imagery has been previously used successfully to classify coastal bottom types and map bathymetry and it is time to transition this observational tool to harbor and port security. Hyperspectral imagery is ideally suited for monitoring small-scale features and processes in these optically complex waters, because of its enhanced spectral (1-3 nm) and spatial (1-3 meters) resolutions. Under an existing NOAA project (CICORE), a field experiment was carried out (November 2004) in coordination with airborne hyperspectral ocean color overflights to develop methods and models for relating hyperspectral remote sensing reflectances to water transparency and diver visibility in San Pedro and San Diego Bays. These bays were focused areas because: (1) San Pedro harbor, with its ports of Los Angeles and Long Beach, is the busiest port in the U.S. and ranks 3rd in the world and (2) San Diego Harbor is one of the largest Naval ports, serving a diverse mix of commercial, recreational and military traffic, including more than 190 cruise ships annual. Maintaining harbor and port security has added complexity for these Southern California bays, because of the close proximity to the Mexican border. We will present in situ optical data and hyperspectral aircraft ocean color imagery from these two bays and compare and contrast the differences and similarities. This preliminary data will then be used to discuss how water transparency and diver visibility predictions improve harbor and port security.

Disciplines

Biology

Publisher statement

One print or electronic copy may be made for personal use only. Systematic reproduction and distribution, duplication of any material in this paper for a fee or for commercial purposes, or modification of the content of the paper are prohibited.

Included in

Biology Commons

Share

COinS
 

URL: http://digitalcommons.calpoly.edu/bio_fac/149